JPH08283415A - Production of polysilane - Google Patents

Production of polysilane

Info

Publication number
JPH08283415A
JPH08283415A JP9534495A JP9534495A JPH08283415A JP H08283415 A JPH08283415 A JP H08283415A JP 9534495 A JP9534495 A JP 9534495A JP 9534495 A JP9534495 A JP 9534495A JP H08283415 A JPH08283415 A JP H08283415A
Authority
JP
Japan
Prior art keywords
substituted
group
polysilane
molecular weight
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9534495A
Other languages
Japanese (ja)
Inventor
Yukio Fujii
幸男 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP9534495A priority Critical patent/JPH08283415A/en
Publication of JPH08283415A publication Critical patent/JPH08283415A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a polysilane having high molecular weight and narrow molecular weight distribution and useful as a photoconductive material, etc., in high yield by carrying out the polycondensation of a specific dihalosilane in a solvent in the presence of an alkali metal. CONSTITUTION: This polysilane is produced by the polycondensation reaction of (A) a dihalosilane of formula I or formula II [R1 and R2 are each a 1-22C (substituted)alkyl, a (substituted)alkoxy, a 6-22C (substituted)aryl or a (substituted)aryloxy; R3 is a 1-22C bifunctional organic group; X is Cl, Br or I; a, b and m are each 1-50] in (B) a solvent (e.g. toluene) containing a quaternary ammonium salt of formula III [R. to R7 are each a 1-20C (substituted)alkyl; at least one of R4 to R7 is a 6-20C (substituted)alkyl] using (C) an alkali metal (preferably dispersed in the form of fine particles of e.g. <=0.1mm diameter).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光導電性材料や非線形光
学材料、また耐熱性に優れた非酸化物セラミックの前駆
体物質等として有用なポリシランの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoconductive material, a non-linear optical material, and a method for producing polysilane useful as a precursor substance of a non-oxide ceramic having excellent heat resistance.

【0002】[0002]

【従来の技術】骨格がケイ素−ケイ素結合からなり側鎖
に各種の有機基を有するポリシランは耐熱、高強度材料
である炭化ケイ素セラミックの前駆体物質(Yajima,Am.
Ceram.Soc.Bull.,62.,893(1983) )やレジスト材料(Mi
ller ,Materials for Microlithography,ACS Symposium
Ser.266,Cap.14,p293(1984))として有用である。
2. Description of the Related Art Polysilane having a skeleton made of silicon-silicon bond and having various organic groups in side chains is a precursor material of silicon carbide ceramics (Yajima, Am.
Ceram.Soc.Bull., 62., 893 (1983)) and resist materials (Mi
ller, Materials for Microlithography, ACS Symposium
Ser.266, Cap.14, p293 (1984)).

【0003】また、該ポリシランはその高いホール移動
度が着目され、電子写真技術への応用(米国特許明細書
4,618,551号(1986)/特開昭61-170747 号公報)の他、
導電性高分子や非線形光学材料や発光材料としての応用
が期待されている(Miller,Chem.Review,89,p1350(198
9) )。
Further, the polysilane has been noted for its high hole mobility, and its application to electrophotographic technology (US Pat.
4,618,551 (1986) / JP-A-61-170747),
Applications as conductive polymers, nonlinear optical materials and light emitting materials are expected (Miller, Chem. Review, 89, p1350 (198
9)).

【0004】従来、ポリシランの製法として、次の方法
が知られている。 (1)ジハロシランのアルカリ金属による脱塩縮合反応
(Kipping 法) (2)ヒドロシランの脱水素縮合(Harrod,J.Organome
t. Chem.,279,C11(1985)) (3)環状化合物の開環重合(Sakurai, J.Am.Chem.So
c.,111,p7641(1989)/Matyjaszewski,ACS Symp.Ser.360,
p78(1988)) (4)リチオシランとハロシランの縮合(Wesson,J.Pol
ym.Sci.,19,p65(1981))を利用した脱塩縮合 (5)電気化学的重合(Dunogues, J.Organomet.Chem.,
382,C17(1990)/石川ら、特開平3-104893号公報)
Conventionally, the following methods have been known as a method for producing polysilane. (1) Dehalogenative condensation reaction of dihalosilane with alkali metal (Kipping method) (2) Dehydrogenative condensation of hydrosilane (Harrod, J. Organome
t. Chem., 279, C11 (1985)) (3) Ring-opening polymerization of cyclic compounds (Sakurai, J. Am. Chem. So
c., 111, p7641 (1989) / Matyjaszewski, ACS Symp.Ser.360,
p78 (1988)) (4) Condensation of lithiosilane and halosilane (Wesson, J. Pol)
ym.Sci., 19, p65 (1981)) desalination condensation (5) Electrochemical polymerization (Dunogues, J. Organomet. Chem.,
382, C17 (1990) / Ishikawa et al., JP 3-104893)

