JPH08284609A - Turbine active clearance control device - Google Patents

Turbine active clearance control device

Info

Publication number
JPH08284609A
JPH08284609A JP9058195A JP9058195A JPH08284609A JP H08284609 A JPH08284609 A JP H08284609A JP 9058195 A JP9058195 A JP 9058195A JP 9058195 A JP9058195 A JP 9058195A JP H08284609 A JPH08284609 A JP H08284609A
Authority
JP
Japan
Prior art keywords
seal segment
seal
segment
downstream side
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9058195A
Other languages
Japanese (ja)
Other versions
JP3686119B2 (en
Inventor
Toshio Sugitani
敏夫 杉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9058195A priority Critical patent/JP3686119B2/en
Publication of JPH08284609A publication Critical patent/JPH08284609A/en
Application granted granted Critical
Publication of JP3686119B2 publication Critical patent/JP3686119B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE: To prevent vibration and seal wear at low load and stabilize the motion of a seal segment at loading, concerning a turbine active clearance control device for the shaft seal between a rotary part and a stationary part of a steam or gas turbine. CONSTITUTION: A seal segment 1 is arranged on a stationary part 10 so as to seal between the upper stream side 12 and the lower stream side 13 against a rotary part 11. The seal segment 1 is provided with a passage 4 and a groove 5 so as to communicate together the upper stream 12 and the lower stream side 13, and provided with a pilot valve 2 through a spring 3. At low load, the pilot valve 2 is moved to the upper stream side 12 by the spring 3, and the segment is not in contact with a wall 10a by pressure in the groove 5, so as to enlarge the gap relative to the rotary shaft 11 and prevent vibration and wear. At loading, the valve 2 is pushed in the direction of the lower stream side 13 against the spring 3 by fluid pressure, the segment 1 comes in contact with the wall 10a, and hence the face is sealed and motion of the segment 1 is stabilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は蒸気タービン及びガスタ
ービンの翼、等の回転部と静止部との間に設けたシール
セグメントを有するタービン・アクティブクリアランス
制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine active clearance control device having a seal segment provided between a rotating part and a stationary part such as blades of steam turbines and gas turbines.

【0002】[0002]

【従来の技術】図5は従来の蒸気又はガスタービンの回
転部と静止部の間に用いられるシールセグメントの断面
図である。図において、静止部10と回転部11との間
にはシールセグメント21が設けられており、負荷の増
大に伴い、上流側12と下流側13との圧力差も高まる
ことにより、半径方向の力26、ばね反力24の差圧力
でシール面摩擦力25に抗してシールセグメント21を
内径側に移動させる。
2. Description of the Prior Art FIG. 5 is a cross-sectional view of a seal segment used between a rotating part and a stationary part of a conventional steam or gas turbine. In the figure, a seal segment 21 is provided between the stationary portion 10 and the rotating portion 11, and as the load increases, the pressure difference between the upstream side 12 and the downstream side 13 also increases, so that the radial force is increased. 26, the seal segment 21 is moved toward the inner diameter side against the seal surface frictional force 25 by the differential pressure of the spring reaction force 24.

【0003】このようにタービン起動時、停止時には静
止部10と回転部11との間隙を大きくし、接触による
振動の発生や、シール部摩耗を防ぎ、負荷運転時にはシ
ールセグメント21を内径側14へ移動させて両者の間
隙を小さくして蒸気又はガスの漏洩を減少させている。
As described above, when the turbine is started and stopped, the gap between the stationary portion 10 and the rotating portion 11 is increased to prevent vibrations due to contact and wear of the seal portion, and the seal segment 21 is moved to the inner diameter side 14 during load operation. By moving them, the gap between them is reduced to reduce the leakage of steam or gas.

