JPH08283028A - Method for forming optical element - Google Patents

Method for forming optical element

Info

Publication number
JPH08283028A
JPH08283028A JP8290195A JP8290195A JPH08283028A JP H08283028 A JPH08283028 A JP H08283028A JP 8290195 A JP8290195 A JP 8290195A JP 8290195 A JP8290195 A JP 8290195A JP H08283028 A JPH08283028 A JP H08283028A
Authority
JP
Japan
Prior art keywords
optical element
glass
oxidizing gas
molding
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8290195A
Other languages
Japanese (ja)
Inventor
Norio Nakatani
典雄 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP8290195A priority Critical patent/JPH08283028A/en
Publication of JPH08283028A publication Critical patent/JPH08283028A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE: To make it possible to uniformly and rapidly cool the glass optical element under forming from the entire periphery, to shorten the recycle time for forming and to prevent the distortion of formed goods by cooling the optical element while increasing the amt. of the gas to be ejected stepwise or proportionally linearly at the time of press forming the glass optical element with a pair of upper and lower dies and cooling the glass element by blowing a nonoxidizing gas to the optical element under forming. CONSTITUTION: The glass optical element is cooled while the temp. difference between its central part and outer peripheral part is kept low by gradually increasing the amt. of the nonoxidizing gas to be ejected at the time of cooling the formed glass optical element. An optical glass blank 15 is heated to soften by a heater 3a of a heating furnace 3 in Fig. This blank 15 is transported between the upper and lower dies 8 and 11 by a transporting arm 13. The lower die 11 is risen and the blank 15 is placed on its forming surface 11a. The lower die 11 is risen to press form the blank. The optical element is cooled by ejecting the nonoxidizing gas from an ejection port 12 while stepwise increasing the amt. of the gas to be ejected. The optical element is slowly cooled in a slow cooling furnace 4 and is then taken out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加熱軟化したガラス素
材をプレス成形することによりレンズ,プリズムおよび
フィルターなどの光学素子を成形する光学素子の成形方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element molding method for molding optical elements such as lenses, prisms and filters by press molding a glass material which has been softened by heating.

【0002】[0002]

【従来の技術】従来、高精度ガラスレンズ等の光学素子
を成形する方法として、例えば特開平2ー74532号
公報記載の発明がある。上記発明は、非酸化性ガスの送
気手段に接続された複数の吹き付けノズルが上下型の周
辺に配設され、成形された光学素子を均等冷却するよう
に構成されている。
2. Description of the Related Art Conventionally, as a method for molding an optical element such as a high precision glass lens, there is an invention described in Japanese Patent Application Laid-Open No. 2-74532. In the above invention, a plurality of spray nozzles connected to the non-oxidizing gas supply means are arranged around the upper and lower molds to uniformly cool the molded optical element.

【0003】上記構成によれば、成形された光学素子を
全周より均一に急冷却することができ、成形サイクルタ
イムを短縮できるとともに、成形品に生じる歪みを阻止
することができる。
According to the above construction, the molded optical element can be rapidly cooled more uniformly than the entire circumference, the molding cycle time can be shortened, and the distortion generated in the molded product can be prevented.

【0004】[0004]

【発明が解決しようとする課題】しかるに、前記従来技
術においては以下のような問題があった。すなわち、成
形された光学素子の全周へ複数の吹き付けノズルより非
酸化性ガスを吹き付けて均一に急冷却する方法である。
しかしながら、大口径レンズを成形する場合、冷却時に
レンズ中心部と外周部とで著しい温度差が発生する。そ
のため、成形されたレンズに歪みが発生し、レンズ精度
が劣化したり、ワレが発生するなどの問題点を有してい
た。
However, the above-mentioned prior art has the following problems. That is, it is a method of spraying non-oxidizing gas from a plurality of spray nozzles to the entire circumference of the molded optical element to uniformly and rapidly cool it.
However, when molding a large-diameter lens, a significant temperature difference occurs between the lens central portion and the outer peripheral portion during cooling. Therefore, there are problems that the molded lens is distorted, the lens accuracy is deteriorated, and cracks are generated.