【0005】しかしながら、(2)や(5)の方法では
高分子量のポリマーが得られにくいこと、(3)や
(4)の方法ではモノマー合成が難しいこと等の問題が
ある。このため、ポリシランの合成法としては現在のと
ころ(1)のKipping 法が唯一の実用的な合成法であ
る。
However, there are problems such that it is difficult to obtain a high molecular weight polymer by the methods (2) and (5), and monomer synthesis is difficult by the methods (3) and (4). For this reason, as the method for synthesizing polysilane, the Kipping method (1) is currently the only practical method.

【0006】Kipping 法によれば比較的高分子量のポリ
マーが得られるが、ポリシランとして十分な特性を発揮
できる水準の分子量のポリマー( 具体的には、重量平均
分子量(Mw)として約5000以上(ポリスチレン換
算)のもの)の収率は通常5〜25%程度に過ぎず、主
として環状体からなる低分子量成分が多量に生成する。
また、得られるポリシランは数千から数百万に及ぶ広い
分子量分布(ポリモーダル)を示すという問題もあり、
収率の向上とともに分子量分布のより狭いポリシランの
合成法が求められていた。
According to the Kipping method, a polymer having a relatively high molecular weight can be obtained, but a polymer having a molecular weight of a level capable of exhibiting sufficient characteristics as a polysilane (specifically, a weight average molecular weight (Mw) of about 5,000 or more (polystyrene) Yield of (converted) is usually only about 5 to 25%, and a large amount of low molecular weight components mainly composed of cyclics is produced.
In addition, the obtained polysilane has a problem that it exhibits a wide molecular weight distribution (polymodal) ranging from several thousand to several million.
There has been a demand for a method for synthesizing polysilane having a narrower molecular weight distribution as the yield is improved.

【0007】このような問題点を解決し、Kipping 法で
のポリマー収率を高め、分子量分布を狭くする試みが種
々行なわれてきた。Millerらは、酢酸エチルのような反
応性の添加物により、ポリジヘキシルシランの収率が2
%から6%に、ポリメチルフェニルシランの収率が10
%から15%に高まることを報告している。また、クラ
ウンエーテルとナフタレンをそれぞれモノマーに対し1
〜2mol%添加することにより、ビス(3,5−ジメ
トキシフェニル)ジクロロシランのような難重合性のモ
ノマーからポリマーが6%ながら得られることも報告し
ている(Polymer Preprint,35(1), p500(1994))。
Various attempts have been made to solve such problems, increase the polymer yield by the Kipping method, and narrow the molecular weight distribution. Miller et al. Reported that the yield of polydihexylsilane was 2% with a reactive additive such as ethyl acetate.
% To 6%, the yield of polymethylphenylsilane was 10
% To 15%. In addition, the amount of crown ether and naphthalene is 1 for each monomer.
It has also been reported that by adding ~ 2 mol%, 6% of a polymer can be obtained from a hardly polymerizable monomer such as bis (3,5-dimethoxyphenyl) dichlorosilane (Polymer Preprint, 35 (1), p500 (1994)).

【0008】溶媒を最適化することで高分子量のポリシ
ランを高収率で得ようとする試みもおこなわれている。
Millerらは重合溶媒にジエチレングリコールジメチルエ
ーテル(Diglyme) 等のエーテル系溶媒をトルエンと併用
することでポリジヘキシルシランの収率を6%から37
%に、ポリアニシルメチルシランの収率を12%から2
5%に高め、同時に分子量分布を狭くできることを報告
している(Materialsfor Microlithography,ACS Sympos
ium Ser.266,Cap.14,p293(1984))。
Attempts have also been made to optimize the solvent to obtain high molecular weight polysilane in high yield.
Miller et al. Used a polymerization solvent such as diethylene glycol dimethyl ether (Diglyme) in combination with toluene to increase the yield of polydihexylsilane from 6% to 37%.
%, The yield of polyanisylmethylsilane from 12% to 2
It has been reported that the molecular weight distribution can be narrowed at the same time by increasing it to 5% (Materials for Microlithography, ACS Sympos
ium Ser.266, Cap.14, p293 (1984)).