【0004】[0004]

【発明が解決しようとする課題】前述のように従来の蒸
気又はガスタービンの起動、停止時はシールセグメント
21により静止部10を回転部11の間隙を大きくし、
接触による振動発生やシール部摩耗を防ぎ、負荷運転時
にはシールセグメント21を移動させて間隙を小さくし
て、蒸気あるいはガスの漏洩を減少させる為に、負荷増
に伴って蒸気あるいはガスの作動流体の圧力が高まり、
従って差圧も高まる事を利用してシールセグメントを動
かし半径方向の間隙を調整している。
As described above, when the conventional steam or gas turbine is started or stopped, the gap between the stationary portion 10 and the rotating portion 11 is increased by the seal segment 21.
In order to prevent vibration and wear of the seal portion due to contact, and to reduce the gap by moving the seal segment 21 during load operation to reduce the leakage of steam or gas, as the load increases, the working fluid of steam or gas Increased pressure,
Therefore, by utilizing the fact that the differential pressure also increases, the seal segment is moved to adjust the radial gap.

【0005】しかしながら、従来の技術においてはこの
シールセグメント21の動作が不安定となる場合が多
く、普及するに至っていない。このシールセグメント2
1の動作不安定の原因は、静止部10の側面とのシール
面摩擦力25が大き過ぎる事によっている。すなわち半
径方向にシールセグメント25を動かす力となる差圧力
は同時に軸方向の力f1 も作用するため軸方向力f1
よるシールセグメント21と側壁との摩擦も大きくな
る。製造直後はこの接触面もなめらかであり摩擦力も大
きくないが、使用するにともなって接触面の肌荒れ等に
より摩耗力25が増大する。
However, in the conventional technique, the operation of the seal segment 21 is often unstable and has not come into widespread use. This seal segment 2
The cause of the unstable operation of No. 1 is that the seal surface frictional force 25 with the side surface of the stationary portion 10 is too large. That differential pressure to be force to move the seal segments 25 in the radial direction is also increased friction between the seal segment 21 and the side wall due to the axial force f 1 to act also axial force f 1 at the same time. Immediately after manufacturing, this contact surface is also smooth and the frictional force is not large, but the wear force 25 increases with use due to roughening of the contact surface.

【0006】そのため、この摩擦力に打ち勝ってセグメ
ントを半径方向に動かす為に、半径方向の作用力を大き
くする工夫がなされているが、今の所、摩擦力に対して
充分な作動力となるようなものはなく、作動不安定が生
じるため普及に至っていない。
For this reason, in order to overcome this frictional force and move the segment in the radial direction, a measure is taken to increase the acting force in the radial direction, but at present, it is a sufficient operating force against the frictional force. There is no such thing, and unstable operation has occurred, so it has not reached widespread use.

【0007】[0007]

【課題を解決するための手段】本発明はこのような課題
を解決するために、タービンの回転軸と静止部との間に
設けられるシールセグメントに軸方向に貫通する通路部
を設け、この通路部に弁機構を設け、この弁機構により
低負荷時にはシールセグメントの移動を可能とし、シー
ルセグメントと回転軸との間隙を大きく、負荷運転時に
はその間隙を小さくすることを可能にする構成とする。
In order to solve such a problem, the present invention provides a passage portion axially penetrating a seal segment provided between a rotating shaft of a turbine and a stationary portion. A valve mechanism is provided in the section, and this valve mechanism allows the seal segment to move when the load is low, and makes the gap between the seal segment and the rotary shaft large and makes the gap small during load operation.

