JPH08282A - Production of 5-methyluridine - Google Patents

Production of 5-methyluridine

Info

Publication number
JPH08282A
JPH08282A JP9286195A JP9286195A JPH08282A JP H08282 A JPH08282 A JP H08282A JP 9286195 A JP9286195 A JP 9286195A JP 9286195 A JP9286195 A JP 9286195A JP H08282 A JPH08282 A JP H08282A
Authority
JP
Japan
Prior art keywords
methyluridine
crystals
methyluracil
salt
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9286195A
Other languages
Japanese (ja)
Other versions
JP3586924B2 (en
Inventor
Shogo Maruyama
昭吾 丸山
Satoru Kumon
哲 公文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP9286195A priority Critical patent/JP3586924B2/en
Publication of JPH08282A publication Critical patent/JPH08282A/en
Application granted granted Critical
Publication of JP3586924B2 publication Critical patent/JP3586924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To produce 5-methyluridine useful e.g. as a synthetic intermediate for azidothymidine, etc., in high efficiency, purity and yield by culturing a specific microorganism, etc., and treating with a ribosephosphate, etc. CONSTITUTION:This 5-methyluridine is produced by culturing a microbial strain capable of forming 5-methyluridine from a ribose-1-phosphate(salt) and 5- methyluracil [e.g. Arthrobacter simplex (FERM P-10068)] or a microbial strain capable of forming 5-methyluridine from a nucleoside, an inorganic phosphoric acid(salt) and 5-methyluracil, removing a part or total of the medium component, treating the microbial cells with a ribose-1-phosphate(salt) and 5-methyluracil or a nucleoside, an inorganic phosphoric acid(salt) and 5-methyluracil and crystallizing and separating the produced 5-methyluridine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、医薬品原料として有用
な5−メチルウリジン(5ーmethyluridine)の製造方法
に関するものである。5−メチルウリジンは、エイズ薬
として市販されているアジドチミジン、また同じく臨床
試験中のd4T(2',3'ーdidehydroxy-2',3'-dideoxythy
midine)の合成中間体として有望視されている。
FIELD OF THE INVENTION The present invention relates to a method for producing 5-methyluridine, which is useful as a raw material for pharmaceuticals. 5-methyluridine is azidothymidine, which is commercially available as an AIDS drug, and d4T (2 ', 3'-didehydroxy-2', 3'-dideoxythy) which is also in clinical trials.
midine) is seen as a promising intermediate.

【0002】[0002]

【従来の技術】5−メチルウリジンは従来、化学的合成
法で製造されており、そこでの精製は、主として、メタ
ノール、エタノール等の有機溶剤を用いた結晶化により
行われていた。(J.Am.Chem.Soc.,78,2117(1956);特開
昭63ー63668;Helvetica Chimica Acta、2179(19
80);Synthesis,259(1982))
2. Description of the Related Art 5-Methyluridine has hitherto been produced by a chemical synthesis method, and its purification was mainly carried out by crystallization using an organic solvent such as methanol or ethanol. (J. Am. Chem. Soc., 78, 2117 (1956); JP-A-63-63668; Helvetica Chimica Acta, 2179 (19).
80); Synthesis, 259 (1982))

【0003】これらの技術は、核酸を原料とし、微生物
を用いて変換する方法とは副生する不純物が異なるた
め、精製を含めた5−メチルウリジンの製造方法として
は参考にならない。
These techniques are not useful as a method for producing 5-methyluridine, including purification, because impurities produced as by-products differ from those obtained by converting nucleic acids as raw materials and using microorganisms.

【0004】微生物を利用する5−メチルウリジンの製
造方法としては、ヌクレオシド、またはリボースー1ー
リン酸に5ーメチルウラシルを微生物存在下に作用させ
る事により製造する方法が知られている。(特開平2ー
23882)
As a method for producing 5-methyluridine utilizing a microorganism, there is known a method for producing 5-methyluridine by allowing 5-methyluracil to act on nucleoside or ribose-1-phosphate in the presence of the microorganism. (JP-A-2-23882)

【0005】しかしながら、この特許には5−メチルウ
リジンの精製法に関する具体的な記述が無く、製品とし
ての5−メチルウリジンを製造するには不十分である。
However, this patent does not have a specific description of a method for purifying 5-methyluridine, which is insufficient for producing 5-methyluridine as a product.

【0006】とりわけ、5−メチルウリジンの大きな結
晶を晶析により得る事は、結晶の分離性を良くして分離
に必要な装置の規模を小さくする事ができ、また、不純
物との分離も良くなり、高純度の製品を得るには必要不
可欠であるが、それに関するなんらの記述もされていな
い。
In particular, obtaining large crystals of 5-methyluridine by crystallization can improve the separability of the crystals and reduce the scale of the apparatus required for the separation, and the separation from impurities is also good. However, it is indispensable for obtaining a high-purity product, but there is no description about it.

【0007】通常、結晶成長には過飽和の大きさと不純
物が大きな影響を与え、とりわけ、不純物の組成は晶析
せんとする系によって全く事なり、この制御が晶析の可
不可を決める重要な鍵であり、与えられた系での特徴的
な制御が必要である場合が多い。
Usually, the degree of supersaturation and impurities have a great influence on the crystal growth, and above all, the composition of the impurities is completely different depending on the system to be crystallized, and this control is an important key for determining whether crystallization is possible or not. In many cases, characteristic control in a given system is necessary.

【0008】よって、微生物を利用した5−メチルウリ
ジンの場合、生物化学的生産に必要な情報は公知である
が、反応液よりの精製については、独自に方法を開発す
る必要があった。
Therefore, in the case of 5-methyluridine utilizing microorganisms, the information necessary for biochemical production is known, but it was necessary to independently develop a method for purification from the reaction solution.

【0009】反応液より、若干の前処理を経て濃縮によ
り5−メチルウリジンを晶析した所、20から30マイ
クロメーター(μm)の大きさの結晶しか得られず、こ
れでは分離速度が非常に遅く、分離装置が大きな物にな
る事が判明した。更に、この大きさでは、後述する結晶
の粒度の差を利用した不純物の分離には全く不適切であ
る事が判明した。
When 5-methyluridine was crystallized from the reaction solution by some pretreatment and concentration, only crystals having a size of 20 to 30 micrometers (μm) were obtained, which resulted in a very high separation rate. Slowly, it turned out that the separator was a big one. Further, it has been found that this size is completely unsuitable for the separation of impurities by utilizing the difference in crystal grain size described later.