【0005】請求項1の目的は、冷却時におけるレンズ
中心部と外周部との温度差を小さくしてレンズに歪みが
発生することを防ぐとともに、急冷による収縮で搬送皿
がレンズを締め付けることによるワレの発生を防止する
ことにある。請求項2の目的は、請求項1の目的に加
え、さらにレンズ中心部と外周部との温度差を小さくす
ることにある。
The object of claim 1 is to prevent the distortion of the lens by reducing the temperature difference between the central portion and the outer peripheral portion of the lens during cooling, and to condense the lens by the transport tray due to contraction due to rapid cooling. It is to prevent the generation of cracks. The object of claim 2 is, in addition to the object of claim 1, to further reduce the temperature difference between the lens central portion and the outer peripheral portion.

【0006】[0006]

【課題を解決するための手段】請求項1の発明は、加熱
軟化したガラス素材を上下一対の成型用金型にて押圧成
形し、成形中のガラス光学素子に非酸化性ガスを吹き付
けて冷却するにあたり、前記非酸化性ガスの噴出量を段
階的もしくは比例直線的に増加させつつ冷却することを
特徴とする光学素子の成形方法である。
According to a first aspect of the present invention, a heat-softened glass material is press-molded by a pair of upper and lower molding dies, and a non-oxidizing gas is blown onto the glass optical element being molded to cool it. In doing so, the method for forming an optical element is characterized in that the ejection amount of the non-oxidizing gas is cooled while increasing stepwisely or proportionally linearly.

【0007】請求項2の発明は、加熱軟化したガラス素
材を上下一対の成型用金型にて押圧成形し、成形中のガ
ラス光学素子に非酸化性ガスを吹き付けて冷却するにあ
たり、前記非酸化性ガスの温度をガラス光学素子の転移
点温度付近から常温まで段階的に低下させつつ冷却する
ことを特徴とする光学素子の成形方法である。
According to a second aspect of the present invention, the heat-softened glass material is press-molded by a pair of upper and lower molding dies, and the non-oxidizing gas is blown onto the glass optical element during molding to cool it. A method of molding an optical element, which comprises cooling the temperature of the volatile gas stepwise from near the transition point temperature of the glass optical element to room temperature while cooling.

【0008】請求項3の発明は、加熱軟化したガラス素
材を上下一対の成型用金型にて押圧成形し、成形中のガ
ラス光学素子に非酸化性ガスを吹き付けて冷却するにあ
たり、前記非酸化性ガスの噴出量を段階的もしくは比例
直線的に増加させるとともに、非酸化性ガスの温度をガ
ラス光学素子の転移点温度付近から常温まで段階的に低
下させつつ冷却することを特徴とする光学素子の成形方
法である。
According to the third aspect of the present invention, the heat-softened glass material is press-molded by a pair of upper and lower molding dies, and a non-oxidizing gas is blown to the glass optical element during molding to cool the glass optical element. Optical element characterized by increasing the amount of the volatile gas jetted stepwise or proportionally linearly and cooling the temperature of the non-oxidizing gas stepwise from near the transition point temperature of the glass optical element to room temperature Molding method.

【0009】[0009]

【作用】請求項1の作用は、成形されたガラス光学素子
を冷却する際、非酸化性ガスの噴出量を徐々に増量する
ことにより、ガラス光学素子の中心部と外周部との温度
差を小さく保ちながら冷却する。
According to the action of claim 1, when cooling the molded glass optical element, the temperature difference between the central portion and the outer peripheral portion of the glass optical element is increased by gradually increasing the ejection amount of the non-oxidizing gas. Keep small and cool.

【0010】請求項2の作用は、成形されたガラス光学
素子を冷却する際、噴出する非酸化性ガスの温度をガラ
ス光学素子の転移点温度付近から常温まで段階的に低下
させることにより、ガラス光学素子の中心部と外周部と
の温度差を小さく保ちながら冷却する。
According to the second aspect of the present invention, when the molded glass optical element is cooled, the temperature of the non-oxidizing gas ejected is lowered stepwise from near the transition point temperature of the glass optical element to room temperature. Cooling is performed while keeping the temperature difference between the central portion and the outer peripheral portion of the optical element small.

【0011】請求項3の作用は、請求項1および2の作
用に比べて更にガラス光学素子の中心部と外周部との温
度差を小さく保ちながら冷却する。
According to the action of claim 3, the cooling is performed while keeping the temperature difference between the central portion and the outer peripheral portion of the glass optical element smaller than that of the actions of the first and second aspects.

【0012】[0012]

【実施例1】図1〜図5は本実施例を示し、図1は縦断
面図、図2は搬送アームの平面図、図3は成型時の縦断
面図、図4および図5はグラフである。1は本実施例で
用いる成形装置で、この成形装置1は成形室2と成形室
2に連設された加熱炉3および徐冷炉4とから構成され
ている。成形室2は側壁5で囲繞されるとともに、雰囲
気ガス発生装置6が接続されており、成形室2内が非酸
化性雰囲気となるように構成されている。
Embodiment 1 FIGS. 1 to 5 show the present embodiment, FIG. 1 is a vertical sectional view, FIG. 2 is a plan view of a transfer arm, FIG. 3 is a vertical sectional view at the time of molding, and FIGS. 4 and 5 are graphs. Is. 1 is a molding apparatus used in the present embodiment, and the molding apparatus 1 is composed of a molding chamber 2, a heating furnace 3 and a slow cooling furnace 4 which are connected to the molding chamber 2. The molding chamber 2 is surrounded by a side wall 5 and is connected to an atmosphere gas generator 6 so that the inside of the molding chamber 2 has a non-oxidizing atmosphere.

【0013】成形室2の上部ベース7にはプレス成形型
の上型8が固定されている。一方、成形室2の下部ベー
ス9には駆動装置(図示省略)に接続された下型ベース
10が摺動自在に嵌合されている。下型ベース10の上
端には下型11が固定されており、下型11は上型8の
軸線上を上下動するように構成されている。
An upper mold 8 of a press mold is fixed to the upper base 7 of the molding chamber 2. On the other hand, a lower mold base 10 connected to a driving device (not shown) is slidably fitted to the lower base 9 of the molding chamber 2. A lower mold 11 is fixed to the upper end of the lower mold base 10, and the lower mold 11 is configured to move up and down on the axis of the upper mold 8.

【0014】上型8および下型11には温度制御装置に
よって所定の温度に設定されるべく加熱装置(図示省
略)が具備されている。また、上型8および下型11の
先端近傍には複数の冷却用ガス噴出口12が設けられて
おり、成形位置に向けて冷却用ガスを噴出して光学素子
を全周から均等に冷却できるよう等間隔に配設されてい
る。
The upper mold 8 and the lower mold 11 are provided with a heating device (not shown) so that the temperature control device sets a predetermined temperature. Further, a plurality of cooling gas ejection ports 12 are provided near the tips of the upper mold 8 and the lower mold 11, and the cooling gas can be ejected toward the molding position to uniformly cool the optical element from the entire circumference. Are evenly spaced.

【0015】13は加熱炉3および成形室2内を移動自
在に支持された搬送アームで、この搬送アーム13の先
端には半円状の搬送皿載置部14が形成されている(図
2参照)。搬送皿載置部14には光学ガラス素材15を
載置搬送する搬送皿16が保持されている。搬送皿16
の材質は光学ガラス素材15の線膨張係数よりも小さな
材質で形成されており、加熱時に光学ガラス素材15の
外径と嵌合するようにその内径が設定されている。
Reference numeral 13 denotes a transfer arm movably supported in the heating furnace 3 and the molding chamber 2, and a semi-circular transfer tray mounting portion 14 is formed at the tip of the transfer arm 13 (FIG. 2). reference). The transport tray 16 on which the optical glass material 15 is placed and transported is held in the transport tray placing section 14. Transport plate 16
Is formed of a material having a linear expansion coefficient smaller than that of the optical glass material 15, and its inner diameter is set so as to fit with the outer diameter of the optical glass material 15 during heating.

【0016】以上の構成からなる装置を用いての成形方
法は、まず光学ガラス素材15を載置した搬送皿16を
搬送アーム13で保持し、加熱炉3内に搬送する。そし
て、加熱炉3のヒーター3aにより光学ガラス素材15
は成形可能な状態になるまで加熱軟化される。この時、
光学ガラス素材15と搬送皿16とは熱嵌合する。加熱
軟化終了後、搬送アーム13は前進し、搬送皿16とと
もに光学ガラス素材15を上下型8,11間に搬送す
る。
In the molding method using the apparatus having the above-described structure, first, the carrier plate 16 on which the optical glass material 15 is placed is held by the carrier arm 13 and carried into the heating furnace 3. Then, the optical glass material 15 is heated by the heater 3a of the heating furnace 3.
Is heated and softened until it becomes a moldable state. This time,
The optical glass material 15 and the carrying tray 16 are heat-fitted. After the heating and softening are completed, the transfer arm 13 advances to transfer the optical glass material 15 together with the transfer tray 16 between the upper and lower molds 8 and 11.

【0017】次に、下型11を上昇させて搬送アーム1
3から搬送皿16を持ち上げる。この時、光学ガラス素
材15は下型11の成形面11aに載置されている。こ
の時点で、搬送アーム13は成形室2外へ後退する。続
いて、更に下型11を上昇させて軟化状態にある光学ガ
ラス素材15をプレス成形する。プレス成形中(押圧し
て肉厚の変わらない状態)に非酸化性ガスがガス噴出口
12より段階的に噴出量を増加させながら光学素子17
に向けて噴出され、光学素子17は冷却される。
Next, the lower die 11 is raised to raise the transfer arm 1.
Lift the transport tray 16 from 3. At this time, the optical glass material 15 is placed on the molding surface 11 a of the lower mold 11. At this point, the transfer arm 13 retracts to the outside of the molding chamber 2. Subsequently, the lower mold 11 is further raised to press-mold the softened optical glass material 15. During the press molding (the state where the wall thickness is not changed by pressing), the non-oxidizing gas is gradually increased from the gas ejection port 12 while the optical element 17 is being ejected.
Is ejected toward the optical element 17 and the optical element 17 is cooled.

【0018】プレス成形後、下型11を下降させて光学
素子17を離型する。この後、光学素子17の搬出用搬
送アーム(図示省略)が前進して徐冷炉4内に光学素子
17を搬送する。徐冷炉4内で一定時間徐冷された後、
プレス成形された光学素子17が取り出される。
After press molding, the lower mold 11 is lowered to release the optical element 17. After that, a carry-out carrying arm (not shown) for the optical element 17 advances to carry the optical element 17 into the annealing furnace 4. After being gradually cooled in the annealing furnace 4 for a certain period of time,
The press-molded optical element 17 is taken out.

【0019】本実施例では、光学ガラス素材15として
BAL12(Tg478℃)を用い、径27mm,曲率
半径52mmと123mm,厚さ4mmの両凸形状のレ
ンズを成形した。加熱炉3を920℃に設定して20秒
間加熱軟化し、型温470℃に設定した上下型8,11
により15秒間押圧して成形した。
In this embodiment, BAL12 (Tg 478 ° C.) was used as the optical glass material 15, and a biconvex lens having a diameter of 27 mm, a radius of curvature of 52 mm and 123 mm, and a thickness of 4 mm was molded. The heating furnace 3 was set to 920 ° C., softened by heating for 20 seconds, and the upper and lower molds 8 and 11 were set to a mold temperature of 470 ° C.
Was pressed for 15 seconds for molding.

【0020】上記成形に際し、冷却ガス噴出口12より
噴出する非酸化性ガスの温度を一定の25度に設定し、
成形開始から5秒間を7リットル/秒、その後5秒間を
20リットル/秒、その後5秒間を35リットル/秒の
噴出量21に設定した成形条件での光学素子の中央部2
2と外周部23との温度変化を図4のグラフに示す。ま
た、非酸化性ガスの噴出量24を一定の30リットル/
秒に設定した以外は前記成形条件と同一な光学素子の中
央部25と外周部26との温度変化を図5のグラフに示
す。
In the above-mentioned molding, the temperature of the non-oxidizing gas jetted from the cooling gas jet port 12 is set to a constant 25 degrees,
The central portion 2 of the optical element under the molding condition in which the ejection amount 21 is set to 7 liters / second for 5 seconds, 20 liters / second for 5 seconds, and 35 liters / second for 5 seconds after the start of molding.
2 shows the temperature change between the outer peripheral portion 23 and the outer peripheral portion 23. In addition, the ejection amount 24 of the non-oxidizing gas is fixed at 30 liters /
The graph of FIG. 5 shows the temperature change between the central portion 25 and the outer peripheral portion 26 of the optical element under the same molding conditions as described above except that the temperature was set to seconds.

【0021】図4と図5との比較から明らかなように、
非酸化性ガスの流量を一定にして冷却した場合の成形中
における光学素子の中央部と外周部との温度差に比べ、
本実施例による非酸化性ガスの噴出量コントロールを行
った場合における光学素子の中央部と外周部との温度差
は大幅に低減している。
As is clear from the comparison between FIG. 4 and FIG.
Compared to the temperature difference between the central portion and the outer peripheral portion of the optical element during molding when cooling with a constant flow rate of the non-oxidizing gas,
The temperature difference between the central portion and the outer peripheral portion of the optical element when the ejection amount of the non-oxidizing gas is controlled according to this embodiment is greatly reduced.

【0022】本実施例によれば、成形中における冷却時
の光学素子の中央部と外周部との温度差を小さくするこ
とができる。また、成形初期における非酸化性ガスの噴
出量が少ないため、搬送皿が光学素子を締め付けること
なく成形を行うことができる。
According to this embodiment, it is possible to reduce the temperature difference between the central portion and the outer peripheral portion of the optical element during cooling during molding. Moreover, since the amount of non-oxidizing gas ejected at the initial stage of molding is small, molding can be performed without the transport tray tightening the optical element.

【0023】[0023]

【実施例2】図6および図7は本実施例を示すグラフで
ある。本実施例で用いる成形装置は、前記実施例1と同
様な成形装置に非酸化性ガスの温度コントロール装置
(図示省略)を設けて構成したものである。従って、図
1〜図3を使用して構成の説明を省略する。
Embodiment 2 FIGS. 6 and 7 are graphs showing this embodiment. The molding apparatus used in this embodiment is the same as the molding apparatus of the first embodiment, except that a temperature control device (not shown) for the non-oxidizing gas is provided. Therefore, the description of the configuration will be omitted using FIGS. 1 to 3.

【0024】上記構成の装置を用いての成形は前記実施
例1と同様であるが、非酸化性ガスにて冷却する際の冷
却方法のみが異なる。本実施例においては、非酸化性ガ
スの噴出量は一定であるが、噴出する非酸化性ガスの温
度を高温から低温へと段階的に低下させる方法である。
The molding using the apparatus having the above-mentioned structure is the same as that of the first embodiment, except for the cooling method when cooling with a non-oxidizing gas. In this embodiment, the ejection amount of the non-oxidizing gas is constant, but the temperature of the ejecting non-oxidizing gas is gradually reduced from a high temperature to a low temperature.

【0025】本実施例では、光学ガラス素材15として
LAH60(Tg612℃)を用い、径22mm,曲率
半径35mm,47mm,厚さ4.7mmの両凸形状の
レンズを成形した。加熱炉3を930℃に設定して22
秒間加熱軟化し、型温585℃に設定した上下型8,1
1により15秒間押圧して成形した。
In this example, LAH60 (Tg 612 ° C.) was used as the optical glass material 15, and a biconvex lens having a diameter of 22 mm, a radius of curvature of 35 mm, 47 mm, and a thickness of 4.7 mm was molded. Set the heating furnace 3 to 930 ° C and set 22
Upper and lower molds 8,1 which are softened by heating for 2 seconds and set at mold temperature 585 ℃
1 was pressed for 15 seconds for molding.

【0026】上記成形に際し、冷却ガス噴出口12より
噴出する非酸化性ガスの噴出量を一定の35リットル/
秒に設定し、非酸化性ガスの温度31を成形開始から5
秒間を600℃、その後6.5秒間を520℃、その後
3.5秒間を常温(25℃)に設定した成形条件での光
学素子の中央部32と外周部33との温度変化を図6の
グラフに示す。また、非酸化性ガスの噴出量を一定の3
5リットル/秒に設定し、噴出する非酸化性ガスの温度
を25℃の一定に設定した以外は前記成形条件と同一な
光学素子の中央部34と外周部35との温度変化を図5
のグラフに示す。
At the time of molding, the amount of non-oxidizing gas ejected from the cooling gas ejection port 12 is fixed at 35 liters /
Second, set the non-oxidizing gas temperature 31 to 5 from the start of molding.
The temperature change between the central portion 32 and the outer peripheral portion 33 of the optical element under the molding conditions of 600 ° C. for seconds, 520 ° C. for 6.5 seconds, and room temperature (25 ° C.) for 3.5 seconds is shown in FIG. Shown in the graph. In addition, the ejection amount of non-oxidizing gas is fixed at 3
The temperature change between the central portion 34 and the outer peripheral portion 35 of the optical element under the same molding conditions as described above except that the temperature of the non-oxidizing gas to be jetted was set to a constant value of 25 ° C. was set to 5 liters / second.
Is shown in the graph.

【0027】図6と図7との比較から明らかなように、
非酸化性ガスの温度を一定にして冷却した場合の成形中
における光学素子の中央部と外周部との温度差に比べ、
本実施例による非酸化性ガスの温度コントロールを行っ
た場合における光学素子の中央部と外周部との温度差は
大幅に低減している。
As is clear from the comparison between FIG. 6 and FIG.
Compared to the temperature difference between the central portion and the outer peripheral portion of the optical element during molding when the temperature of the non-oxidizing gas is kept constant and cooled,
The temperature difference between the central portion and the outer peripheral portion of the optical element when the temperature of the non-oxidizing gas is controlled according to this embodiment is greatly reduced.

【0028】本実施例によれば、成形中における冷却時
の光学素子の中央部と外周部との温度差を小さくするこ
とができる。また、成形初期において搬送皿を高温に保
つことが可能なため、プレス中の光学素子のみが成形型
による冷却で先に温度低下して体積収縮を起こすので、
搬送皿が光学素子を締め付けるのを防止できる。
According to this embodiment, it is possible to reduce the temperature difference between the central portion and the outer peripheral portion of the optical element during cooling during molding. In addition, since the conveying tray can be kept at a high temperature in the initial stage of molding, only the optical element in the press is cooled down by the molding die and the temperature is lowered first to cause volume contraction.
It is possible to prevent the transport tray from tightening the optical element.

【0029】[0029]

【発明の効果】請求項1〜3の効果は、成形中における
冷却時の光学素子の中央部と外周部との温度差を低減す
ることができる。また、搬送皿による光学素子の締め付
けが無いので、歪みやワレの無いガラス光学素子を成形
することができる。
The effects of claims 1 to 3 can reduce the temperature difference between the central portion and the outer peripheral portion of the optical element during cooling during molding. Further, since there is no tightening of the optical element by the carrying tray, it is possible to form a glass optical element free from distortion and cracks.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1を示す縦断面図である。FIG. 1 is a vertical sectional view showing a first embodiment.

【図2】実施例1を示す平面図である。FIG. 2 is a plan view showing the first embodiment.

【図3】実施例1を示す縦断面図である。FIG. 3 is a vertical sectional view showing the first embodiment.

【図4】実施例1を示すグラフである。FIG. 4 is a graph showing Example 1.

【図5】実施例1を示すグラフである。5 is a graph showing Example 1. FIG.

【図6】実施例2を示すグラフである。FIG. 6 is a graph showing Example 2.

【図7】実施例2を示すグラフである。FIG. 7 is a graph showing Example 2.

【符号の説明】[Explanation of symbols]

1 成形装置 2 成形室 3 加熱炉 4 徐冷炉 5 側壁 6 雰囲気ガス発生装置 7 上部ベース 8 上型 9 下部ベース 10 下型ベース 11 下型 12 冷却ガス噴出口 13 搬送アーム 14 載置部 15 光学ガラス素材 16 搬送皿 17 光学素子 DESCRIPTION OF SYMBOLS 1 Molding apparatus 2 Molding chamber 3 Heating furnace 4 Slow cooling furnace 5 Side wall 6 Atmosphere gas generating device 7 Upper base 8 Upper mold 9 Lower base 10 Lower mold base 11 Lower mold 12 Cooling gas jet 13 Transfer arm 14 Mounting part 15 Optical glass material 16 Transport plate 17 Optical element

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 加熱軟化したガラス素材を上下一対の成
型用金型にて押圧成形し、成形中のガラス光学素子に非
酸化性ガスを吹き付けて冷却するにあたり、前記非酸化
性ガスの噴出量を段階的もしくは比例直線的に増加させ
つつ冷却することを特徴とする光学素子の成形方法。
1. The amount of the non-oxidizing gas jetted when the heat-softened glass material is press-molded by a pair of upper and lower molding dies and a non-oxidizing gas is blown onto the glass optical element being molded to cool it. A method for forming an optical element, which comprises cooling while increasing stepwise or proportionally linearly.
【請求項2】 加熱軟化したガラス素材を上下一対の成
型用金型にて押圧成形し、成形中のガラス光学素子に非
酸化性ガスを吹き付けて冷却するにあたり、前記非酸化
性ガスの温度をガラス光学素子の転移点温度付近から常
温まで段階的に低下させつつ冷却することを特徴とする
光学素子の成形方法。
2. The temperature of the non-oxidizing gas is controlled by pressing the heat-softened glass material with a pair of upper and lower molding dies and blowing the non-oxidizing gas to the glass optical element being molded to cool it. A method for molding an optical element, which comprises cooling the glass optical element while gradually lowering it from near the transition point temperature to room temperature.
【請求項3】 加熱軟化したガラス素材を上下一対の成
型用金型にて押圧成形し、成形中のガラス光学素子に非
酸化性ガスを吹き付けて冷却するにあたり、前記非酸化
性ガスの噴出量を段階的もしくは比例直線的に増加させ
るとともに、非酸化性ガスの温度をガラス光学素子の転
移点温度付近から常温まで段階的に低下させつつ冷却す
ることを特徴とする光学素子の成形方法。
3. A spray amount of the non-oxidizing gas when the heat-softened glass material is press-molded by a pair of upper and lower molding dies and a non-oxidizing gas is blown onto the glass optical element being molded to cool it. Is gradually and linearly increased, and the temperature of the non-oxidizing gas is gradually decreased from near the transition point temperature of the glass optical element to room temperature and cooled, and then the optical element is molded.
JP8290195A 1995-04-07 1995-04-07 Method for forming optical element Withdrawn JPH08283028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8290195A JPH08283028A (en) 1995-04-07 1995-04-07 Method for forming optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8290195A JPH08283028A (en) 1995-04-07 1995-04-07 Method for forming optical element

Publications (1)

Publication Number Publication Date
JPH08283028A true JPH08283028A (en) 1996-10-29

Family

ID=13787166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8290195A Withdrawn JPH08283028A (en) 1995-04-07 1995-04-07 Method for forming optical element

Country Status (1)

Country Link
JP (1) JPH08283028A (en)

Similar Documents

Publication Publication Date Title
US5588980A (en) Apparatus for molding a glass optical element with a transporting supporting member
JPH08283028A (en) Method for forming optical element
JPH0435427B2 (en)
JP2621956B2 (en) Optical element molding method
JP2718452B2 (en) Glass optical element molding method
JP3162180B2 (en) Glass optical element molding method
JP4030799B2 (en) Optical element molding method
JP2003073135A (en) Method and mold for forming optical element
JP4327974B2 (en) Method for forming optical glass element
JP2003183039A (en) Method for manufacturing optical element
JP2723139B2 (en) Optical element molding method and molding apparatus
JPS6168331A (en) Press-molding process for glass lens
JP2868117B2 (en) Optical element molding method
JPH04338120A (en) Method for forming glass optical element
JPH02184534A (en) Ejection of formed lens
JP3767780B2 (en) Manufacturing method of glass optical element
JPH07300323A (en) Device and method for producing optical element
JP3162174B2 (en) Optical element molding method
JPH0274532A (en) Apparatus and method for molding optical elements
JPH08268725A (en) Molding device for glass lens and molding method therefor
JP2001130917A (en) Method for press-molding glass optical element
JPH05193962A (en) Method for forming glass optical element
JP2011105562A (en) Forming method and forming apparatus of optical element
JPH03223126A (en) Apparatus for producing glass lens
JP2009091202A (en) Molding stock transferring device, and molding stock transferring method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020702