【0008】即ち、本発明は、タービンの回転軸と静止
部との間に設けられ、同静止部の前記回転軸の軸方向に
沿った溝内で移動可能で、かつ前記回転軸を流体上流側
と下流側との間で軸シールするシールセグメントと;同
シールセグメントを前記軸方向に貫通し、前記流体を上
流側から下流側へ流入可能とする通路部と;同通路部の
途中に設けられ、起動、停止の低負荷時にはバネ力によ
り上流側に移動して前記流体を前記通路部の下流側に流
入させ、その流体圧力で前記シールセグメントを前記溝
内で上流側に移動させて同溝内の下流側壁面と非接触状
態にさせ、負荷運転時には流体圧力により前記バネ力に
抗して下流側に移動して前記通路を閉じると共にその流
体圧力で前記シールセグメントを下流側に移動させ、前
記溝内の前記下流側壁面と接触させる弁機構とを具備し
てなり、低負荷時には前記回転軸と前記シールセグメン
トとの間隙を大きく、負荷運転時は同間隙を小さくし、
蒸気又はガスの漏洩量を低減させることを特徴とするタ
ービン・アクティブクリアランス制御装置を提供する。
That is, the present invention is provided between a rotary shaft of a turbine and a stationary part, is movable in a groove along the axial direction of the rotary shaft of the stationary part, and the rotary shaft is upstream of the fluid. Segment that axially seals between the downstream side and the downstream side; a passage portion that penetrates the seal segment in the axial direction and allows the fluid to flow from the upstream side to the downstream side; provided in the middle of the passage portion When the load is low at the time of starting and stopping, the fluid moves to the upstream side by the spring force to cause the fluid to flow into the downstream side of the passage portion, and the fluid pressure moves the seal segment to the upstream side in the groove. It is brought into non-contact with the downstream side wall surface in the groove, and during load operation, it moves to the downstream side against the spring force due to fluid pressure to close the passage, and at the same time the fluid pressure moves the seal segment to the downstream side. , The downstream in the groove It comprises a and a valve mechanism for contacting the wall surface, at the time of low load increases the gap between the seal segments and the rotating shaft, when the load operation is decreased by the same gap,
Provided is a turbine active clearance control device characterized by reducing the amount of steam or gas leakage.

【0009】[0009]

【作用】本発明はこのような手段により、タービンの起
動や停止時には、上流、下流の圧力差が小さく、弁機構
は通路部内でバネ力により上流側へ押し出されているの
で流体は通路部で上流から下流側へ通じ、下流側の圧力
は上流側にほとんど同じであり、シールセグメントの溝
内下流側壁面への押し付け力は極めて小さく、シールセ
グメントが容易に半径方向に作動する。従って、タービ
ン起動時はシールセグメントは外径側に移動でき、回転
軸と静止部との間隙を大きくして接触による振動やシー
ル部摩耗を低減できる。
According to the present invention, when the turbine is started or stopped by such means, the pressure difference between the upstream side and the downstream side is small, and the valve mechanism is pushed to the upstream side by the spring force in the passage portion. The pressure flows from the upstream side to the downstream side, the pressure on the downstream side is almost the same on the upstream side, the pressing force of the seal segment on the downstream side wall surface in the groove is extremely small, and the seal segment easily operates in the radial direction. Therefore, when the turbine is started, the seal segment can be moved to the outer diameter side, and the gap between the rotary shaft and the stationary portion can be increased to reduce vibration due to contact and wear of the seal portion.

【0010】負荷運転時には負荷上昇により差圧が増大
するのでその差圧によりシールセグメントは溝内で内径
側に移動する。その後、弁機構が通路部内で下流方向に
押し付けられ、流体の通路が閉じ、シールセグメントは
その流体圧力で溝内の下流側の側壁面に接し、側壁部の
シールが形成されると共に回転軸と静止部との間隙を小
さくでき蒸気又はガスの漏洩量を低減することができ
る。
During load operation, the differential pressure increases as the load increases, and the differential pressure causes the seal segment to move inward in the groove. After that, the valve mechanism is pressed in the passage portion in the downstream direction, the passage of the fluid is closed, and the seal segment is brought into contact with the side wall surface on the downstream side in the groove by the fluid pressure to form the seal of the side wall portion and the rotary shaft. It is possible to reduce the gap between the stationary part and the amount of steam or gas leakage.

【0011】負荷降下時には弁機構が通路部内で上流側
に移動し、シールセグメントの溝内下流側に流体が流入
し、その圧力が上昇するので、シールセグメントは溝内
の下流側側壁面へ押し付け力が低下し、作用する力によ
り容易に半径外側方向の元の位置へ移動させる事が出来
る。
At the time of load drop, the valve mechanism moves upstream in the passage portion, the fluid flows into the groove downstream side of the seal segment, and its pressure rises, so the seal segment is pressed against the downstream side wall surface in the groove. The force decreases, and it can be easily moved to the original position in the radial outer direction by the acting force.