【0010】5−メチルウリジンは微生物を用い、核酸
類を原料として、酵素反応により製造することができる
が、そのとき反応生成物中には、未反応物である核酸類
および副生物である核酸類が不純物として含まれてい
る。5−メチルウリジンを製造するのに5ーメチルウラ
シル(チミン)とグアノシンを原料として用いる場合、
反応液中の不純物としては、主としてチミン、グアニ
ン、グアノシン、および、2-Amino-7-β-D-ribofuranos
yl-7H-purine-6(1H)one(シュドグアノシン)が存在す
る。このうち、例えば、チミンは温度、pH等に対する
溶解度変化のパターンが5−メチルウリジンに類似して
いるため、結晶化によって除去する事は難しい。また、
イオン解離パターンも類似しているのでイオン交換樹脂
等の処理による除去も困難である。
5-Methyluridine can be produced by enzymatic reaction using a nucleic acid as a raw material using a microorganism. At that time, in the reaction product, nucleic acid which is an unreacted product and nucleic acid which is a by-product. Species are included as impurities. When 5-methyluracil (thymine) and guanosine are used as raw materials for producing 5-methyluridine,
Impurities in the reaction solution were mainly thymine, guanine, guanosine, and 2-Amino-7-β-D-ribofuranos.
There is yl-7H-purine-6 (1H) one (sudoguanosine). Among them, for example, thymine has a solubility change pattern with respect to temperature, pH and the like that is similar to that of 5-methyluridine, and thus it is difficult to remove it by crystallization. Also,
Since the ion dissociation patterns are similar, it is difficult to remove them by treatment with an ion exchange resin or the like.

【0011】これら核酸系の不純物は、核酸を原料とし
た微生物による製造法に特有のものであり、公知の知識
を活用する事ができない。また、公知文献ではこれらを
分離する方法は記述されていない。
These nucleic acid-based impurities are peculiar to the method of production by a microorganism using nucleic acid as a raw material, and public knowledge cannot be utilized. Moreover, a method for separating these is not described in the known literature.

【0012】[0012]

【発明が解決しようとする課題】5−メチルウリジンを
効率よく生産し、かつ、純度の高い物になるよう、微生
物を用いた反応液からの5−メチルウリジン結晶の粒度
を大きくして結晶と母液の分離効率を高め、さらには、
この結晶と他の不純物結晶との分離効率をよくする方法
を開発する。
[Problems to be Solved by the Invention] In order to efficiently produce 5-methyluridine and to obtain a highly pure product, the grain size of 5-methyluridine crystals from a reaction solution using a microorganism is increased to form crystals. Increase the efficiency of separating mother liquor,
A method for improving the separation efficiency between this crystal and other impurity crystals will be developed.

【0013】[0013]

【課題を解決するための手段】発明者は、微生物を培養
し、核酸類を原料として酵素反応にて5−メチルウリジ
ンを製造し、その晶析お呼び分離方法を検討した際、微
生物の培養液の処理方法により、後工程の5−メチルウ
リジンの晶析で得られる結晶の粒度に大きな差のある事
を見いだし、本発明を完成した。すなわち、本発明は、
リボース−1−燐酸若しくはその塩及び5−メチルウラ
シルから5−メチルウリジンを生成する能力を有する微
生物またはヌクレオシド、無期燐酸若しくはその塩及び
5−メチルウラシルから5−メチルウリジンを生成する
能力を有する微生物を用い、酵素反応にて5−メチルウ
リジンを製造する方法において、該微生物を培養した
後、(イ)該培地成分の一部、または全部を除去し、次
いで(ロ)該微生物にリボース−1−燐酸若しくはその
塩及び5−メチルウラシルまたはヌクレオシド、無期燐
酸若しくはその塩及び5−メチルウラシルを作用せし
め、5−メチルウリジンを生成させた後、次いで(ハ)
生成した5−メチルウリジンを晶析し、分離することを
特徴とする5−メチルウリジンの製造方法に関するもの
である。
Means for Solving the Problems The inventor has cultured a microorganism, produced 5-methyluridine by an enzymatic reaction using nucleic acids as a raw material, and studied the crystallization and separation method of the microorganism when the culture solution of the microorganism was examined. The present invention has been completed by finding that there is a large difference in the grain size of crystals obtained by the crystallization of 5-methyluridine in the subsequent step depending on the treatment method of. That is, the present invention is
Microorganism capable of producing 5-methyluridine from ribose-1-phosphate or a salt thereof and 5-methyluracil, or microorganism capable of producing 5-methyluridine from a nucleoside, infinite phosphoric acid or a salt thereof and 5-methyluracil In the method for producing 5-methyluridine by enzymatic reaction using, after culturing the microorganism, (a) removing a part or all of the medium components, and (b) adding ribose-1 to the microorganism. -Activating phosphoric acid or a salt thereof and 5-methyluracil or nucleoside, infinite phosphoric acid or a salt thereof and 5-methyluracil to produce 5-methyluridine, and then (c)
The present invention relates to a method for producing 5-methyluridine, which comprises crystallizing the produced 5-methyluridine and separating it.

【0014】本発明に用いられる微生物は、リボース−
1−燐酸若しくはその塩及び5−メチルウラシルから5
−メチルウリジンを生成する能力を有する微生物または
ヌクレオシド、無期燐酸若しくはその塩及び5−メチル
ウラシルから5−メチルウリジンを生成する能力を有す
る微生物であれば、使用可能である。例えば、アクロモ
バクター属、アシネトバクター属、エアロモナス属等、
特許公報特開平2−23882号に記載の微生物を挙げ
ることができる。特に好ましい微生物としては、アース
ロバクター属、セルロモナス属、フラボバクテリウム
属、クレブジェラ属、ミクロバクテリウム属、ミクロコ
ッカス属、サルシナ属に属する微生物を例示することが
できる。その具体例として、下記の微生物が挙げられ
る。アースロハ゛クター シンフ゜レックス(Arthrobacter simplex) FERM P-10
068セルロモナス フラヒ゛ケ゛ナ(Cellulomonas flavigena) ATCC 486フラホ゛ハ゛クテリウム レナナム(Flavobacterium rhenanum) FERM BP-
1862クレフ゛シ゛ェラ ニューモニエ(Klebsiella pneumoniae) ATCC 8308ミクロハ゛クテリウム ラクチカム(Microbacterium lacticum) ATCC 818
0ミクロコッカス ルテウス(Micrococcus luteus) FERM P-7399サルシナ ルテア(Sarcina lutea) FERM P-7400
The microorganism used in the present invention is ribose-
5 from 1-phosphoric acid or its salt and 5-methyluracil
-A microorganism capable of producing methyluridine or a microorganism capable of producing 5-methyluridine from nucleoside, infinite phosphoric acid or a salt thereof and 5-methyluracil can be used. For example, Achromobacter, Acinetobacter, Aeromonas, etc.
The microorganisms described in JP-A-2-23882 can be mentioned. Examples of particularly preferable microorganisms include microorganisms belonging to the genera Arthrobacter, Cellulomonas, Flavobacterium, Klebguera, Microbacterium, Micrococcus, and Sarcinia. Specific examples thereof include the following microorganisms. Arthrobacter simplex FERM P-10
068 Cellulomonas flavigena ATCC 486 Flavobacterium rhenanum FERM BP-
1862 Klebsiella pneumoniae ATCC 8308 Microbacterium lacticum ATCC 818
0 Micrococcus luteus FERM P-7399 Sarcina lutea FERM P-7400

【0015】上記微生物の培養は、炭素源、窒素源、
P、S、Fe、Mn等の無機イオン、さらに必要ならば、ビタ
ミン等の微量栄養素または蛋白分解物、酵母エキスのよ
うな有機窒素源を含有する通常の培地を用い、通常の培
養方法で行なえば良い。
Cultivation of the above-mentioned microorganism is carried out by using a carbon source, a nitrogen source,
Using an ordinary medium containing inorganic ions such as P, S, Fe, and Mn, and if necessary, micronutrients such as vitamins or proteolytic products, organic nitrogen sources such as yeast extract, and performing the usual culture method. Good.