【0009】Jones らはメチルフェニルジクロロシラン
を例に重合に及ぼす溶媒や添加物の影響を検討し、この
際、テトラヒドロフランを溶媒に用い、58%の収率で
ポリマーが得られることを報告している(第二回ケイ素
系高分子材料シンポジウム予稿集,Dec.5-6(1994),p121
)。しかし、得られるポリシランの分子量はたかだか
数千に過ぎない。
[0009] Jones et al. Examined the effect of solvents and additives on the polymerization, taking methylphenyldichlorosilane as an example, and reported that a polymer was obtained in a yield of 58% when tetrahydrofuran was used as the solvent. Proceedings of the 2nd Symposium on Silicon Polymer Materials, Dec. 5-6 (1994), p121
). However, the molecular weight of the polysilane obtained is only a few thousand.

【0010】Matyjaszewski は、 Kipping法において反
応系に超音波を照射することにより、室温で重合が可能
であり、分子量分布が狭いポリマーが高収率で得られる
ことを報告している(J.Am.Chem.Soc.,110(10),p3321(1
988)) 。
[0010] Matyjaszewski reported that in the Kipping method, by irradiating the reaction system with ultrasonic waves, polymerization can be carried out at room temperature, and a polymer having a narrow molecular weight distribution can be obtained in high yield (J. Am. .Chem.Soc., 110 (10), p3321 (1
988)).

【0011】この際、溶媒にテトラヒドロフランやジグ
ライムとトルエンの混合溶媒を用いると分子量は低下す
るが、ポリマーの収率を向上できることを報告している
(Polymer Preprint,31,p278(1990))。しかし、超音波
の照射はポリシランのSi−Si結合を切断するため、
長時間の反応ではせっかく生成したポリシランが分解し
てしまうという問題がある。
At this time, it has been reported that the use of tetrahydrofuran or a mixed solvent of diglyme and toluene as the solvent lowers the molecular weight, but can improve the yield of the polymer (Polymer Preprint, 31, p278 (1990)). However, since the irradiation of ultrasonic waves breaks the Si-Si bond of polysilane,
There is a problem that the polysilane generated with long-time reaction is decomposed.

【0012】[0012]

【発明が解決しようとする課題】本発明の目的は、ポリ
シランの唯一の実用的な製造法であるKipping 法が有す
る、収率が低い、また、分子量分布が広いという問題点
を改良し、高分子量で分子量分布の狭いポリシランを高
収率で製造する方法を提供することにある。
The object of the present invention is to improve the problems of low yield and wide molecular weight distribution of the Kipping method, which is the only practical production method of polysilane, and to improve the It is an object of the present invention to provide a method for producing a polysilane having a high molecular weight and a narrow molecular weight distribution in a high yield.

【0013】[0013]

【課題を解決するための手段】本発明者らは、ポリシラ
ンの合成法である Kipping 法における上記の問題を解
決すべく合成法を鋭意検討した結果、本発明を完成する
に至った。
Means for Solving the Problems The present inventors have completed the present invention as a result of intensive studies on a synthesis method in order to solve the above problems in the Kipping method which is a synthesis method of polysilane.

【0014】本発明はつぎの発明からなる。 〔1〕一般式(1)または(2)The present invention comprises the following inventions. [1] General formula (1) or (2)

【化4】 [Chemical 4]

【0015】[0015]

【化5】 (これらの式中、R1 、R2 は炭素数1〜22のアルキ
ル基、置換アルキル基、アルコキシ基または置換アルコ
キシ基、炭素数6〜22のアリール基、置換アリール
基、アリーロキシ基または置換アリーロキシ基を示し、
1 およびR2 は同一でも互いに異なっていてもよく、
1 およびR2 の配列が特定の規則性をもっていてもよ
い。R3 は炭素数1〜22の二官能性の有機基を示し、
Xはそれぞれ独立に塩素、臭素または沃素原子を示す。
a、bおよびmは1〜50の整数を示す。)で表わされ
るジハロシランを一般式(3)
Embedded image (In these formulas, R 1 and R 2 are an alkyl group having 1 to 22 carbon atoms, a substituted alkyl group, an alkoxy group or a substituted alkoxy group, an aryl group having 6 to 22 carbon atoms, a substituted aryl group, an aryloxy group or a substituted aryloxy group. Shows the group
R 1 and R 2 may be the same or different from each other,
The arrangement of R 1 and R 2 may have a specific regularity. R 3 represents a bifunctional organic group having 1 to 22 carbon atoms,
Each X independently represents chlorine, bromine or iodine atom.
a, b, and m show the integer of 1-50. ) Is represented by the general formula (3)

【0016】[0016]

【化6】 (式中、R4 、R5 、R6 、R7 は炭素数1〜20のア
ルキル基または置換アルキル基であり、内少なくとも一
つは炭素数6〜20のアルキル基または置換アルキル基
であり、Xは塩素、臭素または沃素原子を示す。)で表
わされる第四級アンモニウム塩を含有する溶媒中でアル
カリ金属により縮重合させることを特徴とするポリシラ
ンの製造方法。
[Chemical 6] (In the formula, R 4 , R 5 , R 6 , and R 7 are an alkyl group having 1 to 20 carbon atoms or a substituted alkyl group, and at least one of them is an alkyl group having 6 to 20 carbon atoms or a substituted alkyl group. , X represents chlorine, bromine or iodine atom), and polycondensation with an alkali metal is carried out in a solvent containing a quaternary ammonium salt represented by the formula (4).

【0017】〔2〕アルカリ金属を微粒子に分散させた
状態にして用いる前記項(1)記載のポリシランの製造
方法。
[2] The method for producing a polysilane according to the above item (1), wherein the alkali metal is used in a state of being dispersed in fine particles.

【0018】本発明のポリシラン合成に用いるジハロシ
ランは一般式(1)または(2)で示されるものであ
る。原料のジハロシランとして、これらの化合物をそれ
ぞれ単独で、または、両者を混合して用いることができ
る。これらの式中、R1 およびR2 は、好ましくは、炭
素数1〜12のアルキル基、置換アルキル基、アルコキ
シ基または置換アルコキシ基、炭素数6〜20のアリー
ル基、置換アリール基、アリーロキシ基または置換アリ
ーロキシ基を示し、R1 およびR2 は同一でも互いに異
なっていてもよく、R1 およびR2 の配列が特定の規則
性をもっていてもよい。R3 は好ましくは炭素数1〜2
0の二官能性の有機基を示し、a、bおよびmは、好ま
しくは1〜10の整数を示す。
The dihalosilane used in the synthesis of the polysilane of the present invention is represented by the general formula (1) or (2). As the raw material dihalosilane, these compounds may be used alone or as a mixture of both. In these formulas, R 1 and R 2 are preferably an alkyl group having 1 to 12 carbon atoms, a substituted alkyl group, an alkoxy group or a substituted alkoxy group, an aryl group having 6 to 20 carbon atoms, a substituted aryl group, an aryloxy group. Alternatively, it represents a substituted aryloxy group, R 1 and R 2 may be the same or different from each other, and the arrangement of R 1 and R 2 may have a specific regularity. R 3 preferably has 1 to 2 carbon atoms
0 represents a bifunctional organic group, and a, b and m preferably represent an integer of 1 to 10.

【0019】ここで、R1 およびR2 は、さらに好まし
くは、メチル、エチル、イソプロピル、t-ブチル、メト
キシ、エトキシ基などのアルキル基、または、フェニ
ル、ナフチル基などのアリール基であり、ケイ素の結合
数a、bおよびmは、好ましくは1〜8である。また、
一般式(2)に示される化合物において、R3 は、さら
に好ましくはメチレン、エチレン、フェニレン基などで
代表される炭素数1〜14のアルキレン基、アリーレン
基またはアルキニレン基を挙げることができる。
Here, R 1 and R 2 are more preferably alkyl groups such as methyl, ethyl, isopropyl, t-butyl, methoxy and ethoxy groups, or aryl groups such as phenyl and naphthyl groups, and silicon The number of bonds a, b and m of is preferably 1 to 8. Also,
In the compound represented by the general formula (2), R 3 is more preferably an alkylene group having 1 to 14 carbon atoms represented by methylene, ethylene, phenylene group and the like, an arylene group or an alkynylene group.

【0020】一般式(1)または(2)で表されるジハ
ロシランのハロゲンとしては最も一般的な塩素の他に臭
素や沃素原子を用いることができる。
As the halogen of the dihalosilane represented by the general formula (1) or (2), bromine or iodine atom can be used in addition to the most general chlorine.

【0021】また、本発明で用いるアルカリ金属として
はリチウム、ナトリウム、カリウムおよびこれらの合金
を挙げることができる。特にこれらのアルカリ金属の融
点以下で反応を行なう場合は、該アルカリ金属を、微粒
子、好ましくは0.1mm以下の粒径に分散させて用い
る。アルカリ金属を、微粒子、好ましくは0.1mm以
下の粒径に分散させて用いることにより低温で高収率の
反応を達成できる。
Examples of the alkali metal used in the present invention include lithium, sodium, potassium and alloys thereof. In particular, when the reaction is carried out below the melting point of these alkali metals, the alkali metals are dispersed in fine particles, preferably a particle diameter of 0.1 mm or less, and used. By using an alkali metal dispersed in fine particles, preferably with a particle diameter of 0.1 mm or less, a high yield reaction can be achieved at low temperature.