【0012】[0012]

【実施例】以下、本発明の実施例を図面に基づいて具体
的に説明する。図1は本発明の一実施例に係るタービン
・アクティブクリアランス制御装置に関する断面図であ
る。図において、10はタービンの静翼(ノズル)内側
先端部、等の静止部、11は動翼外径側先端部、ロータ
軸、等の回転部で、その間の静止部10にはシールセグ
メント1が設けられている。シールセグメント1には軸
方向に通路4が上流側12から下流側13に貫通して設
けられ、パイロット弁2がバネ3を介して設けられてい
る。通路4の下流側は溝5に連通しており静止部10の
側壁10aとの接触面積を小さくしている。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a sectional view of a turbine active clearance control device according to an embodiment of the present invention. In the figure, 10 is a stationary portion such as a turbine vane (nozzle) inner tip portion, 11 is a rotating portion such as a rotor blade outer diameter side tip portion, rotor shaft, and the like. Is provided. A passage 4 is provided in the seal segment 1 so as to penetrate from the upstream side 12 to the downstream side 13 in the axial direction, and a pilot valve 2 is provided via a spring 3. The downstream side of the passage 4 communicates with the groove 5 to reduce the contact area with the side wall 10a of the stationary portion 10.

【0013】このような構成において、上流側12の圧
力P1 を下流側13へ導入する通路4は静止部10の側
壁10aとシールセグメント1との接触面積を小さくす
るために設けた溝5の容積に比べて充分に大きくし、軸
方向力f2 を効果的に低減させることができる。この通
路4の容積は過度に大きいと側面でのシール効果が消失
するので、タービン負荷の低い時、すなわち差圧の小さ
い時はシールセグメント1が下流側13の壁10aに接
触せず、浮いたような状態となるようにし、タービン負
荷が上昇し、シールセグメント1の半径方向動作が完了
した段階では側面10aのシール効果を生じさせる為に
パイロット弁21をセグメントに設けたものである。
In such a structure, the passage 4 for introducing the pressure P 1 on the upstream side 12 to the downstream side 13 has the groove 5 provided to reduce the contact area between the side wall 10a of the stationary portion 10 and the seal segment 1. It can be made sufficiently larger than the volume, and the axial force f 2 can be effectively reduced. If the volume of the passage 4 is excessively large, the sealing effect on the side surface disappears. Therefore, when the turbine load is low, that is, when the differential pressure is small, the seal segment 1 does not contact the wall 10a of the downstream side 13 and floats. In such a state, when the turbine load is increased and the radial operation of the seal segment 1 is completed, the pilot valve 21 is provided in the segment in order to generate the sealing effect of the side surface 10a.

【0014】上流側12と下流側13の圧力差が小さい
時は、パイロット弁2はバネ3により上流側12へ押し
出されているので、下流側13の圧力は上流側12にほ
とんど同じであり、下流側13への押し付け力即ち、軸
方向の力f2 は極めて小さく、従って、そのシール面摩
擦力6も小さくなり、シールセグメント1が容易に半径
方向に作動するようになる。
When the pressure difference between the upstream side 12 and the downstream side 13 is small, the pilot valve 2 is pushed to the upstream side 12 by the spring 3, so that the pressure on the downstream side 13 is almost the same as that on the upstream side 12. The pressing force on the downstream side 13, that is, the axial force f 2 is extremely small, so that the seal face friction force 6 is also small, and the seal segment 1 is easily actuated in the radial direction.

【0015】従って、タービン起動時はシールセグメン
ト1は外径側により、負荷上昇により差圧が増大するの
で内径側14に移動する。その後、パイロット弁2が下
流側13の方向に押し付けられ、下流側13の側壁部の
シールが形成される。
Therefore, when the turbine is started, the seal segment 1 moves to the inner diameter side 14 because the differential pressure increases due to the load increase due to the outer diameter side. Then, the pilot valve 2 is pressed toward the downstream side 13 to form a seal on the side wall portion of the downstream side 13.