【0016】得られた微生物の培養液からの培地成分の
除去方法としては、培養液を自然沈降後の上澄み除去、
遠心分離ないしはろ過等の通常の方法を使用できる。こ
れらの方法により、菌体と母液とに容易にかつ任意の割
合に分ける事ができる。培地成分の除去量の割合は、培
養液の50〜99容量%が好ましく、特に好ましくは7
0〜90容量%である。
As a method for removing the medium components from the obtained culture solution of the microorganisms, the supernatant is removed after the culture solution is naturally precipitated,
A usual method such as centrifugation or filtration can be used. By these methods, the cells and mother liquor can be easily and arbitrarily divided. The ratio of the amount of the medium components removed is preferably 50 to 99% by volume of the culture solution, and particularly preferably 7%.
It is 0 to 90% by volume.

【0017】培養液から培地成分を一部ないしは大部分
を除去した後、微生物含有液に直接あるいは微生物含有
液を無機燐酸緩衝液、トリス緩衝液等の緩衝液で希釈し
たものに、反応基質である、リボース−1−燐酸若しく
はその塩及び5−メチルウラシル、または、ヌクレオシ
ド、無期燐酸若しくはその塩及び5−メチルウラシルを
添加し、酵素反応を行い、5−メチルウリジンを生成す
る。反応は、pH範囲は4〜10、好ましくは6〜8、
温度範囲は、20〜70℃、好ましくは50〜70℃の
条件下、静地あるいは攪拌しながら、10分〜10日間
行われる。
After removing a part or most of the medium components from the culture solution, the reaction substrate is directly added to the microorganism-containing solution, or the microorganism-containing solution is diluted with a buffer such as an inorganic phosphate buffer or Tris buffer. Risose-1-phosphate or a salt thereof and 5-methyluracil, or nucleoside, infinite phosphoric acid or a salt thereof and 5-methyluracil are added to carry out an enzymatic reaction to produce 5-methyluridine. The reaction has a pH range of 4 to 10, preferably 6 to 8,
The temperature range is 20 to 70 ° C., preferably 50 to 70 ° C., and it is carried out for 10 minutes to 10 days while standing or stirring.

【0018】培養液の培地成分を除去する事無く、培養
液にそのまま核酸類の基質を添加した後反応させた場
合、得られる結晶の粒度は長径で20から30μmであ
った。この粒径では、結晶の例えば遠心ろ過を行った場
合の分離速度が非常に遅く、大きな装置が必要である事
が判明した。
When the substrate of nucleic acids was added to the culture medium as it was without reacting with the medium components of the culture medium and the reaction was carried out, the grain size of the obtained crystals was 20 to 30 μm in major axis. It was found that with this particle size, the separation speed of crystals, for example, when centrifugal filtration is very slow, and a large apparatus is required.

【0019】これに対し、培養液の培地成分を一部、ま
たは大部分を除去した後に核酸類の基質を添加し、反応
を行った場合には、50から550μmの粒径の結晶の
得られる事を発見した。この粒径であれば、結晶の分離
速度が速くなり、かつ後述の他の不純物核酸との粒径を
利用した分離が可能になる。
On the other hand, when a part or most of the medium component of the culture solution is removed and then a substrate of nucleic acids is added and the reaction is carried out, crystals having a particle size of 50 to 550 μm are obtained. I found a thing. With this particle size, the separation speed of the crystal is increased, and the particle size can be separated from other impurity nucleic acids described later.

【0020】発明者は5−メチルウリジンの精製を検討
した際、上記の様に、培養液から培地成分を一部ないし
は大部分を除去した後基質を加えて反応させると、後工
程で得られる5−メチルウリジンの結晶が比較的大きく
成る事を発見し、この性質が5−メチルウリジンの精製
に活用できうるとの着想を得た。一般的に言って、工業
的に粒度の揃った結晶を得ようとする場合、被晶析流体
をその流体自体で下方より流動させ、大きな結晶を下部
に、細かい結晶を上部に分級させ、上部の細かい結晶を
系外で溶解、再循環させる方法が取られるが、本発明の
ように、製品結晶と不純物結晶を沈降速度で分ける方法
は数少ない。その理由は、そのような粒度分布を持った
系が無い事、製品結晶中に不純物結晶が取り込まれ、た
とえ分ける事ができたとしても純度が上がらない事、お
よび、たとえ分級する事が可能な粒系、結晶の質であっ
ても、発想がそこに至らない為と考えられる。
When the inventor studied the purification of 5-methyluridine, as described above, when a part or most of the medium components were removed from the culture solution and then a substrate was added and reacted, it was obtained in a later step. It was discovered that the crystals of 5-methyluridine were relatively large, and the idea that this property could be utilized for purification of 5-methyluridine was obtained. Generally speaking, when trying to obtain crystals with uniform grain size industrially, the fluid to be crystallized is caused to flow from below by itself, and large crystals are classified into the lower part and fine crystals into the upper part, and the upper part is classified. Although a method of dissolving and recirculating fine crystals of the above is taken out of the system, as in the present invention, there are few methods of separating the product crystal and the impurity crystal by the sedimentation speed. The reason is that there is no system with such a particle size distribution, impurity crystals are incorporated into the product crystals, and even if they can be separated, the purity does not rise, and it is possible to classify them. It is thought that the idea does not reach that point even if the quality is grainy or crystalline.

【0021】5−メチルウルジンの場合、市販試薬の結
晶粒系は大きくとも50μm程度であったが、発明者が
これを水より再晶析したところ、500μm程の結晶が
得られた。
In the case of 5-methylurdine, the crystal grain size of the commercially available reagent was about 50 μm at the most, but when the inventor recrystallized it from water, crystals of about 500 μm were obtained.

【0022】一方、不純物を含む実液系から得られた5
−メチルウリジン結晶の粉末X線回折の結果、5−メチ
ルウリジンは他の不純物と”混晶”を作らず、混合した
結晶群の中から5−メチルウリジンの結晶のみを取り出
す事ができれば、高純度の製品の得られる事を見いだし
た。また、実液系での5−メチルウリジンの結晶粒系は
通常、300から600μm、特に小さい場合でも50
から100μmの範囲にあり、この時、不純物側の結晶
粒系は5から50μmであった。さらに、撹判後静置し
た晶析スラリーの観察により、5−メチルウリジン結晶
がガラス容器の下部にあり、上部の液は短時間であれば
濁っている事を見いだし、沈降速度の差を使えば、他の
結晶を分離できる着想を得た。
On the other hand, 5 obtained from an actual liquid system containing impurities
-As a result of powder X-ray diffraction of methyluridine crystals, 5-methyluridine does not form a "mixed crystal" with other impurities, and if only crystals of 5-methyluridine can be taken out from the mixed crystal group, We have found that we can obtain pure products. In addition, the crystal grain system of 5-methyluridine in an actual liquid system is usually 300 to 600 μm, and even if it is small, it is 50
To 100 μm, and the grain size on the impurity side was 5 to 50 μm. Furthermore, by observing the crystallization slurry that was left standing after stirring, it was found that the 5-methyluridine crystals were in the lower part of the glass container, and the liquid in the upper part was cloudy for a short time. Then, I got the idea that other crystals could be separated.

【0023】具体的に結晶同志を沈降速度で分離する方
法としては、一つにはデカンテーション法がある。結晶
スラリーをよく混合し、しかる後静置し、5−メチルウ
リジンが大方沈降し、他の結晶が浮遊してる間に5−メ
チルウリジン以外の層を容器を傾けて流し去る方法であ
る。流出液を結晶分離し、その母液を元の容器に戻し、
再度上記の操作を繰り返す操作を何回か繰り返す事によ
り、不純物結晶を含まない5−メチルウリジン結晶を取
得できる。また、大きな装置では、容器を傾けるのは難
しいので、機械力に頼らざるを得ない。たとえば、非沈
降層をポンプを用いて吸い出す、あるいは、適当な位置
にオーバーフロー口を設けておいて、沈降後、そこから
上部の液をオーバーフローさせる等の方法が考えられ
る。また、一般的な流動層型連続晶析槽を改良し、清澄
母液を槽の下部から流し、5−メチルウリジンの結晶は
流出させず、不純物結晶のみを流出させる方法、また
は、いわゆるスーパーデカンター、ハイドロサイクロン
等の結晶の分級分離が可能な遠心分離機で一気に、大き
な結晶と小さな結晶を分ける方法が考えられる。
As a concrete method for separating the crystals at a sedimentation rate, there is a decantation method. This is a method in which the crystal slurry is mixed well and then allowed to stand, and while 5-methyluridine largely precipitates and other crystals are suspended, the layers other than 5-methyluridine are tilted away and tilted away. Crystallize the effluent, return the mother liquor to its original container,
A 5-methyluridine crystal free from impurity crystals can be obtained by repeating the above-mentioned operation again several times. Moreover, with a large device, it is difficult to tilt the container, so that it is necessary to rely on mechanical force. For example, a method of sucking out the non-sedimentation layer using a pump, or providing an overflow port at an appropriate position and allowing the upper liquid to overflow after sedimentation can be considered. Further, a general fluidized bed type continuous crystallization tank is improved, a method of flowing a clarified mother liquor from the lower part of the tank, causing no flow of 5-methyluridine crystals, and flowing out only impurity crystals, or a so-called super decanter, A method of separating large crystals and small crystals at a stretch with a centrifuge capable of classifying and separating crystals such as hydrocyclone can be considered.

【0024】デカンテーションないしは上記遠心分離器
等を使用する機械的分離を繰り返すことにより、所定の
分離の効率と、所定の製品純度を得ることが可能であ
る。
By repeating decantation or mechanical separation using the above centrifugal separator or the like, it is possible to obtain a predetermined separation efficiency and a predetermined product purity.

【0025】これらのいずれの方法も、分離された不純
物結晶を含む流体を遠心分離機、ろ過等で結晶分離し、
その母液を元の装置にもどす操作があれば不純物結晶分
離効率をより高める事が可能になる。
In any of these methods, the fluid containing the separated impurity crystals is crystal-separated by a centrifuge, filtration or the like,
If the mother liquor is returned to the original apparatus, the impurity crystal separation efficiency can be further increased.

【0026】分離した5−メチルウリジン側の結晶の層
を遠心分離、ろ過等で分離し、さらにこの時、結晶を水
で、可能ならば冷水で洗浄すれば、より純度の高い結晶
が得られる。
The separated crystal layer on the 5-methyluridine side is separated by centrifugation, filtration or the like, and at this time, the crystal is washed with water, if possible with cold water, to obtain a crystal with higher purity. .

【0027】5−メチルウリジンを製造するに当たり、
核酸を原料とし、微生物を用いて変換する方法の代表例
として、ヌクレオシド、無機リン酸および5ーメチルウ
ラシル(チミン)を微生物存在下で作用させる方法があ
る。ここで、ヌクレオシドとしては、アデノシン、グア
ノシン、イノシン、ウリジン、シチジンまたはキサント
シンが例示される(特開平2−23882)。この反応
において、不純物としてそれぞれの残留ヌクレオシド、
5ーメチルウラシル(チミン)、使用したヌクレオシド
から副成した塩基およびリン酸が存在する。これらの不
純物を5−メチルウリジンとの溶解度の差で分離する事
は容易に考えられるが、核酸成分の温度、pHに対する
溶解度変化のパターンはお互いに類似しており、これ以
上分ける事は容易ではない。
In producing 5-methyluridine,
A typical example of a method of converting a nucleic acid as a raw material using a microorganism is a method in which nucleoside, inorganic phosphate and 5-methyluracil (thymine) are allowed to act in the presence of the microorganism. Here, examples of the nucleoside include adenosine, guanosine, inosine, uridine, cytidine or xanthosine (JP-A-2-23882). In this reaction, each residual nucleoside as an impurity,
There is 5-methyluracil (thymine), a base by-produced from the nucleoside used and phosphoric acid. It is easy to separate these impurities by the difference in solubility with 5-methyluridine, but the patterns of change in solubility of nucleic acid components with respect to temperature and pH are similar to each other, and further separation is not easy. Absent.

【0028】この反応液中で、不純物核酸の除去を検討
する過程で、発明者は5−メチルウリジンの結晶が比較
的大きくなるのに対し、他のものが大きくならない事を
見いだした。さらに、5−メチルウリジンの流体中での
沈降速度が他の結晶に比べ、著しく大きい事を発見し
た。
In the process of examining removal of impurity nucleic acids in this reaction solution, the inventor found that crystals of 5-methyluridine were relatively large, whereas other crystals were not. Furthermore, it was discovered that the sedimentation rate of 5-methyluridine in the fluid was significantly higher than that of other crystals.

【0029】特開平2−23882の条件に加え、培養
液から培地成分を一部ないしは大部分を除去した後基質
を加えて反応させた後、反応液を冷却、ろ過、活性炭脱
色、ろ過して得たろ液を濃縮し、3から15℃の範囲に
冷却晶析して、何等他の溶媒を加える事無く析出してく
る結晶のうち、5−メチルウリジン結晶の平均的粒系が
50から550μmであるのに対し、不純物のそれは1
0から30μm程度であった。
In addition to the conditions of JP-A-2-23882, after removing a part or most of the medium components from the culture solution and adding a substrate for reaction, the reaction solution is cooled, filtered, decolorized with activated carbon and filtered. The obtained filtrate was concentrated, cooled and crystallized in the range of 3 to 15 ° C., and among the crystals precipitated without adding any other solvent, the average grain size of 5-methyluridine crystals was 50 to 550 μm. While that of impurities is 1
It was about 0 to 30 μm.

