JPH08282213A - Tire for heavy load - Google Patents

Tire for heavy load

Info

Publication number
JPH08282213A
JPH08282213A JP7117834A JP11783495A JPH08282213A JP H08282213 A JPH08282213 A JP H08282213A JP 7117834 A JP7117834 A JP 7117834A JP 11783495 A JP11783495 A JP 11783495A JP H08282213 A JPH08282213 A JP H08282213A
Authority
JP
Japan
Prior art keywords
groove
tire
contact surface
width
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7117834A
Other languages
Japanese (ja)
Other versions
JP2966760B2 (en
Inventor
Rie Miyawaki
理恵 宮脇
Yasushi Miura
靖 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP7117834A priority Critical patent/JP2966760B2/en
Publication of JPH08282213A publication Critical patent/JPH08282213A/en
Application granted granted Critical
Publication of JP2966760B2 publication Critical patent/JP2966760B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1369Tie bars for linking block elements and bridging the groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • B60C11/125Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern arranged at the groove bottom

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

PURPOSE: To provide a tire for a heavy load, which can be suitably used as an all weather tire, and by which wear resistance and biased wear resistance can be heightened while keeping the on-ice and snow performance. CONSTITUTION: A tread grounding surface S is divided into a central grounding surface area S1 and a shoulder grounding surface area S2 on the side of the above by main longitudinal grooves G, G on both sides of a tire equator C, and the distance L from the tire equator C of the groove center of the main longitudinal groove G is 0.25-0.40 times as large as the tread grounding surface width SW. The central grounding area S1 is divided into blocks by a longitudinal fine groove (g) and a lateral fine groove (y) which have a width 0.10 to 0.60 times as large as the groove width WG of the main longitudinal groove G.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、全天候型タイヤとして
好適に使用でき、氷雪上性能を維持しながら耐摩耗性、
耐偏摩耗性を高めうる重荷重用タイヤに関する。
INDUSTRIAL APPLICABILITY The present invention can be suitably used as an all-weather tire and has wear resistance while maintaining performance on ice and snow.
The present invention relates to a heavy-duty tire that can improve uneven wear resistance.

【0002】[0002]

【従来の技術】近年、ドライな良路での走行性能を維持
しながら積雪や氷結を生じた氷雪路でも路面を適切にと
らえて走行を可能にする全天候型タイヤがトラック・バ
ス等の重荷重車両にも多用されている。そしてこの種の
タイヤの代表的なトレッドパターンとしては、例えば特
開平3−128705号公報に記載されるように、タイ
ヤ赤道両側に設けた2本の周方向主溝の間の領域を、周
方向溝と横溝とによって多数のブロックに区分したもの
が知られており、又このものは、良好な氷雪上性能を得
るために、ブロック自身の形状、寸法を小さくしてその
数を増やすとともに、ブロックにサイピングを設けるこ
とによってそのエッジ成分を増大させている。
2. Description of the Related Art In recent years, all-weather tires have been developed to enable heavy-duty loading on trucks, buses, etc., while still maintaining running performance on dry, good roads, and allowing the vehicle to properly run on ice-covered roads with snow and icing. It is often used in vehicles. As a typical tread pattern of this type of tire, for example, as described in JP-A-3-128705, an area between two circumferential main grooves provided on both sides of the tire equator is defined as a circumferential direction. It is known that the block is divided into a large number of blocks by grooves and lateral grooves. In addition, in order to obtain good performance on ice and snow, this block reduces the shape and size of the block itself and increases the number of blocks. The edge component is increased by providing siping on the.

【0003】[0003]

【発明が解決しようとする課題】しかしながらこのよう
なブロックの細分化、サイピングの形成は、重荷重用タ
イヤのごとく高荷重下の基では走行中のブロックの動き
のために耐摩耗性を損ねかつヒールアンドトウ摩耗等の
偏摩耗を誘発させ易いという問題がある。
However, such segmentation of blocks and formation of siping impair the wear resistance due to the movement of the blocks during running under a high load such as a heavy-duty tire, and the heels are damaged. There is a problem that it is easy to induce uneven wear such as and-toe wear.

【0004】本発明は、タイヤ赤道両側に設ける縦主溝
の位置を特定しかつ、この縦主溝間に形成するブロック
を溝巾を特定した細溝によって区画することを基本とし
て、ブロックを細分化する際にも耐摩耗性及び耐偏摩耗
性を向上でき前記問題を解決しうる重荷重用タイヤの提
供を目的としている。
The present invention is based on the fact that the positions of the vertical main grooves provided on both sides of the tire equator are specified and the blocks formed between the vertical main grooves are divided by fine grooves having specified groove widths. It is an object of the present invention to provide a heavy-duty tire capable of improving the wear resistance and the uneven wear resistance even when it is turned into a solution, and solving the above problems.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に本発明の重荷重用タイヤは、タイヤ赤道の両側でタイ
ヤ円周方向にのびる縦主溝を設けることによってトレッ
ド接地面を前記縦主溝間の中央接地面域とそのタイヤ軸
方向外側のショルダ接地面域とに区分し、かつこの縦主
溝の溝中心のタイヤ赤道Cからの距離Lをトレッド接地
面巾SWの0.25〜0.40倍とするとともに、前記
中央接地面域を、前記縦主溝の溝巾WGの0.10〜
0.60倍の溝巾を有しかつタイヤ円周方向にのびる縦
細溝及び該縦細溝と交わる向きにのびる横細溝によって
この中央接地面域を区画したブロックからなる区域とし
て形成している。
In order to achieve the above object, the heavy-duty tire of the present invention is provided with vertical main grooves extending in the tire circumferential direction on both sides of the tire equator so that the tread contact surface has the vertical main grooves. Between the central ground contact surface area and the shoulder ground contact surface area on the outer side in the tire axial direction, and the distance L from the tire equator C at the groove center of this vertical main groove is 0.25 to 0. 40 times, and the central ground contact area is set to 0.10 of the groove width WG of the vertical main groove.
The central ground contact area is formed as an area composed of blocks having a groove width of 0.60 times and extending in the tire circumferential direction and lateral fine grooves extending in a direction intersecting with the longitudinal fine grooves. There is.

【0006】又前記横細溝の溝深さDyは、前記縦主溝
の溝深さDGの0.10〜0.33倍とすることが好ま
しく、又前記横細溝の溝底にサイピングを設けかつこの
サイピングの深さDsと横細溝の溝深さDyとの和Dy
+Dsを、前記縦主溝の溝深さDGの0.80〜1.2
倍とするのがよい。
The groove depth Dy of the horizontal narrow groove is preferably 0.10 to 0.33 times the groove depth DG of the vertical main groove, and siping is applied to the groove bottom of the horizontal narrow groove. Provided and sum Dy of the depth Ds of this siping and the groove depth Dy of the lateral narrow groove
+ Ds is 0.80 to 1.2 of the groove depth DG of the vertical main groove.
It is good to double.