【0016】負荷降下時にはパイロット弁2が上流側1
2に移動し、シールセグメント1の下流側の溝5内の圧
力が上昇するので、シールセグメント1の下流側13の
側壁10aへ押しつけ力が低下し、摩擦力6も小さくな
るので容易にシールセグメント1を半径外側方向へ作用
するバネ力24により、元の位置へ移動させる事が出来
る。
When the load drops, the pilot valve 2 is on the upstream side 1
2 and the pressure in the groove 5 on the downstream side of the seal segment 1 rises, the pressing force against the side wall 10a on the downstream side 13 of the seal segment 1 decreases, and the frictional force 6 also decreases. 1 can be moved to the original position by the spring force 24 acting outward in the radius direction.

【0017】このように、本実施例では軸方向の力を従
来と比べて減少させ、シールセグメントを半径方向に効
果的に移動できるようにしたものである。この効果を式
で示すと、従来の軸方向の力をf1 、シール面の接触面
積をA1 (図5参照)、本実施例での軸方向の力を
2 、接触面積をA2 、上流側12と下流側13との差
圧をΔPとすると、f1 =A1 ×ΔP、f2 =A2 ×Δ
Pとなり、A1 >A2 であるから、f1 >f2 となり、
従来の軸方向の力f1 より本実施例での軸方向の力f2
を小さくすることができる。
As described above, in this embodiment, the force in the axial direction is reduced as compared with the prior art, and the seal segment can be effectively moved in the radial direction. This effect is expressed by the formula: the conventional axial force is f 1 , the contact area of the sealing surface is A 1 (see FIG. 5), the axial force in this embodiment is f 2 , the contact area is A 2 , And the pressure difference between the upstream side 12 and the downstream side 13 is ΔP, f 1 = A 1 × ΔP, f 2 = A 2 × Δ
Since P and A 1 > A 2 , f 1 > f 2 and
The axial force f 2 in this embodiment is different from the conventional axial force f 1
Can be made smaller.

【0018】図2は図1におけるパイロット弁2付近の
拡大図であり、圧力導入用の通路4の面積の関係を示し
ている。図において、A0 ,A1 ,A2 〜A7 は流体通
路の面積であり、セグメントが低負荷時、下流側に密着
しない条件は、A0 >(A1+A2 )>A3 >A4 >A
5 >A6 >(A7 +A8 )として、バネ力により、(A
1 +A2 )>A3 となるように設定する。
FIG. 2 is an enlarged view of the vicinity of the pilot valve 2 in FIG. 1, showing the relationship of the area of the pressure introducing passage 4. In the figure, A 0 , A 1 , A 2 to A 7 are the areas of the fluid passages, and the condition that the segments do not adhere to the downstream side when the load is low is A 0 > (A 1 + A 2 )> A 3 > A 4 > A
5 > A 6 > (A 7 + A 8 ), the spring force causes (A
Set so that 1 + A 2 )> A 3 .

【0019】図3は前述の通路4の面積とパイロット弁
2前後の圧力の関係を示した図で、(a)は通路面積と
流体流れ方向との関係を示し、(b)は上流側と下流側
の間の差圧の分布を示している。
FIG. 3 is a diagram showing the relationship between the area of the passage 4 and the pressure before and after the pilot valve 2, (a) showing the relationship between the passage area and the fluid flow direction, and (b) showing the upstream side. The distribution of the differential pressure between the downstream sides is shown.

【0020】図4は圧力と負荷との関係を示し、(a)
は負荷上昇時にパイロット弁2が下流側に移動した時の
前後の圧力を、(b)は負荷下降時にパイロット弁が上
流側に移動した時の前後の圧力の関係を示している。
FIG. 4 shows the relationship between pressure and load.
Shows the pressure before and after the pilot valve 2 moves to the downstream side when the load rises, and (b) shows the relationship between the pressure before and after the pilot valve moves to the upstream side when the load falls.

【0021】このような実施例によれば、従来はシール
セグメントにおける差圧力とバネによる復元力の差が小
さいために、シールセグメントを側面に押し付ける軸方
向の力による側面の摩擦力に打ち勝ってシールセグメン
トを半径方向に効果的に動かせなかったが、前述のよう
に通路4を設け、パイロット弁2とバネ3をこの通路4
内に設けたので、タービンの低負荷時にはシールセグメ
ント1と静止部10の側面との摩擦力6を低減させ、振
動の発生やシール部の摩耗を防止し、負荷時には半径方
向の作用力を安定させて高いシール効果を得ることがで
きるものである。
According to such an embodiment, since the difference between the differential pressure in the seal segment and the restoring force by the spring is small in the related art, the side face frictional force due to the axial force pressing the seal segment against the side face is overcome and the seal is obtained. Although the segment could not be moved effectively in the radial direction, the passage 4 was provided and the pilot valve 2 and the spring 3 were connected to the passage 4 as described above.
Since it is installed inside, the frictional force 6 between the seal segment 1 and the side surface of the stationary portion 10 is reduced when the turbine has a low load, vibration is prevented and wear of the seal portion is prevented, and the radial acting force is stabilized when the load is applied. It is possible to obtain a high sealing effect.

【0022】[0022]

【発明の効果】以上、具体的に説明したように、本発明
によれば、タービンの回転軸と静止部との間に設けられ
るシールセグメントに軸方向に貫通する通路部を設け、
この通路部に弁機構を設け、この弁機構により低負荷時
にはシールセグメントの移動を可能とし、シールセグメ
ントと回転軸との間隙を大きく、負荷運転時にはその間
隙を小さくすることを可能にする構成としたので、次の
ような効果を奏するものである。
As described above in detail, according to the present invention, the seal segment provided between the rotating shaft of the turbine and the stationary portion is provided with the passage portion penetrating in the axial direction,
A valve mechanism is provided in this passage, and this valve mechanism allows the seal segment to move when the load is low, makes the gap between the seal segment and the rotary shaft large, and makes it possible to reduce the gap during load operation. Therefore, the following effects can be obtained.

【0023】(1)タービン起動時又は停止時及び低負
荷時にはセグメントと回転部の半径方向間隙が大きく、
軸振動によりシール部が接触し、シール部の摩耗する事
を防ぎ、高負荷時は軸振動が安定しているので、間隙が
小さくなっても接触する事が無く、高いシール効果が継
続して得られるので、性能向上に大きく寄与する。
(1) When the turbine is started or stopped, and when the load is low, the radial gap between the segment and the rotating portion is large,
It prevents the seal part from contacting due to shaft vibration and wear of the seal part, and the shaft vibration is stable under high load, so there is no contact even if the gap becomes small, and the high sealing effect continues. Since it is obtained, it greatly contributes to the performance improvement.

【0024】(2)従来のタービンの軸シールはセグメ
ントの動作不安定が生じ、普及されなかったが本発明に
おいてはシールセグメントの作動が安定しているので軸
シールとして有効な手段となるものである。
(2) The conventional turbine shaft seal has not been widely used because of unstable operation of the segment, but in the present invention, the operation of the seal segment is stable, so that it is an effective means for the shaft seal. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るタービン・アクティブ
クリアランス制御装置の断面図である。
FIG. 1 is a cross-sectional view of a turbine active clearance control device according to an embodiment of the present invention.

【図2】図1におけるパイロット弁付近の部分拡大図で
ある。
FIG. 2 is a partially enlarged view of the vicinity of the pilot valve in FIG.

【図3】本発明の一実施例に係るタービン・アクティブ
クリアランス制御装置の通路部面積、差圧の関係を示
し、(a)は流体流れ方向と通路部の面積との関係を示
す図、(b)は流体流れ方向での圧力分布を示す図であ
る。
FIG. 3 is a diagram showing a relationship between a passage area and a differential pressure of a turbine active clearance control device according to an embodiment of the present invention, and FIG. 3A is a diagram showing a relationship between a fluid flow direction and an area of the passage. b) is a diagram showing a pressure distribution in a fluid flow direction.

【図4】本発明の一実施例に係るタービン・アクティブ
クリアランス制御装置の負荷と差圧との関係を示し、
(a)は負荷上昇時、(b)は負荷下降時の負荷とパイ
ロット弁前後の圧力をそれぞれ示す。
FIG. 4 shows the relationship between the load and the differential pressure of the turbine active clearance control device according to the embodiment of the present invention,
(A) shows the load when the load rises, and (b) shows the load when the load falls and the pressure before and after the pilot valve, respectively.

【図5】従来のタービンのシールセグメントの断面図を
示す。
FIG. 5 shows a cross-sectional view of a conventional turbine seal segment.

【符号の説明】[Explanation of symbols]

1 シールセグメント 2 パイロット弁 3 バネ 4 通路 5 溝 6 シール面摩擦力 10 静止部 11 回転部 12 上流側 13 下流側 1 Seal Segment 2 Pilot Valve 3 Spring 4 Passage 5 Groove 6 Sealing Surface Friction Force 10 Stationary Part 11 Rotating Part 12 Upstream Side 13 Downstream Side

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 タービンの回転軸と静止部との間に設け
られ、同静止部の前記回転軸の軸方向に沿った溝内で移
動可能で、かつ前記回転軸を流体上流側と下流側との間
で軸シールするシールセグメントと;同シールセグメン
トを前記軸方向に貫通し、前記流体を上流側から下流側
へ流入可能とする通路部と;同通路部の途中に設けら
れ、起動、停止の低負荷時にはバネ力により上流側に移
動して前記流体を前記通路部の下流側に流入させ、その
流体圧力で前記シールセグメントを前記溝内で上流側に
移動させて同溝内の下流側壁面と非接触状態にさせ、負
荷運転時には流体圧力により前記バネ力に抗して下流側
に移動して前記通路を閉じると共にその流体圧力で前記
シールセグメントを下流側に移動させ、前記溝内の前記
下流側壁面と接触させる弁機構とを具備してなり、低負
荷時には前記回転軸と前記シールセグメントとの間隙を
大きく、負荷運転時は同間隙を小さくし、蒸気又はガス
の漏洩量を低減させることを特徴とするタービン・アク
ティブクリアランス制御装置。
1. A turbine is provided between a rotating shaft and a stationary part, is movable in a groove along the axial direction of the rotating shaft of the stationary part, and the rotating shaft is connected to a fluid upstream side and a downstream side. A seal segment that axially seals between the seal segment; and a passage part that penetrates the seal segment in the axial direction and allows the fluid to flow from the upstream side to the downstream side; When the load is low at the time of stop, the fluid moves to the upstream side by the spring force to flow the fluid into the downstream side of the passage portion, and the fluid pressure moves the seal segment to the upstream side in the groove, and the downstream in the groove. When not in contact with the side wall surface, the fluid pressure causes the fluid pressure to move to the downstream side against the spring force to close the passage while the fluid pressure causes the fluid pressure to move the seal segment to the downstream side. Contact with the downstream side wall surface of And a valve mechanism for reducing the amount of steam or gas leakage when the load is low and the gap between the rotary shaft and the seal segment is large when the load is low. Turbine active clearance control device.
JP9058195A 1995-04-17 1995-04-17 Turbine active clearance controller Expired - Lifetime JP3686119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9058195A JP3686119B2 (en) 1995-04-17 1995-04-17 Turbine active clearance controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9058195A JP3686119B2 (en) 1995-04-17 1995-04-17 Turbine active clearance controller

Publications (2)

Publication Number Publication Date
JPH08284609A true JPH08284609A (en) 1996-10-29
JP3686119B2 JP3686119B2 (en) 2005-08-24

Family

ID=14002416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9058195A Expired - Lifetime JP3686119B2 (en) 1995-04-17 1995-04-17 Turbine active clearance controller

Country Status (1)

Country Link
JP (1) JP3686119B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10209009C1 (en) * 2002-02-26 2003-01-16 Wolfgang Braig Turbomachine radial seal with self-adjustment of radially displaced seal segments having 2 relatively spaced sealing edges
KR100541592B1 (en) * 1998-08-10 2006-01-10 제너럴 일렉트릭 캄파니 Seal assembly and rotary machine containing such seal assembly
EP2410134A1 (en) * 2010-07-14 2012-01-25 Hitachi Ltd. Sealing device for steam turbines and method for controlling sealing device
JP2012145060A (en) * 2011-01-14 2012-08-02 Hitachi Ltd Sealing structure for steam turbine
EP2631433A1 (en) * 2012-02-27 2013-08-28 Siemens Aktiengesellschaft Axially movable sealing device of a turbomachine
EP2806109A1 (en) * 2013-05-22 2014-11-26 Doosan Skoda Power S.r.o. Arrangement of a segmented retractable seal in a stator of a turbine
JP2017040258A (en) * 2015-08-17 2017-02-23 ゼネラル・エレクトリック・カンパニイ Turbine shroud assembly

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100541592B1 (en) * 1998-08-10 2006-01-10 제너럴 일렉트릭 캄파니 Seal assembly and rotary machine containing such seal assembly
DE10209009C1 (en) * 2002-02-26 2003-01-16 Wolfgang Braig Turbomachine radial seal with self-adjustment of radially displaced seal segments having 2 relatively spaced sealing edges
EP2410134A1 (en) * 2010-07-14 2012-01-25 Hitachi Ltd. Sealing device for steam turbines and method for controlling sealing device
US8864443B2 (en) 2010-07-14 2014-10-21 Hitachi, Ltd. Sealing device for steam turbines and method for controlling sealing device
JP2012145060A (en) * 2011-01-14 2012-08-02 Hitachi Ltd Sealing structure for steam turbine
EP2631433A1 (en) * 2012-02-27 2013-08-28 Siemens Aktiengesellschaft Axially movable sealing device of a turbomachine
WO2013127687A1 (en) * 2012-02-27 2013-09-06 Siemens Aktiengesellschaft Axially movable sealing device of a turbomachine
EP2806109A1 (en) * 2013-05-22 2014-11-26 Doosan Skoda Power S.r.o. Arrangement of a segmented retractable seal in a stator of a turbine
JP2017040258A (en) * 2015-08-17 2017-02-23 ゼネラル・エレクトリック・カンパニイ Turbine shroud assembly

Also Published As

Publication number Publication date
JP3686119B2 (en) 2005-08-24

Similar Documents

Publication Publication Date Title
KR101321207B1 (en) Seal structure of rotary machine
JP2947833B2 (en) Positive variable clearance labyrinth seal
JP4179848B2 (en) Steam supply holes for retractable packing segments in rotating machinery.
JP6470945B2 (en) Suction seal assembly for rotating machine and method for assembling the same
US6116612A (en) Fluid seal
JPH10281299A (en) Mechanical seal device
JPS58203268A (en) Packing for fluid machine
JP2007263374A (en) Rotary face seal assembly
CN204692588U (en) The gas lubrication mechanical seal device that a kind of closing force is adjustable online
KR20070120448A (en) Actuation pressure control for adjustable seals in turbomachinery
JP2004052758A (en) Shaft seal mechanism, turbine equipped with the same, and shaft seal leakage preventing system
JP2000097344A (en) Sealing device having automatic gap regulation
JPH08284609A (en) Turbine active clearance control device
JPS61152906A (en) Seal part gap regulating device for turbine
US2814512A (en) Sealing devices
JP2000265845A (en) Gas sealing device for variable displacement type supercharger
CN111219489B (en) Suction face seal assembly for rotary machine
JPH11200810A (en) Labyrinth seal mechanism
JPH04187801A (en) Seal portion interval adjustor for turbine
JPS5820905A (en) Tip clearance adjuster for axial flow type hydraulic machine
JPH09280383A (en) Shaft sealing device
JPS6326611Y2 (en)
JPH09273636A (en) Mechanical seal
JPH08296744A (en) Mechanical seal
JP2002349209A (en) Seal structure for turbine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050602

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

EXPY Cancellation because of completion of term