【0022】また、本発明のポリシランの製造法に用い
ることができる溶媒は、アルカリ金属、例えばナトリウ
ムと反応せず、前記ジハロシランを溶解することができ
る不活性溶媒であれば特に限定されず、例えば、トルエ
ン、キシレン、ベンゼンなどの芳香族炭化水素類、ドデ
カン、ヘプタン、ヘキサン、シクロヘキサンなどの脂肪
族炭化水素類を挙げることができる。
The solvent used in the method for producing the polysilane of the present invention is not particularly limited as long as it is an inert solvent which does not react with an alkali metal such as sodium and can dissolve the dihalosilane. , Aromatic hydrocarbons such as toluene, xylene and benzene, and aliphatic hydrocarbons such as dodecane, heptane, hexane and cyclohexane.

【0023】また、反応は室温から溶媒の沸点の間の温
度で行なうことが可能であり、反応時間は特に限定され
ない。例えば、15分から24時間の範囲に選ばれる。
The reaction can be carried out at a temperature between room temperature and the boiling point of the solvent, and the reaction time is not particularly limited. For example, it is selected in the range of 15 minutes to 24 hours.

【0024】本発明で用いることのできる第四級アンモ
ニウム塩は、一般式(3)で表わされるものである。式
中、R4 、R5 、R6 、R7 は炭素数1〜20のアルキ
ル基または置換アルキル基であり、内少なくとも一つは
炭素数6〜20のアルキル基または置換アルキル基であ
り、Xは塩素、臭素または沃素原子を示す。
The quaternary ammonium salt that can be used in the present invention is represented by the general formula (3). In the formula, R 4 , R 5 , R 6 , and R 7 are an alkyl group having 1 to 20 carbon atoms or a substituted alkyl group, and at least one of them is an alkyl group having 6 to 20 carbon atoms or a substituted alkyl group, X represents a chlorine, bromine or iodine atom.

【0025】第四級アンモニウム塩のアルキル基の全て
が炭素数6未満の場合には、得られるポリシランの分子
量向上効果が小さく好ましくない。炭素数が20を越え
ると第四級アンモニウム塩の溶解性が低下して好ましく
ない。
When all the alkyl groups of the quaternary ammonium salt have less than 6 carbon atoms, the resulting polysilane has a small effect of improving the molecular weight, which is not preferable. When the number of carbon atoms exceeds 20, the solubility of the quaternary ammonium salt decreases, which is not preferable.

【0026】第四級アンモニウム塩の濃度はジハロシラ
ンモノマーに対して好ましくは0.1mmol%以上、
より好ましくは0.3mmol%以上あればよい。第四
級アンモニウム塩の濃度が0.1mmol%以下の場合
には分子量向上効果が小さく好ましくない。
The concentration of the quaternary ammonium salt is preferably 0.1 mmol% or more with respect to the dihalosilane monomer,
More preferably, it is 0.3 mmol% or more. When the concentration of the quaternary ammonium salt is 0.1 mmol% or less, the effect of improving the molecular weight is small, which is not preferable.

【0027】以下、実施例により本発明をより詳しく説
明するが、本実施例は本発明を限定するものではない。
Hereinafter, the present invention will be described in more detail by way of examples, but the examples do not limit the present invention.

【0028】実施例1 100mlの2つ口フラスコを200℃で乾燥し、熱い
うちにラバーセプタム、三方コックを装着し、真空で吸
引しながら冷却した。そのフラスコに乾燥アルゴンを充
填し、乾燥窒素雰囲気で切り出した金属ナトリウム塊
1.4gとナトリウム上で乾燥し直前に蒸留したトルエ
ン15mlを加えた。このフラスコを乾燥アルゴン流通
下、超音波分散機(Branson社製450 型) にセットし、9
8℃〜108℃に加熱しながら超音波を照射しナトリウ
ムを平均で30μmの粒径に分散させた。
Example 1 A 100 ml two-necked flask was dried at 200 ° C., and while it was hot, a rubber septum and a three-way cock were attached, and it was cooled while sucking in vacuum. The flask was filled with dry argon, and 1.4 g of metallic sodium lumps cut out in a dry nitrogen atmosphere and 15 ml of toluene dried over sodium and distilled immediately before were added. The flask was set in an ultrasonic disperser (Branson Model 450) under a dry argon flow,
Ultrasonic waves were radiated while heating at 8 ° C to 108 ° C to disperse sodium into particles having an average particle size of 30 µm.

【0029】上記のナトリウム懸濁液の入ったフラスコ
に、磁気撹拌子、ラバーセプタム、熱電対を装着し62
℃に昇温した。フラスコの内温が安定すると同時に、水
素化カルシウム上で蒸留したフェニルメチルジクロロシ
ラン(信越化学工業 LS-1490)0.3gをガスタイトシ
リンジを用いて滴下し、ついで別途調製したテトラドデ
シルアンモニウムブロマイド(Aldrich 社製)0.1g
の乾燥トルエン溶液2mlを加えた。さらにフェニルメ
チルジクロロシラン4.8gを約11分かけて滴下し
た。滴下時の反応でフラスコ内の温度は一時的に110
℃まで上昇し、溶媒の還流が認められた。滴下終了とと
もにフラスコを85℃に昇温し、滴下開始後1時間反応
を行なった。
A magnetic stirrer, a rubber septum, and a thermocouple were attached to the flask containing the above sodium suspension.
The temperature was raised to ° C. At the same time as the internal temperature of the flask was stabilized, 0.3 g of phenylmethyldichlorosilane (Shin-Etsu Chemical LS-1490) distilled on calcium hydride was added dropwise using a gas tight syringe, and then tetradodecyl ammonium bromide (prepared separately) Aldrich) 0.1g
2 ml of a dry toluene solution of was added. Further, 4.8 g of phenylmethyldichlorosilane was added dropwise over about 11 minutes. The temperature in the flask was temporarily 110 due to the reaction at the time of dropping.
The temperature rose to 0 ° C., and reflux of the solvent was observed. Upon completion of the dropping, the temperature of the flask was raised to 85 ° C., and the reaction was carried out for 1 hour after starting the dropping.

【0030】反応終了後、アルゴン流通下で35mlの
トルエンと3mlのイソプロピルアルコールをフラスコ
に加え過剰の金属ナトリウムを失活させ、さらに蒸留水
約10mlを加えて塩化ナトリウム沈殿を溶解した。ト
ルエン相を分離し、無水硫酸マグネシウムで乾燥したの
ち、溶媒を留去し、ワックス状の粗ポリシランを得た。
得られた粗ポリシランは、ゲルパーミエーションクロマ
トグラフィー(Waters社製 Maxima-820、カラム Ultras
tyragel Linear :移動相テトラヒドロフランによる。
以下、GPCということがある)を用いて分子量分布を
測定した。これを図1に示した。
After completion of the reaction, 35 ml of toluene and 3 ml of isopropyl alcohol were added to the flask under a flow of argon to deactivate the excess metallic sodium, and about 10 ml of distilled water was added to dissolve the sodium chloride precipitate. After the toluene phase was separated and dried over anhydrous magnesium sulfate, the solvent was distilled off to obtain a waxy crude polysilane.
The obtained crude polysilane was subjected to gel permeation chromatography (Waters Maxima-820, column Ultras.
tyragel Linear: Based on mobile phase tetrahydrofuran.
Hereinafter, it may be referred to as GPC) to measure the molecular weight distribution. This is shown in FIG.

【0031】さらにこの粗ポリシランをテトラヒドロフ
ラン25gに溶解し、150mlのイソプロピルアルコ
ールで再沈精製した。得られたポリシランの収率、重量
平均分子量、数平均分子量及び分散度を示す。分散度は
(重量平均分子量/数平均分子量)の比として定義さ
れ、分散度が小さいほど分子量分布が狭いことを示す。
Further, this crude polysilane was dissolved in 25 g of tetrahydrofuran and reprecipitated and purified with 150 ml of isopropyl alcohol. The yield, weight average molecular weight, number average molecular weight and dispersity of the obtained polysilane are shown. The dispersity is defined as the ratio of (weight average molecular weight / number average molecular weight), and the smaller the dispersity, the narrower the molecular weight distribution.

【0032】ポリシラン収率:43%(1.4g) 重量平均分子量:32,000 数平均分子量 :
5,000 分散度:6.4
Polysilane yield: 43% (1.4 g) Weight average molecular weight: 32,000 Number average molecular weight:
5,000 Dispersity: 6.4

【0033】比較例1 実施例1と同様の操作で金属ナトリウム1.3gを乾燥
トルエン19mlに約30μmの平均粒径に分散した。
このフラスコに磁気撹拌子、ラバーセプタム、熱電対を
装着し62℃に昇温し、フェニルメチルジクロロシラン
5.0gをガスタイトシリンジを用いて約20分間で滴
下し、滴下開始後、1時間反応を行なった。反応終了
後、実施例1と同様に粗ポリシランを分離し、分子量分
布を測定した。これを図1に示した。さらに同様にし
て、ポリシランを再沈精製した。得られたポリシランの
収率、重量平均分子量、数平均分子量及び分散度を示
す。
Comparative Example 1 In the same manner as in Example 1, 1.3 g of metallic sodium was dispersed in 19 ml of dry toluene to have an average particle size of about 30 μm.
A magnetic stirrer, a rubber septum, and a thermocouple were attached to this flask, the temperature was raised to 62 ° C., 5.0 g of phenylmethyldichlorosilane was added dropwise using a gas-tight syringe in about 20 minutes, and the reaction was started for 1 hour after the start of addition. Was done. After completion of the reaction, crude polysilane was separated in the same manner as in Example 1 and the molecular weight distribution was measured. This is shown in FIG. Further, similarly, polysilane was reprecipitated and purified. The yield, weight average molecular weight, number average molecular weight and dispersity of the obtained polysilane are shown.

【0034】ポリシラン収率:24%(0.8g) 重量平均分子量:230,000 数平均分子量
:6,000 分散度:38.3
Polysilane yield: 24% (0.8 g) Weight average molecular weight: 230,000 Number average molecular weight: 6,000 Dispersity: 38.3

【0035】[0035]

【発明の効果】本発明の製造方法により、光導電性材料
や非線形光学材料または耐熱性に優れた非酸化物セラミ
ックの前駆体物質などに有用な、重量平均分子量が約
5,000以上と高分子量であり、分子量分布の狭いポ
リシランを高収率で得ることができる。
Industrial Applicability According to the production method of the present invention, a high weight average molecular weight of about 5,000 or more, which is useful for photoconductive materials, nonlinear optical materials, precursor materials of non-oxide ceramics having excellent heat resistance, and the like. Polysilane having a high molecular weight and a narrow molecular weight distribution can be obtained in high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1及び比較例1のポリシランの分子量分
布を示す。
1 shows the molecular weight distributions of polysilanes of Example 1 and Comparative Example 1. FIG.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一般式(1)または(2) 【化1】 【化2】 (これらの式中、R1 、R2 は炭素数1〜22のアルキ
ル基、置換アルキル基、アルコキシ基または置換アルコ
キシ基、炭素数6〜22のアリール基、置換アリール
基、アリーロキシ基または置換アリーロキシ基を示し、
1 およびR2 は同一でも互いに異なっていてもよく、
1 およびR2 の配列が特定の規則性をもっていてもよ
い。R3 は炭素数1〜22の二官能性の有機基を示し、
Xはそれぞれ独立に塩素、臭素または沃素原子を示す。
a、bおよびmは1〜50の整数を示す。)で表わされ
るジハロシランを一般式(3) 【化3】 (式中、R4 、R5 、R6 、R7 は炭素数1〜20のア
ルキル基または置換アルキル基であり、内少なくとも一
つは炭素数6〜20のアルキル基または置換アルキル基
であり、Xは塩素、臭素または沃素原子を示す。)で表
わされる第四級アンモニウム塩を含有する溶媒中でアル
カリ金属により縮重合させることを特徴とするポリシラ
ンの製造方法。
1. A compound represented by the general formula (1) or (2): Embedded image (In these formulas, R 1 and R 2 are an alkyl group having 1 to 22 carbon atoms, a substituted alkyl group, an alkoxy group or a substituted alkoxy group, an aryl group having 6 to 22 carbon atoms, a substituted aryl group, an aryloxy group or a substituted aryloxy group. Shows the group
R 1 and R 2 may be the same or different from each other,
The arrangement of R 1 and R 2 may have a specific regularity. R 3 represents a bifunctional organic group having 1 to 22 carbon atoms,
Each X independently represents chlorine, bromine or iodine atom.
a, b, and m show the integer of 1-50. A dihalosilane represented by the general formula (3): (In the formula, R 4 , R 5 , R 6 , and R 7 are an alkyl group having 1 to 20 carbon atoms or a substituted alkyl group, and at least one of them is an alkyl group having 6 to 20 carbon atoms or a substituted alkyl group. , X represents chlorine, bromine or iodine atom), and polycondensation with an alkali metal is carried out in a solvent containing a quaternary ammonium salt represented by the formula (4).
【請求項2】アルカリ金属を微粒子に分散させた状態に
して用いる請求項1記載のポリシランの製造方法。
2. The method for producing polysilane according to claim 1, wherein the alkali metal is used in a state of being dispersed in fine particles.
JP9534495A 1995-04-20 1995-04-20 Production of polysilane Pending JPH08283415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9534495A JPH08283415A (en) 1995-04-20 1995-04-20 Production of polysilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9534495A JPH08283415A (en) 1995-04-20 1995-04-20 Production of polysilane

Publications (1)

Publication Number Publication Date
JPH08283415A true JPH08283415A (en) 1996-10-29

Family

ID=14135074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9534495A Pending JPH08283415A (en) 1995-04-20 1995-04-20 Production of polysilane

Country Status (1)

Country Link
JP (1) JPH08283415A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943721B2 (en) 2005-10-05 2011-05-17 Kovio, Inc. Linear and cross-linked high molecular weight polysilanes, polygermanes, and copolymers thereof, compositions containing the same, and methods of making and using such compounds and compositions
WO2013133100A1 (en) * 2012-03-07 2013-09-12 日本曹達株式会社 Method for producing polydialkylsilane
JP2017057310A (en) * 2015-09-17 2017-03-23 株式会社神鋼環境ソリューション Polysilane production method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943721B2 (en) 2005-10-05 2011-05-17 Kovio, Inc. Linear and cross-linked high molecular weight polysilanes, polygermanes, and copolymers thereof, compositions containing the same, and methods of making and using such compounds and compositions
US8378050B2 (en) 2005-10-05 2013-02-19 Kovio, Inc. Linear and cross-linked high molecular weight polysilanes, polygermanes, and copolymers thereof, compositions containing the same, and methods of making and using such compounds and compositions
WO2013133100A1 (en) * 2012-03-07 2013-09-12 日本曹達株式会社 Method for producing polydialkylsilane
CN104136501A (en) * 2012-03-07 2014-11-05 日本曹达株式会社 Method for producing polydialkylsilane
US9080018B2 (en) 2012-03-07 2015-07-14 Nippon Soda Co., Ltd. Method for producing polydialkylsilane
JPWO2013133100A1 (en) * 2012-03-07 2015-07-30 日本曹達株式会社 Method for producing polydialkylsilane
CN104136501B (en) * 2012-03-07 2016-08-24 日本曹达株式会社 The manufacture method of poly-diakyl silane
JP2017057310A (en) * 2015-09-17 2017-03-23 株式会社神鋼環境ソリューション Polysilane production method

Similar Documents

Publication Publication Date Title
US5830972A (en) Polysilane, its production process and starting materials therefor
JPH01138229A (en) Halogenated polycarbosilane, its production, preparation of preceramic polycarbosilane derivative and production of ceramic article
JP3662589B2 (en) High temperature thermosetting resins and ceramics derived from linear carborane- (siloxane or silane) -acetylene copolymers
JPH0662775B2 (en) Novel polysilazane and method for producing the same
JP4205354B2 (en) Method for producing polysilane copolymer
JPH08283415A (en) Production of polysilane
US5229481A (en) High-molecular weight, silicon-containing polymers and methods for the preparation and use thereof
JPH08245795A (en) Production of polysilane
JP4158204B2 (en) Polysilane compound, production method thereof and raw material thereof
JPH08120082A (en) Production of polysilane
JPH06145361A (en) Poly(silylene)vinylene from ethynylhydridosilane
JPH08120083A (en) Production of polysilane
JPH064699B2 (en) 1,2,2-Trimethyl-1-phenylpolydisilane and method for producing the same
Hu et al. Synthesis and properties of novel conjugated poly (silylacetylene silazane) s
JP2000256466A (en) Carbosilaneborazine-based polymer and its production
Sãcãrescu et al. Polyhydrosilanes I. Synthesis
JP3177683B2 (en) Polysilane and method for producing the same
JP4441770B2 (en) Novel linear metallocene polymers containing acetylene units and inorganic units, and thermosetting resins and ceramics obtained therefrom
JPH064698B2 (en) Dimethylphenylsilylmethylpolysilane and method for producing the same
JPH04306235A (en) Polysilane copolymer and production thereof
WO2017047652A1 (en) Method for producing periodic polysiloxane by polycondensation of symmetric oligosiloxanes
JPH0196222A (en) 1,2,2-trimethyl-1-(substituted phenyl)polydisilane and production thereof
JP3375401B2 (en) Polycarbosilane block copolymer
JP2001055512A (en) Crosslinkable silicon polymer composition, composition for antireflection film, and antireflection film
JPH069786A (en) Organosilicon compound and its production