【0030】そこで、流体中の5−メチルウリジン結晶
を5分から10分で沈降させておいた後、5−メチルウ
リジン結晶層以外の部分を容器を傾けて流出させ(デカ
ンテーション)、さらに流出液中の結晶を分離後、その
母液を容器に戻し、撹判後、再びデカンテーションする
操作を繰り返したところ、他の結晶をあまり含まない高
純度の5−メチルウリジンが得られた。
Therefore, after the 5-methyluridine crystals in the fluid are allowed to settle for 5 to 10 minutes, the portion other than the 5-methyluridine crystal layer is tilted out of the container (decantation), and the effluent is further discharged. After separating the crystals inside, the mother liquor was returned to the container, and after stirring, the operation of decanting was repeated, whereby high-purity 5-methyluridine containing little other crystals was obtained.

【0031】晶析装置の規模または結晶粒径により、5
−メチルウリジンの沈降に要する時間は変化するが、そ
の時の所用時間は、晶泥の一部を抜き取り、メスシリン
ダー等の中で実際に沈降させ、それに要した時間と沈降
距離を計り、これから実際の装置中での所用沈降速度を
計算する事により、容易に沈降時間を設定する事ができ
る。
Depending on the size of the crystallizer or the grain size, 5
-Although the time required for the sedimentation of methyluridine varies, the required time at that time is to extract a part of the crystal mud and allow it to actually settle in a graduated cylinder, etc., and measure the time and the settling distance required for it. The sedimentation time can be easily set by calculating the desired sedimentation velocity in the device.

【0032】一方、不純物の結晶粒径は、常にほぼ一定
であるから、沈降時間は5−メチルウリジン側だけを考
えれば良い。あまり長い時間沈降時間を取ると、不純物
結晶も多少沈降してくる。メスシリンダーのような小さ
な装置では、30分程度で微結晶の沈降層が形成され
た。この場合にも、不純物結晶が沈降してくる時間は、
装置の規模に基づいて容易に計算でき、沈降時間の限度
はこれにより決める事ができる。
On the other hand, since the crystal grain size of impurities is almost constant at all times, it is sufficient to consider the sedimentation time only on the 5-methyluridine side. If the sedimentation time is taken for too long, the impurity crystals will also sediment to some extent. With a small device such as a graduated cylinder, a sedimentation layer of fine crystals was formed in about 30 minutes. Also in this case, the time for the impurity crystals to settle is
It can be easily calculated based on the scale of the device and the settling time limit can be determined thereby.

【0033】流動層型連続晶析槽を改良、あるいは流動
層分級型晶析缶を設計して用いる場合には、清澄母液を
槽の下部から流し、5−メチルウリジンの結晶は流出さ
せず、不純物結晶のみを流出させるに必要な流体の線速
度を測定する事により、容易に実装置での線速度を決定
する事ができる。
When a fluidized bed type continuous crystallization tank is improved or a fluidized bed classification type crystallizer is designed and used, the refining mother liquor is caused to flow from the lower portion of the tank, and crystals of 5-methyluridine are not allowed to flow out. By measuring the linear velocity of the fluid required to flow out only the impurity crystals, the linear velocity in the actual device can be easily determined.

【0034】また同様に、いわゆるスーパーデカンター
を用いる場合、小型機を用い、沈降面積あたりの流体フ
ィード流速と結晶の分離性を測定する事により、容易に
実機でのフィード流量を設定する事ができる。
Similarly, when a so-called super decanter is used, the feed flow rate in the actual machine can be easily set by measuring the fluid feed flow rate per settling area and the crystal separability using a small machine. .

【0035】ここに、われわれは結晶の沈降速度の差を
利用する方法が、5−メチルウリジンと他の核酸成分と
を分離する有効な方法である事を見いだした。
Here, we have found that the method utilizing the difference in the sedimentation rate of crystals is an effective method for separating 5-methyluridine from other nucleic acid components.

【0036】上記の方法は、5−メチルウリジンとの分
離が極めて難しいチミンの分離に特に大きな効力を発揮
した。チミンは溶解度の温度、pHに対する変化のパタ
ーンが5−メチルウリジンに相似であり、分離が困難で
あり、また、イオン解離のパターンも似ており、イオン
交換樹脂等でも分離が困難であるため、本発明の方法法
は、非常に有効であった。
The above-mentioned method exhibited a particularly great effect on the separation of thymine, which is extremely difficult to separate from 5-methyluridine. Since thymine has a solubility change pattern similar to that of 5-methyluridine, which is difficult to separate, and also has a similar ionic dissociation pattern, which is difficult to separate even with an ion exchange resin, etc. The method method of the present invention was very effective.

【0037】また、共存する他の核酸であるグアノシ
ン、グアニン、シュドグアノシンについても非常に有効
な分離手段であった。
Further, other coexisting nucleic acids such as guanosine, guanine, and pseudoguanosine were also very effective separation means.

【0038】微生物の培養液中の培地成分の一部ないし
は大部分を除去した場合にのみ、5−メチルウリジンの
大きな粒径の結晶が得られる理由は明確では無いが、酵
素反応中に培地成分中に含まれるアミノ酸と他の成分、
例えば糖が反応して、その生成物が5−メチルウリジン
の結晶の成長を阻害しているのではないかと考えられ
る。本微生物を用いた反応の温度は60℃であり、一般
的な微生物を用いた生産に比べて温度が高く、この事が
前述の副生反応を促進していると考えられ、本特許の培
地成分の除去の必要性をもたらしているものと考えられ
る。
The reason why crystals of 5-methyluridine having a large particle size can be obtained only when a part or most of the medium components in the culture medium of the microorganism are removed is not clear. Amino acids and other ingredients contained in
For example, it is considered that sugar reacts with the product and inhibits the growth of 5-methyluridine crystals. The temperature of the reaction using the present microorganism is 60 ° C., which is higher than that in the production using general microorganisms, and it is considered that this promotes the above-described byproduct reaction. It is believed that this has led to the need for removal of components.

【0039】[0039]

【実施例】以下、実施例により本発明を更に説明する。The present invention will be further described with reference to the following examples.

【0040】実施例1 特開平2−23882号公報の実施例1に従い、フラボ
バクテリウム レナナム(Flavobacterium rhenanum) FE
RM BP-1862を培養し、菌体培養液を調製した。この菌体
培養液を遠心処理し、培地成分の50%を除去した。こ
れにトリス緩衝液を加えて元の容量に戻し、基質の5−
メチルウラシルとグアノシンを添加し、温度を60℃に
保って反応させた。反応液を冷却、ろ過、活性炭脱色、
ろ過、真空濃縮し、これを5℃迄冷却した。得られた晶
析スラリー中の結晶の大きさは約80μmであった。ま
た、5−メチルウリジンと他の不純物核酸結晶とは自然
沈降で良く二層に分離していた。
Example 1 In accordance with Example 1 of JP-A-2-23882, Flavobacterium rhenanum FE
RM BP-1862 was cultured to prepare a cell culture solution. The cell culture solution was centrifuged to remove 50% of the medium components. To this, add Tris buffer to restore the original volume, and
Methyluracil and guanosine were added, and the temperature was kept at 60 ° C. for reaction. The reaction solution is cooled, filtered, decolorized with activated carbon,
It was filtered, concentrated in vacuo and cooled to 5 ° C. The crystal size in the obtained crystallization slurry was about 80 μm. In addition, 5-methyluridine and other impurity nucleic acid crystals were well separated by spontaneous precipitation and separated into two layers.

【0041】実施例2 特開平2−23882号公報の実施例1に従い、フラボ
バクテリウム レナナム(Flavobacterium rhenanum) FE
RM BP-1862を培養し、菌体培養液を調製した。この菌体
培養液を遠心処理し、培地成分の90%を除去した。こ
れにトリス緩衝液を加えて元の容量に戻し、基質の5−
メチルウラシルとグアノシンを添加し、本発明の実施例
1と同様に反応と後処理を行った。得られた晶析スラリ
ー中の結晶の大きさは約70μmであった。また、5−
メチルウリジンと他の不純物核酸結晶とは自然沈降で良
く二層に分離していた。
Example 2 According to Example 1 of JP-A-2-23882, Flavobacterium rhenanum FE
RM BP-1862 was cultured to prepare a cell culture solution. This cell culture solution was centrifuged to remove 90% of the medium components. To this, add Tris buffer to restore the original volume, and
Methyluracil and guanosine were added, and the reaction and post-treatment were carried out in the same manner as in Example 1 of the present invention. The crystal size in the obtained crystallization slurry was about 70 μm. Also, 5-
Methyluridine and other impurity nucleic acid crystals were well separated by spontaneous precipitation and separated into two layers.

【0042】実施例3 特開平2−23882号公報の実施例1に従い、フラボ
バクテリウム レナナム(Flavobacterium rhenanum) FE
RM BP-1862を培養し、菌体培養液を調製した。この菌体
培養液を遠心処理し、培地成分の90%を除去した。こ
れに無機リン酸緩衝液を加えて元の容量に戻し、基質の
5−メチルウラシルとグアノシンを添加し、本発明の実
施例1と同様に反応と後処理を行った。得られた晶析ス
ラリー中の結晶の大きさは約100μmであった。ま
た、5−メチルウリジンと他の不純物核酸結晶とは自然
沈降で良く二層に分離していた。
Example 3 Flavobacterium rhenanum FE according to Example 1 of JP-A-2-23882
RM BP-1862 was cultured to prepare a cell culture solution. This cell culture solution was centrifuged to remove 90% of the medium components. To this, an inorganic phosphate buffer was added to restore the original volume, the substrates 5-methyluracil and guanosine were added, and the reaction and post-treatment were carried out in the same manner as in Example 1 of the present invention. The crystal size in the obtained crystallization slurry was about 100 μm. In addition, 5-methyluridine and other impurity nucleic acid crystals were well separated by spontaneous precipitation and separated into two layers.

【0043】実施例4 実施例1から3の上層を下層の5−メチルウリジン層と
上澄み分離し、この下層を遠心分離した所、いずれも速
い速度で分離できた。
Example 4 When the upper layer of Examples 1 to 3 was separated from the lower layer of 5-methyluridine as a supernatant and the lower layer was centrifuged, all were separated at a high speed.

【0044】実施例5 特開平2−23882号公報の実施例2に従い、ミクロ
コッカス ルテウス(Micrococcus luteus) FERM P-7399
を培養し、菌体培養液を調製後、常法に従い洗浄菌体を
得た。これにトリス緩衝液を加えて、元の容量に戻し、
基質の5−メチルウラシルとグアノシンを添加し、本発
明の実施例1と同様に酵素反応を実施した。得られた酵
素反応液を冷却、ろ過、活性炭脱色、ろ過、真空濃縮し
て、5−メチルウリジン25.5%、チミン1.95
%、グアノシン0.57%含む濃縮液384.9gを得
た。これをさらに50rpmで撹判しながら徐徐に10
℃まで冷却し、結晶を析出させた。これを10分間静置
し、下部の5−メチルウリジン層以外の上部の微結晶懸
濁部分をデカンテーション分離して流出させ、流出液中
の結晶をろ過分離し、乾重量あたり5−メチルウリジン
を22.6%、チミンを50.7%、グアノシンを1
0.7%含む8.62gの湿結晶を得た。この母液側を
5−メチルウリジン結晶層の残っている元の容器に戻
し、撹判し、再び10℃に冷却した。これを再度、上記
と同様にデカンテーション分離し、再び流出液中の結晶
をろ過分離し、乾重量あたり5−メチルウリジンを4
1.4%、チミンを26.1%、グアノシンを14.4
%、グアニンを0.052%を含む乾燥状態で4.57
gの結晶を得た。この母液側を5−メチルウリジン結晶
層の残っている元の容器に戻し、撹判しながら10℃に
冷却後、バスケット型遠心ろ過機で流体全量を分離し
た。分離時に結晶層を57.8gの冷水で結晶を洗浄し
た。分離結晶を乾燥し、75.21gの含水和物結晶を
得た。濃縮液からの5−メチルウリジンの収率は71.
4%であった。この結晶の純度は93.24%であり、
不純物として、3.33%のチミン、0.342%のグ
アノシンが含まれていた。5−メチルウリジンに対する
チミンの比率は、濃縮液で7.6%、製品で3.6%で
あり、晶析、デカンテーション工程で半減していた。更
に言えば、定性的であるが、シュドグアノシンも大幅に
減少していた。さらに、デカンテーションを繰り返す事
により、不純物核酸は更に減少させ得たであろう。な
お、この晶析での5−メチルウリジンの結晶平均粒径は
約350μm、微結晶の平均粒径は10μmであった。
Example 5 Micrococcus luteus FERM P-7399 according to Example 2 of JP-A-2-23882.
After culturing, the bacterial cell culture solution was prepared, and then washed bacterial cells were obtained by a conventional method. Add Tris buffer to this to bring it back to its original volume,
Substrate 5-methyluracil and guanosine were added and the enzymatic reaction was carried out in the same manner as in Example 1 of the present invention. The resulting enzyme reaction solution was cooled, filtered, decolorized with activated carbon, filtered, and concentrated in vacuo to give 2-methyluridine (25.5%) and thymine (1.95).
% And guanosine 0.57% to obtain 384.9 g of a concentrated solution. While stirring this at 50 rpm, gradually add 10
It was cooled to 0 ° C. to precipitate crystals. This is left to stand for 10 minutes, the upper portion of the microcrystal suspension other than the lower 5-methyluridine layer is decanted and allowed to flow out, and the crystals in the effluent are separated by filtration to give 5-methyluridine per dry weight. 22.6%, thymine 50.7%, guanosine 1
8.62 g of wet crystals containing 0.7% were obtained. The mother liquor side was returned to the original container in which the 5-methyluridine crystal layer remained, stirred, and cooled again to 10 ° C. This was again decanted in the same manner as above, the crystals in the effluent were again filtered and separated, and 4-methyluridine was added to 4 times the dry weight.
1.4%, thymine 26.1%, guanosine 14.4
%, Guanine 0.052% in dry condition 4.57
g crystals were obtained. The mother liquor side was returned to the original container in which the 5-methyluridine crystal layer remained, cooled to 10 ° C. with stirring, and the whole fluid was separated by a basket type centrifugal filter. At the time of separation, the crystal layer was washed with 57.8 g of cold water. The separated crystals were dried to obtain 75.21 g of hydrated crystals. The yield of 5-methyluridine from the concentrate was 71.
4%. The purity of this crystal is 93.24%,
As impurities, 3.33% thymine and 0.342% guanosine were contained. The ratio of thymine to 5-methyluridine was 7.6% in the concentrated solution and 3.6% in the product, and was half in the crystallization and decantation steps. Furthermore, qualitatively, pseudoguanosine was also significantly reduced. Furthermore, by repeating the decantation, the impurity nucleic acid could have been further reduced. The average crystal grain size of 5-methyluridine in this crystallization was about 350 μm, and the average grain size of the microcrystals was 10 μm.

【0045】実施例6 本発明の実施例5と同様にして、菌体培養液を調製後、
酵素反応を実施した。この酵素反応液を冷却、ろ過、活
性炭脱色、ろ過、真空濃縮して、5−メチルウリジン2
3.0%、チミン1.71%、グアノシン0.45%含
む濃縮液580Lを得た。これを晶析缶中で100rp
mで撹判しながら徐徐に5℃まで冷却し、結晶を析出さ
せた。撹判を停止し、約15分間、5−メチルウリジン
結晶を沈降させた後、微結晶を含んだ上部微結晶懸濁液
をポンプを用いて機械的に分離した。この分離液中の微
結晶をろ過分離し、この母液側を元の晶析缶に戻し、撹
判し、再び5℃に冷却した。上記の撹判、静置、上部微
結晶懸濁液分離、微結晶ろ過分離、再懸濁の一連の操作
を4度繰り返した後、バスケット型遠心ろ過機で懸濁液
全体を分離した。分離時に60Lの水で結晶を洗浄し
た。分離結晶を乾燥し、96Kgの含水和物結晶を得
た。濃縮液からの5−メチルウリジンの収率は72.0
%であった。この結晶の純度は93.8%であり、不純
物として、1.8%のチミン、0.16%のグアノシン
が含まれていた。5−メチルウリジンに対するチミンの
比率は、濃縮液で7.4%、製品で1.9%であり、晶
析、デカンテーション工程で4分の1に減少していた。
また、シュドグアノシンも大幅に減少していた。さら
に、デカンテーションを繰り返す事により、不純物核酸
は更に減少させ得たであろう。なお、この晶析での5−
メチルウリジンの結晶平均粒径は約550μm、微結晶
の平均粒径は15μmであった。
Example 6 After preparing a cell culture solution in the same manner as in Example 5 of the present invention,
An enzymatic reaction was performed. The enzyme reaction solution is cooled, filtered, decolorized with activated carbon, filtered, and concentrated in vacuo to give 5-methyluridine 2
580 L of a concentrated solution containing 3.0%, 1.71% thymine and 0.45% guanosine was obtained. This is 100 rp in a crystallizer
While stirring at m, the mixture was gradually cooled to 5 ° C. to precipitate crystals. After stirring was stopped and the 5-methyluridine crystals were allowed to settle for about 15 minutes, the upper crystallite suspension containing the crystallites was mechanically separated using a pump. The fine crystals in this separated liquid were separated by filtration, the mother liquor side was returned to the original crystallization container, stirred, and cooled again to 5 ° C. After repeating the above-mentioned agitation, standing, upper crystallite suspension separation, microcrystal filtration separation and resuspension, four times, the whole suspension was separated by a basket type centrifugal filter. The crystals were washed with 60 L of water during separation. The separated crystals were dried to obtain 96 kg of hydrated crystals. The yield of 5-methyluridine from the concentrate is 72.0.
%Met. The purity of this crystal was 93.8%, and 1.8% thymine and 0.16% guanosine were contained as impurities. The ratio of thymine to 5-methyluridine was 7.4% in the concentrated solution and 1.9% in the product, and was reduced to 1/4 in the crystallization and decantation steps.
Sudguanosine was also significantly reduced. Furthermore, by repeating the decantation, the impurity nucleic acid could have been further reduced. In addition, in this crystallization
The crystal average particle size of methyluridine was about 550 μm, and the average particle size of the microcrystals was 15 μm.

【0046】比較例1 本発明の実施例1と同様にして、フラボバクテリウム
レナナム(Flavobacterium rhenanum) FERM BP-1862の菌
体培養液を調製した。この菌体培養液の培地成分を除去
することなく、基質の5−メチルウラシルとグアノシン
を添加し、本発明の実施例1と同様に温度を60℃に保
って反応させた。反応液を冷却、ろ過、活性炭脱色、ろ
過、真空濃縮し、これを5℃迄冷却した。得られた5−
メチルウリジンの結晶の大きさは20から30μmであ
り、他の不純物核酸結晶との自然沈降による分離現象は
見られなかった。また、遠心分離に非常に長時間要し
た。
Comparative Example 1 Flavobacterium was prepared in the same manner as in Example 1 of the present invention.
A cell culture solution of Flavobacterium rhenanum FERM BP-1862 was prepared. Without removing the culture medium components of this cell culture medium, the substrates 5-methyluracil and guanosine were added, and the reaction was carried out at the temperature of 60 ° C. as in Example 1 of the present invention. The reaction solution was cooled, filtered, decolorized with activated carbon, filtered and concentrated in vacuo, and this was cooled to 5 ° C. Obtained 5-
The crystal size of methyluridine was 20 to 30 μm, and no separation phenomenon due to spontaneous precipitation with other impurity nucleic acid crystals was observed. Also, centrifugation took a very long time.

【0047】比較例2 本発明の実施例5と同様にして、ミクロコッカス ルテ
ウス(Micrococcus luteus) FERM P-7399の菌体培養液を
調製後、酵素反応を実施した。得られた酵素反応液を冷
却、ろ過、活性炭脱色、ろ過、真空濃縮して、5−メチ
ルウリジン25.2%、チミン1.55%、グアノシン
0.42%含む濃縮液7.05kgを得た。これをさら
に撹判しながら徐徐に5℃まで冷却し、結晶を析出させ
た。この懸濁液を静置することなく、すぐにバスケット
型遠心ろ過機で全量分離し、5−メチルウリジンを4.
5%、チミンを0.26%、グアノシンを0.12%含
む5223gの母液を得た。更に結晶層を814gの冷
水で洗浄した。この洗浄時の母液は、5−メチルウリジ
ンを5.18%、チミンを0.31%、グアノシンを
0.19%含み、1926gあった。分離結晶を乾燥
し、1.52kgの含水和物結晶を得た。濃縮液からの
5−メチルウリジンの収率は76.3%であった。この
結晶の純度は89.28%であり、不純物として、5.
21%のチミン、0.69%のグアノシンが含まれてい
た。5−メチルウリジンに対するチミンの比率は、濃縮
液で6.2%、製品で5.8%であり、晶析工程での減
少は全くなかった。
Comparative Example 2 In the same manner as in Example 5 of the present invention, an enzyme reaction was carried out after preparing a cell culture solution of Micrococcus luteus FERM P-7399. The obtained enzyme reaction solution was cooled, filtered, decolorized with activated carbon, filtered, and concentrated under vacuum to obtain 7.05 kg of a concentrated solution containing 25.2% of 5-methyluridine, 1.55% of thymine, and 0.42% of guanosine. . While further stirring, this was gradually cooled to 5 ° C. to precipitate crystals. Immediately after the suspension was allowed to stand, the whole amount was immediately separated by a basket type centrifugal filter to obtain 5-methyluridine.
5223 g of mother liquor containing 5%, thymine 0.26% and guanosine 0.12% was obtained. Further, the crystal layer was washed with 814 g of cold water. The mother liquor at the time of this washing contained 5.18% of 5-methyluridine, 0.31% of thymine, and 0.19% of guanosine, and was 1926 g. The separated crystals were dried to obtain 1.52 kg of hydrate crystals. The yield of 5-methyluridine from the concentrated liquid was 76.3%. The purity of this crystal was 89.28%, and the impurity was 5.
It contained 21% thymine and 0.69% guanosine. The ratio of thymine to 5-methyluridine was 6.2% in the concentrated solution and 5.8% in the product, and there was no reduction in the crystallization process.

【0048】[0048]

【発明の効果】産業上有用な5−メチルウリジンを、有
機溶剤等特殊な溶媒を用いる事無く、かつ、簡便な方法
で高純度に精製できる。
Industrially useful 5-methyluridine can be highly purified by a simple method without using a special solvent such as an organic solvent.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リボース−1−燐酸若しくはその塩及び
5−メチルウラシルから5−メチルウリジンを生成する
能力を有する微生物またはヌクレオシド、無期燐酸若し
くはその塩及び5−メチルウラシルから5−メチルウリ
ジンを生成する能力を有する微生物を用い、酵素反応に
て5−メチルウリジンを製造する方法において、該微生
物を培養した後、(イ)該培地成分の一部、または全部
を除去し、次いで(ロ)該微生物にリボース−1−燐酸
若しくはその塩及び5−メチルウラシルまたはヌクレオ
シド、無期燐酸若しくはその塩及び5−メチルウラシル
を作用せしめ、5−メチルウリジンを生成させた後、次
いで(ハ)生成した5−メチルウリジンを晶析し、分離
することを特徴とする5−メチルウリジンの製造方法
1. A microorganism capable of producing 5-methyluridine from ribose-1-phosphate or a salt thereof and 5-methyluracil or a nucleoside, infinite phosphoric acid or a salt thereof and 5-methyluridine from 5-methyluracil. In a method for producing 5-methyluridine by an enzymatic reaction using a microorganism having the ability to: after culturing the microorganism, (a) removing some or all of the medium components, and then (b) the After allowing ribose-1-phosphate or its salt and 5-methyluracil or nucleoside, infinite phosphoric acid or its salt and 5-methyluracil to act on the microorganism to form 5-methyluridine, then (c) A method for producing 5-methyluridine, which comprises crystallizing and separating methyluridine
【請求項2】 培地成分の除去率が50%から99%で
ある請求項1の方法。
2. The method according to claim 1, wherein the removal rate of the medium components is 50% to 99%.
【請求項3】 5−メチルウリジンを晶析し、分離する
際に5−メチルウリジンの結晶を沈降速度差で他の不純
物結晶と分離することを特徴とする、請求項1または請
求項2に記載の方法。
3. The crystal of 5-methyluridine is separated from other impurity crystals by a sedimentation speed difference when crystallizing and separating 5-methyluridine. The method described.
【請求項4】 分離方法がデカンテーション法または機
械的分離方法であることを特徴とする、請求項1乃至3
のいずれか1請求項に記載の方法。
4. The method according to claim 1, wherein the separation method is a decantation method or a mechanical separation method.
The method according to claim 1.
JP9286195A 1994-04-18 1995-04-18 Method for producing 5-methyluridine Expired - Fee Related JP3586924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9286195A JP3586924B2 (en) 1994-04-18 1995-04-18 Method for producing 5-methyluridine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7878394 1994-04-18
JP6-78783 1994-04-18
JP9286195A JP3586924B2 (en) 1994-04-18 1995-04-18 Method for producing 5-methyluridine

Publications (2)

Publication Number Publication Date
JPH08282A true JPH08282A (en) 1996-01-09
JP3586924B2 JP3586924B2 (en) 2004-11-10

Family

ID=26419845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9286195A Expired - Fee Related JP3586924B2 (en) 1994-04-18 1995-04-18 Method for producing 5-methyluridine

Country Status (1)

Country Link
JP (1) JP3586924B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045917A1 (en) * 1998-03-11 1999-09-16 Zeria Pharmaceutical Co., Ltd. Remedies for aids
JP2010285377A (en) * 2009-06-12 2010-12-24 Tokuyama Corp Purification method of l-carnosine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045917A1 (en) * 1998-03-11 1999-09-16 Zeria Pharmaceutical Co., Ltd. Remedies for aids
JP2010285377A (en) * 2009-06-12 2010-12-24 Tokuyama Corp Purification method of l-carnosine

Also Published As

Publication number Publication date
JP3586924B2 (en) 2004-11-10

Similar Documents

Publication Publication Date Title
EP3553071A1 (en) Method for preparing psicose using recycling
AU2011214268B2 (en) Process for manufacturing succinic acid
WO2008134936A1 (en) Method for extracting threonine from threonine fermentation liquor
RU1774951C (en) Method of isolating keto-2-l-culonic acid from enzymic wort
JP3586924B2 (en) Method for producing 5-methyluridine
US5547858A (en) Method for purification of amino acids, nucleic acids using a hydrocyclone
KR100864673B1 (en) Method of recovering L-Threonine from L-Threonine fermentation broth using a nonsolvent
US5547857A (en) Process for producing 5-methyluridine and purification by sedimentation velocity
KR940000810B1 (en) Process for the preparation of crystallized glutamic acid
JPH06128280A (en) Method for purifying high-purity 5-methyluridine
US3360554A (en) Process for crystallizing out l-glutamic acid
US3793146A (en) Process for the production of citric acid
JPH0956389A (en) Purification of avermectin
JP2804005B2 (en) Method for producing L-aspartic acid
JP3088786B2 (en) Crystallization of erythritol
US5312977A (en) Method for purifying L-phenylalanine
JPH04360863A (en) Production of sodium n-alkylaminoethanesulfonate
JP2804004B2 (en) Method for producing L-aspartic acid
CN108276457B (en) Method for extracting D-ribose from adenosine acidolysis waste liquid by ultrasonic oscillation
JP2022550078A (en) Method for producing disodium 5'-guanylate heptahydrate crystals
JPS63313594A (en) Production of cytidine diphosphocholine
JPS6135791A (en) Crystallization of sodium glutamate
JPH1045647A (en) Production of inositol anhydrous crystal
KR800000242B1 (en) The process for the preparation of the raw material used in fermentation
JPH0733358B2 (en) Method for producing amide crystals using immobilized biocatalyst

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Effective date: 20040603

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Effective date: 20040802

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees