JPH08280397A - Production of gal-glcnac-man - Google Patents

Production of gal-glcnac-man

Info

Publication number
JPH08280397A
JPH08280397A JP11266195A JP11266195A JPH08280397A JP H08280397 A JPH08280397 A JP H08280397A JP 11266195 A JP11266195 A JP 11266195A JP 11266195 A JP11266195 A JP 11266195A JP H08280397 A JPH08280397 A JP H08280397A
Authority
JP
Japan
Prior art keywords
glcnac
man
gal
solution
glucide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11266195A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujimoto
浩 藤本
Katsumi Ajisaka
勝美 鯵坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Dairies Corp
Original Assignee
Meiji Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Milk Products Co Ltd filed Critical Meiji Milk Products Co Ltd
Priority to JP11266195A priority Critical patent/JPH08280397A/en
Publication of JPH08280397A publication Critical patent/JPH08280397A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To produce the subject glucide useful as a synthetic intermediate, etc., for a complex glucide saccharide chain such as a glycoprotein or a glycolipid by carrying out the saccharide transfer reaction of a solution containing GlcNAc-Man and a galactose donor with a glycosidase. CONSTITUTION: An N-acetylhexosaminidase is reacted with a solution containing mannose (Man) and N-acetylglucosamine (GlcNAc) to prepare GlcNAc-Man. The resultant GlcNAc-Mann and a galactose donor (e.g. lactose) are then dissolved in a solution comprising dimethyl sulfoxide and 0.2M potassium phosphate buffer solution (pH 6.0) and a glycosidase (e.g. β-galactosidase) is added thereto. Reaction is carried out at 37 deg.C for 5hr under shaking and the reactional solution is then treated at 100 deg.C for 5min to inactivate the enzyme. The resultant solution is subsequently treated with an active carbon column, fractionated and purified at a linear concentration gradient of water-ethanol to afford the objective Gal- GlcNAc-Man useful as a synthetic intermediate, etc., for synthesizing a complex glucide saccharide chain such as a glycoprotein or a glycolipid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、糖蛋白質や糖脂質など
の複合糖質糖鎖合成における重要な合成中間体であるGa
l-GlcNAc-Manのグリコシダーゼによる製造方法に関す
る。
The present invention relates to Ga, which is an important synthetic intermediate in the synthesis of glycoconjugate sugar chains such as glycoproteins and glycolipids.
The present invention relates to a method for producing l-GlcNAc-Man using glycosidase.

【0002】[0002]

【従来の技術】Gal-GlcNAc-Manは、糖蛋白質糖鎖のうち
で、アスパラギン結合型糖鎖の非還元側鎖末端に存在す
る共通構造であり、糖鎖の全合成における重要な合成中
間体である。
2. Description of the Related Art Gal-GlcNAc-Man is a common structure existing at the non-reducing side chain end of an asparagine-linked sugar chain among glycoprotein sugar chains, and is an important synthetic intermediate in the total synthesis of sugar chains. Is.

【0003】従来、Gal-GlcNAc-Manを製造する方法とし
ては、有機化学的製造方法と酵素を用いる方法とが知ら
れている。
Conventionally, as a method for producing Gal-GlcNAc-Man, an organic chemical production method and a method using an enzyme are known.

【0004】有機化学的方法によって製造する場合、1
位を活性化しその他の水酸基をすべて保護したN−フタ
ロイルラクトサミンと、2位の水酸基のみを遊離とした
マンノースとの縮合反応によって製造されている(T. O
gawa et al., CarbohydrateRes., 123(1983)C8)。
When manufactured by an organic chemical method, 1
It is produced by the condensation reaction of N-phthaloyllactosamine in which all the other hydroxyl groups have been activated and mannose in which only the hydroxyl group at the 2-position has been released (T. O.
gawa et al., Carbohydrate Res., 123 (1983) C8).

【0005】また、酵素を用いて製造する場合、GlcNAc
-Manを糖受容体とし、UDP-Galを糖供与体として、糖転
移酵素(ガラクトシルトランスフェラーゼ)により、Gl
cNAc-ManにGalを転移させる方法が考えられる。
In the case of using an enzyme, GlcNAc
-Man as a sugar acceptor, UDP-Gal as a sugar donor, and glycosyltransferase (galactosyltransferase)
A possible method is to transfer Gal to cNAc-Man.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、有機化
学的方法によるGal-GlcNAc-Manの製造には、14工程もの
多段階の反応を必要とする上、縮合反応においては銀触
媒などの高価な試薬を使う必要があった。
However, in order to produce Gal-GlcNAc-Man by an organic chemical method, a multistep reaction of 14 steps is required, and an expensive reagent such as a silver catalyst is used in the condensation reaction. Had to use.

【0007】一方、糖転移酵素を用いて製造する場合
は、糖供与体であるUDP-Galが高価であり、また、ガラ
クトシルトランスフェラーゼも高価でしかも不安定であ
るという問題点があると考えられる。
On the other hand, when it is produced using a glycosyltransferase, there is a problem that the sugar donor UDP-Gal is expensive and the galactosyltransferase is also expensive and unstable.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記の問
題点を解決するために鋭意研究を重ねた結果、GlcNAc-M
anとガラクトース供与体とを含有する溶液において、β
−ガラクトシダーゼの転移反応を行わしめることによ
り、Gal-GlcNAc-Manを製造することに成功した。本発明
方法によれば、β−ガラクトシダーゼを適宜選択するこ
とにより、GlcNAc-Manの位置選択的にGalを結合させたG
al-GlcNAc-Manを製造することが可能である。
[Means for Solving the Problems] As a result of intensive studies to solve the above problems, the present inventors have found that GlcNAc-M
In a solution containing an and a galactose donor, β
-Gal-GlcNAc-Man was successfully produced by carrying out the transfer reaction of galactosidase. According to the method of the present invention, by appropriately selecting β-galactosidase, the G-linked G-linked GlcNAc-Man G
It is possible to produce al-GlcNAc-Man.

【0009】本発明方法は、酵素を用いて製造するため
に、有機化学的製造方法と比較して、穏和な条件での反
応が可能である。また、本発明方法と特願平6-185198記
載のGlcNAc-Manの製造方法とを組合わせることにより、
原料の糖(ガラクトース供与体、N-アセチルエチルグル
コサミンおよびマンノース)からわずか2工程でGal-Gl
cNAc-Manを製造できることも本発明の特徴である。
Since the method of the present invention is produced using an enzyme, it is possible to carry out the reaction under mild conditions as compared with the organic chemical production method. Further, by combining the method of the present invention and the method for producing GlcNAc-Man described in Japanese Patent Application No. 6-185198,
Gal-Gl in only two steps from raw sugar (galactose donor, N-acetylethylglucosamine and mannose)
It is also a feature of the present invention that cNAc-Man can be produced.

【0010】また、本発明方法では、ガラクトース供与
体として、安価な乳糖やパラニトロフェニル−β−ガラ
クトシド(pNp-β-Gal)を使用でき、糖転移反応を触媒
するβ−ガラクトシダーゼも安価でありしかも安定であ
る。
In the method of the present invention, inexpensive lactose or para-nitrophenyl-β-galactoside (pNp-β-Gal) can be used as the galactose donor, and β-galactosidase which catalyzes the glycosyl transfer reaction is also inexpensive. Moreover, it is stable.

【0011】以下に本発明の内容をさらに詳細に説明す
る。
The contents of the present invention will be described in more detail below.

【0012】本発明において用いられるβ−ガラクトシ
ダーゼ[EC 3.2.1.23]の起源には特に限定はなく、GlcNA
cの所望の位置に選択的にガラクトースを転移するβ−
ガラクトシダーゼを選べばよい。すなわち、N-アセチル
グルコサミンの4位に選択的にガラクトースを転移させ
る場合は、例えば肺炎球菌(Diplococcus pneumoniae)由
来やバチルス・サーキュランス(Bacillus circulans)由
来のβ−ガラクトシダーゼなどを用い、N-アセチルグル
コサミンの6位に選択的にガラクトースを転移させる場
合は、例えば大腸菌(E. coli)由来のβ−ガラクトシダ
ーゼを用い、N-アセチルグルコサミンの3位に選択的に
ガラクトースを転移させる場合は、例えばウシ睾丸由来
のβ−ガラクトシダーゼを用いればよい。
The origin of β-galactosidase [EC 3.2.1.23] used in the present invention is not particularly limited, and GlcNA
β- which selectively transfers galactose to a desired position of c
Choose galactosidase. That is, when selectively transferring galactose to the 4-position of N-acetylglucosamine, for example, using p-galactosidase from pneumococcus (Diplococcus pneumoniae) or Bacillus circulans (Bacillus circulans), and the like, N-acetylglucosamine In the case of selectively transferring galactose to the 6-position of, for example, using β-galactosidase derived from E. coli, when selectively transferring the galactose to the 3-position of N-acetylglucosamine, for example, bovine testis The β-galactosidase derived from may be used.

【0013】GlcNAc-Manは公知の有機化学的方法あるい
は酵素を用いた方法で製造する。酵素を用いた方法とし
ては、例えば特願平6-185198に開示されている、マンノ
ースとN-アセチルグルコサミンとを含有する溶液におい
てN-アセチルヘキソサミニダーゼによる脱水縮合反応に
よる製造が挙げられる。
GlcNAc-Man is produced by a known organic chemical method or a method using an enzyme. Examples of the method using an enzyme include production by dehydration condensation reaction with N-acetylhexosaminidase in a solution containing mannose and N-acetylglucosamine, which is disclosed in Japanese Patent Application No. 6-185198.

【0014】ガラクトース供与体としては、還元末端が
ガラクトースである糖質例えばラクトースや、合成基質
であるpNp-β-Galなどを用いることができる。
As the galactose donor, a sugar having a galactose reducing end, such as lactose, or a synthetic substrate pNp-β-Gal can be used.

【0015】反応におけるガラクトース供与体とGlcNAc
-Manとのモル比は、1:0.1〜1:5とすることが望まし
い。
Galactose donor and GlcNAc in the reaction
The molar ratio with -Man is preferably 1: 0.1 to 1: 5.

【0016】以下に実施例により本発明をさらに詳しく
説明する。
The present invention will be described in more detail with reference to the following examples.

【0017】[0017]

【実施例】【Example】

実施例1(Galβ1-4GlcNAcβ1-2Manの製造) 210mgのpNp-β-Galおよび267mgのGlcNAcβ1-2Manを、42
0μlのジメチルスルオキシドおよび2.1mlの0.2Mリン酸
カリウム緩衝液(pH6.0)からなる溶液に溶解し、これに
1単位のβ−ガラクトシダーゼ(肺炎球菌由来、ベーリ
ンガーマンハイム社製)を加えて37℃で振盪した。5時
間後、反応液を100℃で5分間加熱して酵素を熱失活させ
た。反応液のHPLCのクロマトグラフを図1に示す。この
反応液を活性炭カラムに供して、水−12%エタノールの
直線濃度勾配により生成物の精製を行った。20mlずつ溶
出液を分画し、HPLCにて生成物の溶出したフラクション
を確認後、フラクション番号86-98を濃縮したところ、1
6.1mgのGalβ1-4GlcNAcβ1-2Manが得られた。生成物の
13C-NMRのスペクトルを図2に示す。
Example 1 (Production of Galβ1-4GlcNAcβ1-2Man) 210 mg of pNp-β-Gal and 267 mg of GlcNAcβ1-2Man were combined with 42
It was dissolved in a solution consisting of 0 μl of dimethylsulfoxide and 2.1 ml of 0.2 M potassium phosphate buffer (pH 6.0), and 1 unit of β-galactosidase (derived from Streptococcus pneumoniae, manufactured by Boehringer Mannheim) was added to this 37 Shake at ° C. After 5 hours, the reaction was heated at 100 ° C. for 5 minutes to heat inactivate the enzyme. The HPLC chromatograph of the reaction solution is shown in FIG. The reaction solution was applied to an activated carbon column to purify the product by a linear concentration gradient of water-12% ethanol. The eluate was fractionated in 20 ml portions, and after confirming the eluted fraction of the product by HPLC, the fraction number 86-98 was concentrated.
6.1 mg of Galβ1-4GlcNAcβ1-2Man was obtained. Product
The 13 C-NMR spectrum is shown in FIG.

【0018】 実施例2(Galβ1-4GlcNAcβ1-2Manの製造) 159mgのpNp-β-Galおよび214mgのGlcNAcβ1-2Manを、71
7μlのアセトニトリルおよび1.63mlの0.2Mリン酸カリウ
ム緩衝液(pH6.0)からなる溶液に溶解し、これに20単位
のβ−ガラクトシダーゼ(バチルス・サーキュランス由
来、大和化成社製)を加えて37℃で振盪した。2時間
後、反応液を100℃で5分間加熱して酵素を熱失活させ
た。この反応液を活性炭カラムに供して、水−12%エタ
ノールの直線濃度勾配により生成物の精製を行った。20
mlずつ溶出液を分画し、HPLCにて生成物の溶出したフラ
クションを確認後、フラクション番号66-88を濃縮した
ところ、27.6mgのGalβ1-4GlcNAcβ1-2Manが得られた。
Example 2 (Production of Galβ1-4GlcNAcβ1-2Man) 159 mg of pNp-β-Gal and 214 mg of GlcNAcβ1-2Man were mixed with 71
It was dissolved in a solution consisting of 7 μl of acetonitrile and 1.63 ml of 0.2 M potassium phosphate buffer (pH 6.0), to which 20 units of β-galactosidase (derived from Bacillus circulans, manufactured by Daiwa Kasei Co., Ltd.) was added. Shake at ° C. After 2 hours, the reaction solution was heated at 100 ° C. for 5 minutes to inactivate the enzyme by heat. The reaction solution was applied to an activated carbon column to purify the product by a linear concentration gradient of water-12% ethanol. 20
The eluate was fractionated by ml, the eluted fraction of the product was confirmed by HPLC, and the fraction number 66-88 was concentrated to give 27.6 mg of Galβ1-4GlcNAcβ1-2Man.

【0019】 実施例3(Galβ1-4GlcNAcβ1-6Manの製造) 120mgのpNp-β-Galおよび150mgのGlcNAcβ1-6Manを、54
0μlのアセトニトリルおよび1.2mlの0.2Mリン酸カリウ
ム緩衝液(pH6.0)からなる溶液に溶解し、これに32単位
のβ−ガラクトシダーゼ(バチルス・サーキュランス由
来、大和化成社製)を加えて37℃で振盪した。2時間
後、反応液を100℃で5分間加熱して酵素を熱失活させ
た。この反応液を活性炭カラムに供して、水−12%エタ
ノールの直線濃度勾配により生成物の精製を行った。20
mlずつ溶出液を分画し、HPLCにて生成物の溶出したフラ
クションを確認後、フラクション番号72-84を濃縮した
ところ、36.9mgのGalβ1-4GlcNAcβ1-6Manが得られた。
生成物の13C-NMRのスペクトルを図3に示す。
Example 3 (Production of Galβ1-4GlcNAcβ1-6Man) 120 mg of pNp-β-Gal and 150 mg of GlcNAcβ1-6Man were added to 54
It was dissolved in a solution consisting of 0 μl of acetonitrile and 1.2 ml of 0.2 M potassium phosphate buffer (pH 6.0), and 32 units of β-galactosidase (derived from Bacillus circulans, manufactured by Daiwa Kasei Co., Ltd.) was added to this 37 Shake at ° C. After 2 hours, the reaction solution was heated at 100 ° C. for 5 minutes to inactivate the enzyme by heat. The reaction solution was applied to an activated carbon column to purify the product by a linear concentration gradient of water-12% ethanol. 20
The eluate was fractionated by ml, and after confirming the eluted fraction of the product by HPLC, the fraction No. 72-84 was concentrated to give 36.9 mg of Galβ1-4GlcNAcβ1-6Man.
The 13 C-NMR spectrum of the product is shown in FIG.

【0020】[0020]

【発明の効果】本発明によれば、Gal-GlcNAc-Manを、Gl
cNAc-ManへのGalの結合を位置選択的に制御でき、ま
た、有機化学的製造方法に比べて簡便かつ安価に製造で
きるようになった。こうして得られたGal-GlcNAc-Man
は、糖鎖の全合成における合成中間体として有用であ
る。
According to the present invention, Gal-GlcNAc-Man is added to Gl
The binding of Gal to cNAc-Man can be regioselectively controlled, and it can be produced more easily and cheaply than the organic chemical production method. Gal-GlcNAc-Man thus obtained
Is useful as a synthetic intermediate in the total synthesis of sugar chains.

【図面の簡単な説明】[Brief description of drawings]

【図1】 pNp-β-GalおよびGlcNAcβ1-2Manとを肺炎球
菌由来のβ−ガラクトシダーゼを用いて反応させたとき
の反応液のHPLCのクロマトグラフである。
FIG. 1 is an HPLC chromatograph of a reaction solution obtained by reacting pNp-β-Gal and GlcNAcβ1-2Man with β-galactosidase derived from Streptococcus pneumoniae.

【図2】 pNp-β-GalおよびGlcNAcβ1-2Manとを原料と
して肺炎球菌由来のβ−ガラクトシダーゼの転移反応に
より製造されたGalβ1-4GlcNAcβ1-2Manの13C-NMRのス
ペクトルである。
FIG. 2 is a 13 C-NMR spectrum of Galβ1-4GlcNAcβ1-2Man produced by a transfer reaction of β-galactosidase derived from pneumococcus using pNp-β-Gal and GlcNAcβ1-2Man as raw materials.

【図3】 pNp-β-GalおよびGlcNAcβ1-6Manとを原料と
してバチルス・サーキュランス由来のβ−ガラクトシダ
ーゼの転移反応により製造されたGalβ1-4GlcNAcβ1-6M
anの13C-NMRのスペクトルである。
[Fig. 3] Galβ1-4GlcNAcβ1-6M produced by a transfer reaction of β-galactosidase derived from Bacillus circulans using pNp-β-Gal and GlcNAcβ1-6Man as raw materials.
It is a 13 C-NMR spectrum of an.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 GlcNAc-Manとガラクトース供与体とを含
有する溶液において、グリコシダーゼによる糖転移反応
を行わしめることを特徴とするGal-GlcNAc-Manの製造方
法。
1. A method for producing Gal-GlcNAc-Man, which comprises performing a transglycosylation reaction with glycosidase in a solution containing GlcNAc-Man and a galactose donor.
【請求項2】 グリコシダーゼがβ−ガラクトシダーゼ
である請求項1記載のGal-GlcNAc-Manの製造方法。
2. The method for producing Gal-GlcNAc-Man according to claim 1, wherein the glycosidase is β-galactosidase.
JP11266195A 1995-04-14 1995-04-14 Production of gal-glcnac-man Pending JPH08280397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11266195A JPH08280397A (en) 1995-04-14 1995-04-14 Production of gal-glcnac-man

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11266195A JPH08280397A (en) 1995-04-14 1995-04-14 Production of gal-glcnac-man

Publications (1)

Publication Number Publication Date
JPH08280397A true JPH08280397A (en) 1996-10-29

Family

ID=14592319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11266195A Pending JPH08280397A (en) 1995-04-14 1995-04-14 Production of gal-glcnac-man

Country Status (1)

Country Link
JP (1) JPH08280397A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100473659B1 (en) * 2002-10-25 2005-03-15 드림바이오젠 주식회사 Process for preparing hybrid protein replaced by available polymer at the saccharide chain by site-specific modification

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100473659B1 (en) * 2002-10-25 2005-03-15 드림바이오젠 주식회사 Process for preparing hybrid protein replaced by available polymer at the saccharide chain by site-specific modification

Similar Documents

Publication Publication Date Title
US10364449B2 (en) Fermentative production of oligosaccharides
KR950000723A (en) Non-reducing oligosaccharides and methods for preparing the same
Díez-Municio et al. Enzymatic synthesis and characterization of fructooligosaccharides and novel maltosylfructosides by inulosucrase from Lactobacillus gasseri DSM 20604
Usui et al. Regioselectivity of β-D-galactosyl-disaccharide formation using the β-D-galactosidase from Bacillus circulans
Zeng et al. Regioselective synthesis of p-nitrophenyl glycosides of β-D-galactopyranosyl-disaccharides by transglycosylation with β-D-galactosidases
JP2001525177A (en) Method for producing oligosaccharide syrup, its production system and oligosaccharide
US5952203A (en) Oligosaccharide synthesis using activated glycoside derivative, glycosyl transferase and catalytic amount of nucleotide phosphate
Karthaus et al. Cellulase-catalysed glycosylation reactions: simple route towards a highly selective synthesis of oligosaccharides
Shintate et al. Enzymatic synthesis of a library of β-(1→ 4) hetero-d-glucose and d-xylose-based oligosaccharides employing cellodextrin phosphorylase
JP2834871B2 (en) Method for producing fructose-containing oligosaccharide
JP2018535693A (en) Methods for small molecule glycosylation
Woo Kim et al. Selective production of GF4-fructooligosaccharide from sucrose by a new transfructosylating enzyme
JPH08280397A (en) Production of gal-glcnac-man
López et al. Controlling yield and regioselectivity in the enzymatic synthesis of β-D-galactopyranosyl-β-D-xylopyranosides
JPH1023898A (en) New production of n-acetyllactosamine derivative
US5861289A (en) Heat-resistant β-galactosyltransferase, its production process and its use
US5364794A (en) Process for producing saccharides
US5068186A (en) Process for the enzymatic preparation of disaccharide fluorides using α-glycosyl fluorides as substrates
JP2754358B2 (en) Production method of glycosphingolipid
JP2750374B2 (en) Novel production method of β-glucooligosaccharide by oxygen method
JP3105306B2 (en) Method for producing carbohydrate or complex carbohydrate
JPH11504817A (en) Method for enzymatic galactosylation of monosaccharides and oligosaccharides
RU94026248A (en) METHODS FOR PRODUCING CARBOHYDRATE fucosylated by enzymic fucosylation NUCLEOTIDE sugar with GDP-fucose REGENERATION IN SITU, REACTION SYSTEM IN VITRO, METHOD FOR PRODUCING glycosyl 1- or 2-phosphite-protected FOSFITILNY monosaccharides GALOIDGIDRATIROVANIYA METHOD, GLIKOZILGALOIDGIDRINY
CA2065586A1 (en) A process for the enzymatic synthesis of 2-deoxy-.beta.-d-galactosides
KR100453576B1 (en) Method for the production of thermostable and acid-stable oligosaccharide by using dextransucrase