【0007】[0007]

【作用】本願のトレッドパターンは、縦主溝によって区
分された接地圧の高い中央接地面域に、ブロックを形成
している。このブロックは、縦主溝の溝巾WGの0.6
0倍以下の縦細溝及び横細溝によって区画しているた
め、ブロックを小形化しブロック数を高めた時にもラン
ド比の減少が緩和されるとともに比較的高いパターン剛
性が維持され、しかも縦主溝の位置を接地面巾SWの
0.25〜0.40倍の距離範囲に特定しているため、
中央接地面域とショルダ接地面域とでの摩耗進行を均一
化でき、これらの相乗効果によって耐摩耗性、耐偏摩耗
性を向上できる。
According to the tread pattern of the present application, the block is formed in the central ground contact surface area where the ground contact pressure is high and which is divided by the vertical main groove. This block has a groove width WG of the vertical main groove of 0.6.
Since it is divided by vertical fine grooves and horizontal fine grooves of 0 times or less, even if the blocks are made smaller and the number of blocks is increased, the reduction of land ratio is mitigated and the pattern rigidity is maintained relatively high. Since the position of the groove is specified within a distance range of 0.25 to 0.40 times the ground contact surface width SW,
The progress of wear in the central contact area and the shoulder contact area can be made uniform, and wear resistance and uneven wear resistance can be improved by these synergistic effects.

【0008】又縦細溝及び横細溝を用いているため、同
じランド比でブロックパターンを形成する時には、ブロ
ック数がそのエッジ長さとともに向上し、排水性能とと
もに、路面引っ掻きによる氷上性能を高める。又ブロッ
クは接地圧が高い中央接地面域に形成されるため、ブロ
ックの雪中への食込みが大でありかつ氷面との粘着摩擦
力が高まり、しかもブロック内にサイピングを形成する
ものに比してブロック剛性が維持されるため、重荷重用
タイヤにおいても前記氷雪上性能は保障される。又溝容
積が減じるため、ポンピング音の音圧が下がり、騒音低
下にも寄与しうる。
Further, since the vertical fine grooves and the horizontal fine grooves are used, when forming a block pattern with the same land ratio, the number of blocks is improved along with the edge length thereof, and the drainage performance and the on-ice performance due to road surface scratching are enhanced. . In addition, since the block is formed in the central ground contact surface area where the ground contact pressure is high, there is a large amount of bite into the snow of the block, the adhesive friction with the ice surface is increased, and moreover, it is compared to those that form siping in the block. Since the block rigidity is maintained, the performance on ice and snow is ensured even in a heavy-duty tire. Further, since the groove volume is reduced, the sound pressure of the pumping sound is reduced, which can contribute to noise reduction.

【0009】又横細溝の深さを縦主溝深さDGの0.3
3倍以下としたときには、ブロックの周方向の剛性維持
効果がさらに高まり耐摩耗性、耐偏摩耗性をより向上で
きる。この時、横細溝の早期の磨滅によってウエット性
及び氷上性が喪失するのを防止するために、この横細溝
の溝底に所定深さのサイピングを形成することが好まし
く、横細溝の磨滅後に出現するサイピングのエッジ効果
によってライフの末期まで良好なウエット性及び氷上性
が確保される。
Further, the depth of the lateral narrow groove is 0.3 of the vertical main groove depth DG.
When it is 3 times or less, the effect of maintaining rigidity in the circumferential direction of the block is further enhanced, and wear resistance and uneven wear resistance can be further improved. At this time, in order to prevent loss of wettability and iceability due to early abrasion of the lateral narrow groove, it is preferable to form a siping of a predetermined depth at the groove bottom of the lateral narrow groove. Due to the edge effect of siping that appears after abrasion, good wettability and iceability are secured until the end of life.

【0010】[0010]

【実施例】以下本発明の一実施例を図面に基づき説明す
る。図1において、重荷重用タイヤ1は、トレッド部2
と、その両端からタイヤ半径方向内方にのびるサイドウ
ォール部3と、各サイドウオール部3のタイヤ半径方向
内端に配されるビード部4とを具え、本例では、例えば
タイヤサイズ11R22.5のラジアルタイヤとして形
成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, the heavy load tire 1 includes a tread portion 2
A sidewall portion 3 extending inward in the tire radial direction from both ends thereof, and a bead portion 4 arranged at the tire radial inner end of each sidewall portion 3, and in this example, for example, a tire size 11R22.5. Formed as a radial tire.

【0011】又タイヤ1は、前記ビード部4、4間に跨
るトロイド状のカーカス6と、このカーカス6の半径方
向外側に配置されるベルト層7とを具える。
The tire 1 also comprises a toroidal carcass 6 extending between the bead portions 4 and 4, and a belt layer 7 arranged outside the carcass 6 in the radial direction.

【0012】前記カーカス6は、前記トレッド部2から
サイドウオール部3をへてビード部4のビードコア5の
廻りで折返される1枚以上、例えば2枚のカーカスプラ
イからなり、該カーカスプライは、カーカスコードをタ
イヤ赤道Cに対して75〜90度の角度で配列する。カ
ーカスコードとしては、本例では、スチールコードが用
いられる。カーカスとしては、スチールコードの他、芳
香族ポリアミド、ナイロン、レーヨン、ポリエステルな
どの有機繊維コードを用いた複数枚のプライで構成して
もよい。またカーカス6の折返し部6aは、ビードコア
5の上方かつタイヤの最大巾位置下方で途切れ、この折
返し部6aと本体部6bとの間には、ビードコア5から
半径方向外側に立ち上がる断面3角形状のビードエーペ
ックスゴム8が充填され、ビード部4を補強しかつタイ
ヤ横剛性を高めている。
The carcass 6 is composed of one or more carcass plies, for example, two carcass plies which are folded around the bead core 5 of the bead part 4 from the tread part 2 to the side wall part 3, and the carcass ply is composed of: The carcass cords are arranged at an angle of 75 to 90 degrees with respect to the tire equator C. In this example, a steel cord is used as the carcass cord. The carcass may be composed of a plurality of plies using an organic fiber cord such as aromatic polyamide, nylon, rayon, polyester in addition to the steel cord. Further, the folded-back portion 6a of the carcass 6 is interrupted above the bead core 5 and below the maximum width position of the tire, and between the folded-back portion 6a and the main body portion 6b, a triangular cross-section that rises radially outward from the bead core 5 is formed. The bead apex rubber 8 is filled to reinforce the bead portion 4 and enhance the tire lateral rigidity.

【0013】前記ベルト層7は、ベルトコードをタイヤ
赤道Cに対して15〜80度の角度で配列した複数枚、
本例では例えば4枚のベルトプライからなり、該ベルト
コードとしては、低伸長性の例えばスチール等の金属繊
維コードが好適に使用される。又ベルトコードとして
は、芳香族ポリアミド等の高強力の有機繊維コードも、
要求するタイヤ性能に応じて選定できる。
The belt layer 7 comprises a plurality of belt cords arranged at an angle of 15 to 80 degrees with respect to the tire equator C,
In this example, it is composed of, for example, four belt plies, and as the belt cord, a metal fiber cord of low extensibility such as steel is preferably used. As the belt cord, high-strength organic fiber cords such as aromatic polyamide are also available.
It can be selected according to the required tire performance.

【0014】又前記トレッド部2には、図2に示すよう
に、タイヤ赤道Cの両側でタイヤ円周方向にのびる2本
の縦主溝Gが設けられ、トレッド接地面Sを、前記縦主
溝間G、Gの中央接地面域S1とそのタイヤ軸方向外側
のショルダ接地面域S2とに区分するとともに、この中
央接地面域S1は、タイヤ円周方向にのびる縦細溝g及
びこの縦細溝と交わる向きの横細溝yによって区画され
るブロックBからなる区域として形成される。
As shown in FIG. 2, the tread portion 2 is provided with two vertical main grooves G extending in the tire circumferential direction on both sides of the tire equator C, and the tread contact surface S is provided with the vertical main groove S. The grooves G, G are divided into a central ground contact surface area S1 of G and a shoulder ground contact surface area S2 on the outer side in the tire axial direction, and the central ground contact surface area S1 includes a vertical fine groove g extending in the tire circumferential direction and the vertical groove g thereof. It is formed as an area consisting of a block B which is defined by a lateral narrow groove y that faces the narrow groove.

【0015】ここで前記トレッド接地面Sとは、タイヤ
を標準リムに装着しかつ標準内圧を充填するとともに標
準荷重を負荷した状態において、トレッド外面であるト
レッド面TSが路面と接地する領域であって、又前記標
準リム及び標準内圧とは、JATMA、TRA、ETR
TO等の規格で規定する標準リム及び各タイヤの最大空
気圧、また標準荷重はその最大荷重として夫々定義す
る。又前記トレッド面TSは、標準内圧が充填された状
態のタイヤの子午断面において、タイヤ赤道面上に中心
を有しかつ曲率半径R1を例えばトレッド巾TWの1.
5〜5.0倍の範囲とした円弧に沿って凸状に湾曲し、
これによって前記中央接地面域S1の接地圧をショルダ
接地面域S2の接地圧より大としたプロファイルを得て
いる。なおトレッド面TS両端は、バットレス面BSと
例えば傾斜面を介してエッジで交差し、従って本例では
トレッド面TSは、前記トレッド接地面Sと一致する。
The tread contact surface S is a region where the tread surface TS, which is the outer surface of the tread, comes into contact with the road surface when the tire is mounted on the standard rim, is filled with the standard internal pressure, and is loaded with the standard load. Also, the standard rim and standard internal pressure are JATMA, TRA, ETR.
The maximum air pressure of the standard rim and each tire defined by standards such as TO, and the standard load are defined as the maximum load. Further, the tread surface TS is centered on the tire equatorial plane and has a radius of curvature R1 of, for example, a tread width TW of 1. of the tread width TW in the meridional section of the tire filled with the standard internal pressure.
Curved in a convex shape along an arc with a range of 5 to 5.0 times,
As a result, a profile is obtained in which the ground contact pressure in the central ground contact area S1 is larger than the ground contact pressure in the shoulder ground contact area S2. Both ends of the tread surface TS intersect with the buttress surface BS at edges via, for example, an inclined surface, and thus the tread surface TS coincides with the tread contact surface S in this example.

【0016】前記縦主溝Gは、図3に拡大して示すよう
に、溝巾WGを5mm以上とした直線状もしくはジグザ
グ状の溝、本例ではジグザグ状の溝に形成されるととも
に、このジグザグの振角αをタイヤ円周方向に対して6
〜25度の範囲に設定している。又前記縦主溝Gの溝中
心とタイヤ赤道Cとの距離Lは、前記トレッド接地面S
の巾SWの0.25〜0.4倍であって、この距離L
は、前記縦主溝Gが、ジグザグ状の時には、溝中心にお
けるジグザグの振れの中心からの距離として測定する。
As shown in an enlarged view in FIG. 3, the vertical main groove G is formed into a linear or zigzag groove having a groove width WG of 5 mm or more, and in this example, is a zigzag groove. The zigzag swing angle α is 6 with respect to the tire circumferential direction.
The range is set to -25 degrees. The distance L between the center of the vertical main groove G and the tire equator C is equal to the tread contact surface S.
Width SW is 0.25 to 0.4 times, and this distance L
Is measured as the distance from the center of the zigzag swing at the groove center when the vertical main groove G has a zigzag shape.

【0017】又前記中央接地面域S1に形成される前記
縦細溝g、及び横細溝yは、夫々その溝巾Wg、Wyを
前記縦主溝の溝巾WGの0.10〜0.60倍の範囲と
した細溝であって、本例では、図2に示すように、縦細
溝gは、タイヤ赤道C上をのびる中央の縦細溝gaとそ
の両外側の縦細溝gbとからなり、夫々タイヤ円周方向
に直線状にのびる。又横細溝yは、前記縦細溝ga、g
b間を横切ることによってブロックBaが並ぶブロック
列に区分する内の横細溝yaと、前記縦細溝gaと縦主
溝Gとの間を横切ることによってブロックBbが並ぶブ
ロック列に区分する外の横細溝ybとからなり、内の横
細溝ya及び外の横細溝ybは、タイヤ軸方向に対して
25度以下、例えば20度の角度で傾斜する。又横細溝
ya、ybの各ブロック列当りの形成本数は120〜1
80本が好ましく、これによって各ブロックBa、Bb
を高いコーナリングパワーが発揮できる横長かつ小形の
平行四辺形に形成している。なお横細溝ya、ybは本
例では、互いに逆方向に傾斜するとともに、タイヤ軸方
向に隣り合う横細溝ya、yb間及び横細溝ya、ya
間の円周方向の位相を、横細溝のピッチ長さの略1/2
倍の長さでずらし、均一性を高めている。
Further, the vertical narrow groove g and the horizontal narrow groove y formed in the central ground contact surface area S1 have groove widths Wg and Wy, respectively, of 0.10 to 0..0 of the groove width WG of the vertical main groove. In the present example, as shown in FIG. 2, the vertical narrow groove g is a central vertical narrow groove ga extending on the tire equator C and both outer narrow vertical grooves gb. And extend linearly in the tire circumferential direction. Further, the horizontal narrow groove y is the vertical narrow groove ga, g
A lateral narrow groove ya that divides into a block row in which the blocks Ba are arranged by crossing b, and a block row in which blocks Bb are arranged by crossing between the vertical narrow groove ga and the vertical main groove G The inner lateral narrow groove ya and the outer lateral narrow groove yb are inclined at an angle of 25 degrees or less, for example, 20 degrees with respect to the tire axial direction. The number of lateral fine grooves ya, yb formed in each block row is 120 to 1.
Eighty pieces are preferable, so that each block Ba, Bb
Is formed into a horizontally long and small parallelogram that can exhibit high cornering power. In this example, the lateral narrow grooves ya and yb are inclined in mutually opposite directions, and are located between the lateral narrow grooves ya and yb adjacent to each other in the tire axial direction and the lateral narrow grooves ya and ya.
The phase in the circumferential direction is approximately 1/2 of the pitch length of the lateral narrow groove.
The length is doubled to improve uniformity.

【0018】このように、縦主溝Gの形成位置を特定し
かつ、中央接地面域S1を溝巾を規制した縦細溝g、横
細溝yでブロックに区画しているため、ブロックを小形
化してブロック数を高めた時にもランド比の減少が緩和
されるとともに比較的高いパターン剛性が維持され、又
中央接地面域とショルダ接地面域との間の摩耗の均一化
と相まって耐摩耗性、耐偏摩耗性を向上できる。
In this way, the formation position of the vertical main groove G is specified, and the central ground contact surface area S1 is divided into blocks by the vertical narrow grooves g and the horizontal narrow grooves y whose groove widths are restricted. Even when the size is reduced and the number of blocks is increased, the reduction in land ratio is mitigated and a relatively high pattern rigidity is maintained, and the wear resistance is combined with the uniform wear between the central contact surface area and the shoulder contact surface area. And the uneven wear resistance can be improved.

【0019】なお、縦主溝G、縦細溝g及び横細溝yを
模式化した図6の如きトレッドパターンのタイヤを表1
の仕様に基づいて試作し、このタイヤの耐摩耗性、耐偏
摩耗性、通過騒音性について比較した。 耐摩耗性は:タイヤを後輪駆動軸に装着して5万kmの
距離を一般路で走行させ、マークM1、M2の各位置で
摩耗量を測定してM1、M2での摩耗量について、それ
ぞれ実施例品BのM1、M2での摩耗量を基準(10
0)として指数表示した。指数が大なほど良好である。 耐偏摩耗性は:タイヤを前輪に装着して5000kmの
距離を一般路で走行させ、偏摩耗発生箇所の偏摩耗量
(偏摩耗の深さ)を測定した。表中、○は偏摩耗量5m
m未満、△は偏摩耗量0.5〜1.0mm、Xは偏摩耗
量1.0mm以上である。通過騒音性は、テストタイヤ
を全輪に装着してエンジンオフ状態で速度50km/H
で走行する車両から側方に7.5mm離れた位置にマイ
クをセットしてJASO規格C606に準じてノイズを
測定するとともに、その測定値(dB値)を実施例品B
を基準(100)として指数表示した。路面は密粒アス
ファルトコンクリート路面であって、指数が大なほど良
好である。
Table 1 shows a tire having a tread pattern as shown in FIG. 6, which schematically shows the vertical main groove G, the vertical narrow groove g, and the horizontal narrow groove y.
The tires were prototyped based on the specifications, and the tires were compared for wear resistance, uneven wear resistance, and passage noise resistance. Abrasion resistance is as follows: The tire is mounted on the rear wheel drive shaft and traveled on a general road for a distance of 50,000 km, and the amount of wear at each position of the marks M1 and M2 is measured to determine the amount of wear at M1 and M2. The wear amount at M1 and M2 of the example product B is used as a reference (10
It was shown as an index 0). The larger the index, the better. Uneven wear resistance: The tire was attached to the front wheels and the tire was run on a general road for a distance of 5000 km, and the uneven wear amount (uneven wear depth) at the uneven wear occurrence point was measured. In the table, ○ indicates an uneven wear amount of 5 m
Less than m, Δ is an uneven wear amount of 0.5 to 1.0 mm, and X is an uneven wear amount of 1.0 mm or more. Passing noise is 50km / H when engine is off with test tires mounted on all wheels.
The microphone is set at a position 7.5 mm laterally away from the vehicle traveling in the direction, noise is measured according to JASO standard C606, and the measured value (dB value) is used as an example product B.
Was displayed as an index with the reference value (100). The road surface is a dense-grained asphalt concrete road surface, and the larger the index, the better.

【0020】[0020]

【表1】 [Table 1]

【0021】その結果、縦主溝Gのタイヤ赤道Cからの
距離Lが増加するにしたがいショルダ接地面域S2での
摩耗が増大する一方、距離Lが減ずるにしたがい逆に中
央接地面域S1での摩耗が増大し、距離Lが接地面巾S
Wの0.25〜0.40の範囲において、双方の接地面
域S1、S2の摩耗進行が均一化して耐摩耗性、耐偏摩
耗性が向上するのが確認できる。又前記0.25〜0.
40の範囲においても、縦細溝g及び横細溝yの溝巾W
g、Wyが縦主溝の溝巾WGの0.60倍を越えたなら
ば、中央接地面域S1での摩耗が悪化して耐摩耗性、耐
偏摩耗性を向上し得ないのが確認できる。すなわち距離
Lが0.25SW未満の時、0.4SWを越える時、及
び溝巾Wg、Wyが0.60WGを越えるときには意図
した耐摩耗性等の向上効果が期待できない。さらに距離
Lが0.25SW未満の時には、縦主溝Gでの気柱共鳴
がタイヤ振動によって励起されるなど騒音性を悪化し、
かつショルダ接地面域S2での蓄熱量が高まりベルト端
剥離等を誘発するなど耐久性を阻害する。なお距離Lが
0.4SWを越える時には、ショルダ接地面域S2が過
小となって肩落ち摩耗を誘発させる。又溝巾Wg、Wy
が0.10WG未満では、排水機能を十分に発揮できな
い。
As a result, as the distance L of the longitudinal main groove G from the tire equator C increases, the wear on the shoulder contact surface area S2 increases, while on the contrary, as the distance L decreases, the central contact surface area S1 decreases. Wear increases, and the distance L is the ground contact surface width S
It can be confirmed that in the range of W from 0.25 to 0.40, the progress of wear in both the ground contact surface areas S1 and S2 is made uniform, and the wear resistance and the uneven wear resistance are improved. The above 0.25 to 0.
Even in the range of 40, the groove width W of the vertical narrow groove g and the horizontal narrow groove y
If g and Wy exceed 0.60 times the groove width WG of the vertical main groove, it is confirmed that the wear in the central ground contact surface area S1 deteriorates and the wear resistance and uneven wear resistance cannot be improved. it can. That is, when the distance L is less than 0.25 SW, when it exceeds 0.4 SW, and when the groove widths Wg and Wy exceed 0.60 WG, the intended effect of improving wear resistance cannot be expected. Further, when the distance L is less than 0.25 SW, air column resonance in the vertical main groove G is excited by tire vibration, and noise characteristics are deteriorated.
In addition, the amount of heat stored in the shoulder ground contact surface area S2 increases, leading to belt edge separation and the like, which impairs durability. When the distance L exceeds 0.4 SW, the shoulder ground contact surface area S2 becomes too small and shoulder wear is induced. Groove width Wg, Wy
Is less than 0.10 WG, the drainage function cannot be sufficiently exhibited.

【0022】又縦主溝Gは、本例のようにジグザグ状と
することが好ましく、これによってジグザグの振れの全
巾に亘って排水機能を有するとともに溝エッジによって
路面引っ掻き効果を発揮し、ウエット性能、及び氷上性
能の向上に役立つ。しかしジグザグの振角αが6度未満
の時には、前記向上効果が見込まれず、逆に25度を越
えると、ピッチ音の原因となる他ジグザグ頂部の剛性が
低下して軌道摩耗の起点(核)となるなど、新たな偏摩
耗を誘発する。
Further, the vertical main groove G is preferably zigzag-shaped as in the present example, whereby a drainage function is provided over the entire width of the zigzag swing, and the groove edge exerts a road surface scratching effect, and wets. Helps improve performance and performance on ice. However, when the zigzag swing angle α is less than 6 degrees, the improvement effect is not expected. On the contrary, when the zigzag swing angle α is more than 25 degrees, it causes pitch noise and the rigidity of the top of the zigzag is reduced to cause the point of orbital wear (core). It induces new uneven wear.

【0023】又横細溝ya、ybの各ブロック列当りの
形成本数が120本未満の時には充分なウエット性能、
氷上性能が発揮できず、逆に180本を越えると、ブロ
ックの大きさが過少となりすぎ偏摩耗発生の危険性が生
じる。従って形成本数は好ましくは130〜160本の
範囲である。
Further, when the number of lateral fine grooves ya, yb formed in each block row is less than 120, sufficient wet performance,
On the other hand, the performance on ice cannot be exhibited. On the contrary, when the number of blocks exceeds 180, the size of the block becomes too small and there is a risk of uneven wear. Therefore, the number of formed lines is preferably in the range of 130 to 160.

【0024】又前記横細溝yは、図2、4に示すように
その溝深Dyを前記縦主溝の溝深さDGの0.10〜
0.33倍とした浅底をなし、その溝底には、この横細
溝yの長さKの0.5倍以上、より好ましくは0.7倍
以上の範囲に亘って横細溝の中心線上をのびるサイピン
グ9が形成される。なお前記サイピング9は、サイピン
グ巾を0.5〜1.5mmの範囲とした切込み状体であ
って、タイヤ接地時の圧縮力によってその開口を閉じる
ことにより周方向のパターン剛性を維持する。サイピン
グ巾が0.5mm未満では、成形金型によるサイピング
の形成が困難であり1.5mmを越えると、接地時に開
口を閉じることができず剛性を著減させる。
Further, as shown in FIGS. 2 and 4, the lateral narrow groove y has a groove depth Dy of 0.10 of the groove depth DG of the vertical main groove.
It has a shallow bottom of 0.33 times, and the width of the lateral narrow groove is 0.5 times or more, more preferably 0.7 times or more, the length K of the lateral narrow groove y. A siping 9 extending on the center line is formed. The siping 9 is a notched member having a siping width in the range of 0.5 to 1.5 mm, and maintains the pattern rigidity in the circumferential direction by closing its opening by the compressive force when the tire touches the ground. If the siping width is less than 0.5 mm, it is difficult to form the siping by the molding die, and if it exceeds 1.5 mm, the opening cannot be closed at the time of grounding, and the rigidity is significantly reduced.

【0025】このように前記横細溝yを浅底とすること
によって、ブロックの周方向の剛性維持効果がより高ま
り、耐摩耗性、耐偏摩耗性をさらに向上することが可能
となるのであって、横細溝の溝深Dyが0.33DGを
越えた時には、場合によってはブロック剛性が不足して
偏摩耗が1回目のタイヤローテーションでも直りきらな
いレベルまで悪化する場合も発生する。
By making the lateral narrow groove y shallow as described above, the effect of maintaining rigidity in the circumferential direction of the block is further enhanced, and it becomes possible to further improve wear resistance and uneven wear resistance. When the groove depth Dy of the lateral narrow groove exceeds 0.33DG, the block rigidity may be insufficient and the uneven wear may be deteriorated to a level where it cannot be completely corrected even by the first tire rotation.

【0026】又前記サイピング9は、この浅底の横細溝
yが磨滅したときトレッド面TSに出現して、そのエッ
ジ効果によってタイヤの摩耗ライフの末期まで良好なウ
エット性と氷上性を確保し、従って、サイピング長さが
横細溝長さKの0.5倍未満では、充分なエッジ効果を
発生できない。又サイピング9は、摩耗ライフの末期ま
で前記エッジ効果発揮させるために、サイピング深さD
sと前記横細溝yの溝深さDyとの和Dy+Dsを、前
記縦主溝深さDGの0.80倍以上とすることが必要で
あって、また前記和Dy+Dsが1.20DGを越える
とトレッドゴム全体のゴムゲージ厚さが過大となり、不
必要な重量アップを招くこととなる。従って、前記和D
y+Dsは、さらに好ましくは0.90DG以上であっ
て、又上限は1.00DG以下とするのがよい。
The siping 9 appears on the tread surface TS when the shallow lateral groove y is worn away, and its edge effect ensures good wettability and iceability until the end of the wear life of the tire. Therefore, if the siping length is less than 0.5 times the lateral narrow groove length K, a sufficient edge effect cannot be generated. In addition, the siping 9 has a siping depth D in order to exert the edge effect until the end of the wear life.
It is necessary that the sum Dy + Ds of s and the groove depth Dy of the lateral narrow groove y is 0.80 times or more the vertical main groove depth DG, and the sum Dy + Ds exceeds 1.20DG. And, the thickness of the rubber gauge of the entire tread rubber becomes excessive, which causes unnecessary weight increase. Therefore, the sum D
More preferably, y + Ds is 0.90 DG or more, and the upper limit is 1.00 DG or less.

【0027】なお前記縦細溝gは、横細溝yより深底の
溝であって、例えばその溝深さDgを前記縦主溝の0.
8〜1.2倍とすることによって、摩耗ライフの終期に
亘って排水性を発揮させる。なお、溝深さDgは前記縦
主溝Gの深さDGの1.0倍以下とするのがさらに好ま
しい。1.0倍を超えると縦細溝gの溝底でのクラック
が発生しやすく、又クラックを防止するために溝底下で
のゴムゲージを増加させるとタイヤ重量が増加する。
The vertical narrow groove g has a deeper bottom than the horizontal narrow groove y. For example, the groove depth Dg is 0.
By setting the ratio to 8 to 1.2 times, the drainage property is exhibited throughout the end of the wear life. The groove depth Dg is more preferably 1.0 times or less the depth DG of the vertical main groove G. If it exceeds 1.0 times, cracks are likely to occur at the groove bottom of the vertical fine groove g, and if the rubber gauge below the groove bottom is increased to prevent the crack, the tire weight increases.

【0028】又ショルダ接地面域S2には、本例では、
前記縦主溝Gからバットレス面BSまでのびるラグ溝1
0が形成され、このラグ溝10は、タイヤ軸方向内側部
分に溝深さを前記横細溝の溝深さDyと近似する浅底部
分10Aと、その外側部分に溝深さを前記縦主溝Gの溝
深さDGと近似する深底部分10Bとを形成し、しかも
この浅底部分10Aには、前記サイピング9と同深さの
サイピング11を形成している。このラグ溝10は、こ
のラグ溝と同溝容積を有する平底の溝に比して、ブロッ
ク剛性を高めるのに効果的であり、又溝底の高さ変化に
よって溝内での気柱共鳴を抑制し騒音性能を向上しう
る。
In the shoulder contact area S2, in this example,
A lug groove 1 extending from the vertical main groove G to the buttress surface BS
0 is formed, and the lug groove 10 has a shallow bottom portion 10A having a groove depth on the inner side in the tire axial direction that approximates the groove depth Dy of the lateral narrow groove, and a groove depth on the outer side of the lag groove 10 in the longitudinal main direction. A deep bottom portion 10B that is similar to the groove depth DG of the groove G is formed, and further, a siping 11 having the same depth as the siping 9 is formed in the shallow bottom portion 10A. The lug groove 10 is more effective in increasing the block rigidity than a flat-bottom groove having the same groove volume as the lug groove, and the air column resonance in the groove is caused by the height change of the groove bottom. It can suppress and improve noise performance.

【0029】又浅底部分10Aのサイピング11は、前
記サイピング9と同様に、サイピングに沿う向きのゴム
の動きを拘束しないため、タイヤ軸方向のパターン剛性
を緩和でき、その結果、特に旋回時における接地面積の
低下抑止及び接地圧分布の均一化を図ることが可能とな
り、接地性を高めてウエット性能を維持するのに役立
つ。
Further, since the siping 11 of the shallow bottom portion 10A does not restrain the movement of the rubber in the direction along the siping like the siping 9, the pattern rigidity in the axial direction of the tire can be relaxed, and as a result, especially during turning. It is possible to suppress the reduction of the contact area and make the distribution of the contact pressure uniform, which is useful for improving the contact property and maintaining the wet performance.

【0030】(具体例)図1、2に示す構造をなすタイ
ヤサイズが11R22.5のタイヤを表2の仕様に基づ
き試作するとともに、該試作タイヤの耐摩耗性、耐偏摩
耗性、ウエット性を夫々測定し、その結果を同表に示し
ている。
(Specific Example) A tire having a tire size of 11R22.5 having the structure shown in FIGS. 1 and 2 was trial-produced based on the specifications of Table 2, and the wear resistance, uneven wear resistance, and wettability of the trial tire were tested. Was measured and the results are shown in the table.

【0031】なお耐摩耗性、耐偏摩耗性に対するテスト
は、前記表1におけるテスト仕様に準じ、耐摩耗性は図
2のマークM3の位置で測定した。又ウエット性は、テ
ストタイヤを全輪に装着して走行し、水膜厚さ2mmの
アスファルト路面において速度50km/Hで全輪にロ
ックブレーキをかけた時の制動距離を指数化したもの
で、指数が大なほど良好である。なお耐摩耗性、ウエッ
ト性の結果(数値)は、実施例品2を100として指数
化したものであり、それぞれ指数値が大なほど性能は良
好である。
The test for wear resistance and uneven wear resistance was conducted according to the test specifications in Table 1 above, and the wear resistance was measured at the position of mark M3 in FIG. Wetness is an index of braking distance when test tires are mounted on all wheels and the wheels are rock-braked at a speed of 50 km / H on an asphalt road surface with a water film thickness of 2 mm. The larger the index, the better. The results of wear resistance and wettability (numerical values) are obtained by indexing Example Product 2 as 100. The larger the index value, the better the performance.

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【発明の効果】本発明の重荷重用タイヤは叙上の如く構
成しているため、氷雪上性能を維持しながら耐摩耗性、
耐偏摩耗性を高めることができ、全天候型タイヤとして
好適に使用できる。
Since the heavy duty tire of the present invention is constructed as described above, wear resistance while maintaining performance on ice and snow,
The uneven wear resistance can be enhanced, and it can be suitably used as an all-weather tire.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すタイヤの子午断面図で
ある。
FIG. 1 is a meridional sectional view of a tire showing an embodiment of the present invention.

【図2】そのトレッドパターンの一例を示すパターン展
開図である。
FIG. 2 is a pattern development view showing an example of the tread pattern.

【図3】縦主溝を示す断面図である。FIG. 3 is a cross-sectional view showing a vertical main groove.

【図4】横細溝をサイピングとともに示す断面図であ
る。
FIG. 4 is a cross-sectional view showing lateral narrow grooves together with siping.

【図5】縦細溝を示す断面図である。FIG. 5 is a cross-sectional view showing a vertical fine groove.

【図6】表1で使用したタイヤのトレッドパターンの展
開図である。
FIG. 6 is a development view of the tread pattern of the tire used in Table 1.

【符号の説明】[Explanation of symbols]

9 サイピング C タイヤ赤道 G 縦主溝 g、ga、gb 縦細溝 y、ya、yb 横細溝 S トレッド接地面 S1 中央接地面域 S2 ショルダ接地面域 9 Siping C Tire equator G Vertical main groove g, ga, gb Vertical fine groove y, ya, yb Horizontal fine groove S Tread contact surface S1 Central contact surface area S2 Shoulder contact surface area

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年8月16日[Submission date] August 16, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Name of item to be amended] Title of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の名称】 重荷重用タイヤ[ Title of Invention] Heavy duty tire

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】タイヤ赤道Cの両側でタイヤ円周方向にの
びる縦主溝を設けることによってトレッド接地面を前記
縦主溝間の中央接地面域とそのタイヤ軸方向外側のショ
ルダ接地面域とに区分し、かつこの縦主溝の溝中心のタ
イヤ赤道Cからの距離Lをトレッド接地面巾SWの0.
25〜0.40倍とするとともに、前記中央接地面域
を、前記縦主溝の溝巾WGの0.10〜0.60倍の溝
巾を有しかつタイヤ円周方向にのびる縦細溝及び該縦細
溝と交わる向きにのびる横細溝によってこの中央接地面
域を区画したブロックからなる区域として形成してなる
重荷重用タイヤ。
1. A tread contact surface is formed by providing longitudinal main grooves extending in the tire circumferential direction on both sides of the tire equator C so that a central contact surface area between the vertical main grooves and a shoulder contact surface area outside the tire axial direction are provided. And the distance L from the tire equator C of the center of the vertical main groove to the tread contact surface width SW of 0.
A vertical narrow groove having a groove width of 0.10 to 0.60 times the groove width WG of the vertical main groove and extending in the tire circumferential direction while having a width of 25 to 0.40 times. And a heavy-duty tire formed as a region consisting of a block in which this central ground contact surface region is defined by lateral fine grooves extending in a direction intersecting with the vertical fine grooves.
【請求項2】前記横細溝は、溝深さDyが前記縦主溝の
溝深さDGの0.10〜0.33倍であることを特徴と
する請求項1記載の重荷重用タイヤ。
2. The heavy-duty tire according to claim 1, wherein the lateral fine groove has a groove depth Dy of 0.10 to 0.33 times the groove depth DG of the vertical main groove.
【請求項3】前記横細溝は、溝底に、この横細溝に沿っ
てのびるサイピングを具えるとともに、該サイピングの
深さDsと前記横細溝の溝深さDyとの和Dy+Ds
は、前記縦主溝の溝深さDGの0.80〜1.2倍であ
ることを特徴とする請求項1記載の重荷重用タイヤ。
3. The lateral narrow groove is provided with a siping extending along the lateral narrow groove at the groove bottom, and the sum Dy + Ds of the depth Ds of the siping and the groove depth Dy of the lateral narrow groove.
Is 0.80 to 1.2 times the groove depth DG of the vertical main groove, The heavy duty tire according to claim 1, wherein
JP7117834A 1995-04-18 1995-04-18 Heavy duty tire Expired - Fee Related JP2966760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7117834A JP2966760B2 (en) 1995-04-18 1995-04-18 Heavy duty tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7117834A JP2966760B2 (en) 1995-04-18 1995-04-18 Heavy duty tire

Publications (2)

Publication Number Publication Date
JPH08282213A true JPH08282213A (en) 1996-10-29
JP2966760B2 JP2966760B2 (en) 1999-10-25

Family

ID=14721411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7117834A Expired - Fee Related JP2966760B2 (en) 1995-04-18 1995-04-18 Heavy duty tire

Country Status (1)

Country Link
JP (1) JP2966760B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1178433A (en) * 1997-09-03 1999-03-23 Bridgestone Corp Heavy duty pneumatic tire
EP0965464A2 (en) * 1998-06-19 1999-12-22 Sumitomo Rubber Industries Ltd. Heavy duty tyre
JP2000168317A (en) * 1998-12-09 2000-06-20 Bridgestone Corp Pneumatic tire
JP2001018617A (en) * 1999-07-12 2001-01-23 Bridgestone Corp Pneumatic tire for heavy load
JP2001508725A (en) * 1997-01-20 2001-07-03 ピレリ・プネウマティチ・ソチエタ・ペル・アツィオーニ In particular, low rolling resistance tires for driving wheels of heavy load vehicles
JP2001199206A (en) * 1999-11-10 2001-07-24 Ohtsu Tire & Rubber Co Ltd :The Pneumatic radial tire
JP2001277814A (en) * 2000-03-30 2001-10-10 Yokohama Rubber Co Ltd:The Pneumatic tire for winter
JP2002002232A (en) * 2000-06-27 2002-01-08 Bridgestone Corp Pneumatic tire for heavy load
JP2004217120A (en) * 2003-01-16 2004-08-05 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2007001359A (en) * 2005-06-22 2007-01-11 Bridgestone Corp Pneumatic tire
WO2007072717A1 (en) * 2005-12-20 2007-06-28 Sumitomo Rubber Industries, Ltd. Heavy duty tire
JP2008056111A (en) * 2006-08-31 2008-03-13 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2008155789A (en) * 2006-12-25 2008-07-10 Yokohama Rubber Co Ltd:The Pneumatic tire for heavy load
JP2009214761A (en) * 2008-03-11 2009-09-24 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2010260405A (en) * 2009-04-30 2010-11-18 Bridgestone Corp Pneumatic tire
JP2011525449A (en) * 2008-06-23 2011-09-22 ミシュラン ルシェルシュ エ テクニーク ソシエテ アノニム Tire with lamella in the bridge
US8215352B2 (en) 2007-11-02 2012-07-10 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP2012144118A (en) * 2011-01-11 2012-08-02 Bridgestone Corp Pneumatic tire
JP2012153156A (en) * 2011-01-21 2012-08-16 Bridgestone Corp Pneumatic tire
JP2012153157A (en) * 2011-01-21 2012-08-16 Bridgestone Corp Pneumatic tire
US8381782B2 (en) * 2004-11-18 2013-02-26 Sumitomo Rubber Industries, Ltd. Heavy duty pneumatic tire
JP2013193463A (en) * 2012-03-15 2013-09-30 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2014094683A (en) * 2012-11-09 2014-05-22 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2015013606A (en) * 2013-07-05 2015-01-22 住友ゴム工業株式会社 Pneumatic tire
JP2015013603A (en) * 2013-07-05 2015-01-22 住友ゴム工業株式会社 Pneumatic tire
JP2015077941A (en) * 2013-10-18 2015-04-23 住友ゴム工業株式会社 Pneumatic tire
CN104723798A (en) * 2013-12-19 2015-06-24 住友橡胶工业株式会社 Heavy duty tire
JP2015163511A (en) * 2015-06-18 2015-09-10 株式会社ブリヂストン pneumatic tire
US20160288582A1 (en) * 2015-02-27 2016-10-06 Toyo Tire & Rubber Co., Ltd. Pneumatic tire
EP3321103A1 (en) 2016-11-11 2018-05-16 Sumitomo Rubber Industries, Ltd. Heavy duty tire
JP2018079741A (en) * 2016-11-14 2018-05-24 住友ゴム工業株式会社 tire
US20180264889A1 (en) * 2017-03-16 2018-09-20 Toyo Tire & Rubber Co., Ltd. Pneumatic tire
JP2019093860A (en) * 2017-11-21 2019-06-20 横浜ゴム株式会社 Pneumatic tire
JP2019119313A (en) * 2017-12-28 2019-07-22 横浜ゴム株式会社 Pneumatic tire

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001508725A (en) * 1997-01-20 2001-07-03 ピレリ・プネウマティチ・ソチエタ・ペル・アツィオーニ In particular, low rolling resistance tires for driving wheels of heavy load vehicles
US6415834B1 (en) * 1997-01-20 2002-07-09 Pirelli Pneumatici S.P.A. Tire having low rolling resistance, in particular for driving wheels of heavy vehicles
JPH1178433A (en) * 1997-09-03 1999-03-23 Bridgestone Corp Heavy duty pneumatic tire
EP0965464A3 (en) * 1998-06-19 2001-12-12 Sumitomo Rubber Industries Ltd. Heavy duty tyre
EP0965464A2 (en) * 1998-06-19 1999-12-22 Sumitomo Rubber Industries Ltd. Heavy duty tyre
JP2000168317A (en) * 1998-12-09 2000-06-20 Bridgestone Corp Pneumatic tire
JP2001018617A (en) * 1999-07-12 2001-01-23 Bridgestone Corp Pneumatic tire for heavy load
JP4532626B2 (en) * 1999-07-12 2010-08-25 株式会社ブリヂストン Heavy duty pneumatic tire
JP2001199206A (en) * 1999-11-10 2001-07-24 Ohtsu Tire & Rubber Co Ltd :The Pneumatic radial tire
JP4573984B2 (en) * 1999-11-10 2010-11-04 住友ゴム工業株式会社 Pneumatic radial tire
JP2001277814A (en) * 2000-03-30 2001-10-10 Yokohama Rubber Co Ltd:The Pneumatic tire for winter
JP2002002232A (en) * 2000-06-27 2002-01-08 Bridgestone Corp Pneumatic tire for heavy load
JP2004217120A (en) * 2003-01-16 2004-08-05 Sumitomo Rubber Ind Ltd Pneumatic tire
US8381782B2 (en) * 2004-11-18 2013-02-26 Sumitomo Rubber Industries, Ltd. Heavy duty pneumatic tire
JP2007001359A (en) * 2005-06-22 2007-01-11 Bridgestone Corp Pneumatic tire
JP4812041B2 (en) * 2005-12-20 2011-11-09 住友ゴム工業株式会社 Heavy duty tire
US8272415B2 (en) 2005-12-20 2012-09-25 Sumitomo Rubber Industries, Ltd. Heavy duty tire
WO2007072717A1 (en) * 2005-12-20 2007-06-28 Sumitomo Rubber Industries, Ltd. Heavy duty tire
JP2008056111A (en) * 2006-08-31 2008-03-13 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP4492609B2 (en) * 2006-12-25 2010-06-30 横浜ゴム株式会社 Heavy duty pneumatic tire
JP2008155789A (en) * 2006-12-25 2008-07-10 Yokohama Rubber Co Ltd:The Pneumatic tire for heavy load
US8215352B2 (en) 2007-11-02 2012-07-10 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP2009214761A (en) * 2008-03-11 2009-09-24 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2011525449A (en) * 2008-06-23 2011-09-22 ミシュラン ルシェルシュ エ テクニーク ソシエテ アノニム Tire with lamella in the bridge
US9981505B2 (en) 2008-06-23 2018-05-29 Compagnie Generale Des Etablissements Michelin Tire with lamelle in bridge
JP2010260405A (en) * 2009-04-30 2010-11-18 Bridgestone Corp Pneumatic tire
US9393840B2 (en) 2011-01-11 2016-07-19 Bridgestone Corporation Pneumatic tire
JP2012144118A (en) * 2011-01-11 2012-08-02 Bridgestone Corp Pneumatic tire
JP2012153156A (en) * 2011-01-21 2012-08-16 Bridgestone Corp Pneumatic tire
JP2012153157A (en) * 2011-01-21 2012-08-16 Bridgestone Corp Pneumatic tire
JP2013193463A (en) * 2012-03-15 2013-09-30 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2014094683A (en) * 2012-11-09 2014-05-22 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2015013606A (en) * 2013-07-05 2015-01-22 住友ゴム工業株式会社 Pneumatic tire
JP2015013603A (en) * 2013-07-05 2015-01-22 住友ゴム工業株式会社 Pneumatic tire
JP2015077941A (en) * 2013-10-18 2015-04-23 住友ゴム工業株式会社 Pneumatic tire
CN104553622A (en) * 2013-10-18 2015-04-29 住友橡胶工业株式会社 Aerated tyre
CN104553622B (en) * 2013-10-18 2017-08-08 住友橡胶工业株式会社 Pneumatic tire
CN104723798A (en) * 2013-12-19 2015-06-24 住友橡胶工业株式会社 Heavy duty tire
EP2886371A1 (en) * 2013-12-19 2015-06-24 Sumitomo Rubber Industries, Ltd. Heavy duty tire
US20160288582A1 (en) * 2015-02-27 2016-10-06 Toyo Tire & Rubber Co., Ltd. Pneumatic tire
US9840116B2 (en) * 2015-02-27 2017-12-12 Toyo Tire & Rubber Co., Ltd. Pneumatic tire
JP2015163511A (en) * 2015-06-18 2015-09-10 株式会社ブリヂストン pneumatic tire
CN108068555A (en) * 2016-11-11 2018-05-25 住友橡胶工业株式会社 Tyre for heavy load
JP2018076039A (en) * 2016-11-11 2018-05-17 住友ゴム工業株式会社 Tire for heavy load
EP3321103A1 (en) 2016-11-11 2018-05-16 Sumitomo Rubber Industries, Ltd. Heavy duty tire
US10744822B2 (en) 2016-11-11 2020-08-18 Sumitomo Rubber Industries, Ltd. Heavy duty tire
JP2018079741A (en) * 2016-11-14 2018-05-24 住友ゴム工業株式会社 tire
US20180264889A1 (en) * 2017-03-16 2018-09-20 Toyo Tire & Rubber Co., Ltd. Pneumatic tire
JP2018154195A (en) * 2017-03-16 2018-10-04 東洋ゴム工業株式会社 Pneumatic tire
JP2019093860A (en) * 2017-11-21 2019-06-20 横浜ゴム株式会社 Pneumatic tire
JP2019119313A (en) * 2017-12-28 2019-07-22 横浜ゴム株式会社 Pneumatic tire

Also Published As

Publication number Publication date
JP2966760B2 (en) 1999-10-25

Similar Documents

Publication Publication Date Title
JP2966760B2 (en) Heavy duty tire
JP3136101B2 (en) Pneumatic tire
EP1189770B1 (en) High-performance tyre for a motor vehicle
US10800211B2 (en) Pneumatic tire
CN102232025B (en) Air-inflation tyre
AU2015329071B2 (en) Pneumatic tire
JP3238101B2 (en) Heavy duty pneumatic tires
EP1440822A1 (en) Pneumatic tire
JP4516342B2 (en) Heavy duty tire
EP1157858A1 (en) Pneumatic tire having improved wet traction
US7093630B2 (en) Heavy duty radial tire
JP4979864B2 (en) High performance tire for automobile
EP0870630A2 (en) Pneumatic tire
JP7172953B2 (en) pneumatic tire
JP3145762B2 (en) Pneumatic tire
US11872848B2 (en) Pneumatic tire
JP3371038B2 (en) Pneumatic tire
JP2003104009A (en) Pneumatic tire
JP3875364B2 (en) Pneumatic radial tire
JPH0848115A (en) Pneumatic radial tire
JPH0781326A (en) Tire for icy and snowy road
JP3516742B2 (en) Pneumatic radial tire
JP3361257B2 (en) Heavy duty pneumatic tires
JP2934403B2 (en) Pneumatic tire
WO2023188542A1 (en) Tire

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees