JPH0827841B2 - Appearance inspection method - Google Patents

Appearance inspection method

Info

Publication number
JPH0827841B2
JPH0827841B2 JP63101610A JP10161088A JPH0827841B2 JP H0827841 B2 JPH0827841 B2 JP H0827841B2 JP 63101610 A JP63101610 A JP 63101610A JP 10161088 A JP10161088 A JP 10161088A JP H0827841 B2 JPH0827841 B2 JP H0827841B2
Authority
JP
Japan
Prior art keywords
line
inspection object
contour line
image
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63101610A
Other languages
Japanese (ja)
Other versions
JPH01273181A (en
Inventor
聰 山竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP63101610A priority Critical patent/JPH0827841B2/en
Publication of JPH01273181A publication Critical patent/JPH01273181A/en
Publication of JPH0827841B2 publication Critical patent/JPH0827841B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、検査対象物の表面の色欠陥、表面の凹凸、
異物の混入、傷、ひび割れ等の外観上の欠陥を画像処理
により検査する外観検査方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention is directed to color defects on the surface of an inspection object, surface irregularities,
The present invention relates to an appearance inspection method for inspecting appearance defects such as contamination of foreign matter, scratches, and cracks by image processing.

[従来の技術] 従来より検査対象物を含む空間領域をテレビカメラ等
の画像入力手段で撮像し、得られた画像を原画像の濃度
差に基づいて線画像に変換した後、検査対象物の外観上
の欠陥を抽出する外観検査方法が考えられている。この
ような外観検査方法では、線画像で得られている線のう
ち欠陥や異物に対応するものを抽出して検査を行なうこ
とが必要である。
[Prior Art] Conventionally, a spatial region including an inspection object is imaged by an image input means such as a television camera, and the obtained image is converted into a line image based on a density difference of the original image, and then the inspection object is inspected. A visual inspection method for extracting visual defects has been considered. In such an appearance inspection method, it is necessary to extract and inspect lines corresponding to defects and foreign substances from the lines obtained in the line image.

従来は、ティーチング時に、第8図に示すように、検
査対象物Oの輪郭線lの内側の領域に内部マスクMを形
成し、内部マスクM内の領域に存在する線を欠陥X1とみ
なして検査を行なっていた。また、同様にして検査対象
物Oの輪郭線lの外側の領域(背景)に背景マスクを形
成し、背景マスク内の領域に存在する線を異物X2とみな
して検査を行なっていた。
Conventionally, at the time of teaching, as shown in FIG. 8, an internal mask M is formed in a region inside the contour line l of the inspection object O, and a line existing in the region inside the internal mask M is regarded as a defect X 1. I was conducting an inspection. Further, in the same manner, a background mask is formed in a region (background) outside the contour line 1 of the inspection object O, and the line existing in the region in the background mask is regarded as the foreign substance X 2 for the inspection.

[発明が解決しようとする課題] 上記従来方法では、第9図(a)に示すように、画像
入力手段により入力される空間領域内に検査対象物O1
O4が多数ある場合や、第9図(b)に示すように、検査
対象物Oの形状が複雑である場合には、マスクの設定作
業も複雑になり処理時間が長くなるという問題があっ
た。
[Problems to be Solved by the Invention] In the above-described conventional method, as shown in FIG. 9 (a), the inspection object O 1 to
When a large number of O 4 are present, or when the shape of the inspection object O is complicated as shown in FIG. 9B, there is a problem that mask setting work becomes complicated and the processing time becomes long. It was

本発明は上述の問題点を解決することを目的とするも
のであり、マスクによる検査領域の設定作業を行なわな
ずに欠陥や異物の検査が行なえるようにした外観検査方
法を提供しようとするものである。
An object of the present invention is to solve the above-mentioned problems, and it is an object of the present invention to provide a visual inspection method capable of inspecting for defects and foreign matters without performing a work of setting an inspection region by a mask. It is a thing.

[課題を解決するための手段] 本発明では、上記目的を達成するために、線画像より
検査対象物の輪郭線に相当する線を追跡するとともに輪
郭線の曲率を逐次求め、求めた曲率があらかじめ設定さ
れている標準パターンの曲率とマッチする線を消去し、
残された線画像の中で線に囲まれている領域を欠陥部の
候補とし、欠陥部の候補となっている領域について欠陥
と異物との識別判定を行なうようにしているのである。
[Means for Solving the Problem] In order to achieve the above object, the present invention traces a line corresponding to a contour line of an inspection target from a line image and sequentially obtains the curvature of the contour line, and the obtained curvature is Erase the lines that match the curvature of the preset standard pattern,
In the remaining line image, a region surrounded by a line is set as a defect part candidate, and a defect and a foreign substance are discriminated from each other in the defect part candidate region.

[作用] 上記方法によれば、マスクを形成せずに欠陥や異物に
相当する線を抽出することができるから、マスクを形成
する場合に比較して処理が容易になり、とくに、検査対
象物が処理領域内に多数存在している場合や、検査対象
物の形状が複雑である場合に有効な方法となり、しかも
輪郭線に相当する線を追跡して逐次求めた曲率を標準パ
ターンの曲率と照合することにより輪郭線と認識された
線を消去するから、輪郭線に相当する線を消去した線画
像には輪郭線の一部がほとんど取り残されることがな
く、欠陥と異物との識別判定を行なう際に輪郭線の一部
を欠陥部の候補と誤認する可能性が少ないのである。
[Operation] According to the above method, lines corresponding to defects and foreign matters can be extracted without forming a mask, so that the process is easier than in the case where a mask is formed. Is effective in the case where there are a large number of objects in the processing area or the shape of the inspection object is complicated, and the curvature obtained by sequentially tracing the line corresponding to the contour line is used as the curvature of the standard pattern. Since the line recognized as the contour line is erased by matching, almost no part of the contour line is left in the line image in which the line corresponding to the contour line is erased, and it is possible to discriminate between the defect and the foreign matter. It is unlikely that a part of the contour line is mistaken as a candidate for a defective portion when performing.

[実施例] 本発明では、従来と同様に、テレビカメラ等の画像入
力手段により得られた原画像を線画像に変換することが
前処理として必要である。この前処理は、以下のように
行なわれる。
[Embodiment] In the present invention, it is necessary as a pre-processing to convert an original image obtained by an image input means such as a television camera into a line image as in the conventional case. This preprocessing is performed as follows.

まず、検査対象物を含む空間領域を撮像して得られた
原画像P0は濃淡画像であって、第1図(a)に示すよう
に、検査対象物O、欠陥X1、異物X2を含む画像となって
いる。ここに、各画素はたとえば濃度が8ビットで表わ
されて256階調に設定される。この濃淡画像から検査対
象物Oの輪郭線等のエッジを抽出する処理は、「エッジ
の部分は濃度変化が大きい部分に対応している」という
考え方を基本にしている。したがって、濃度を微分する
ことによってエッジの抽出を行なうのが一般的である。
微分処理は、第2図に示すように、濃淡画像を3×3画
素の局所並列ウインドウWに分割して行なう。つまり、
注目する画素Eと、その画素Eの周囲の8画素A〜D,F
〜Iとで局所並列ウインドウWを形成し、局所並列ウイ
ンドウW内の画素A〜Iの濃度の縦方向の濃度変化ΔV
と横方向の濃度変化ΔHとを次式によって求め、 ΔV=(A+B+C)−(G+H+I) ΔH=(A+D+G)−(C+F+I) さらに、微分絶対値|eE|と微分方向値∠eEとを次式に
よって求めるのである。
First, the original image P 0 obtained by imaging the spatial area including the inspection object is a grayscale image, and as shown in FIG. 1A, the inspection object O, the defect X 1 , and the foreign material X 2 The image includes. Here, the density of each pixel is represented by, for example, 8 bits and is set to 256 gradations. The process of extracting an edge such as a contour line of the inspection object O from the grayscale image is based on the idea that "the edge portion corresponds to a portion where the density change is large". Therefore, it is general to extract the edge by differentiating the density.
The differentiation process is performed by dividing the grayscale image into 3 × 3 pixel local parallel windows W as shown in FIG. That is,
Pixel E of interest and eight pixels A to D, F around the pixel E
To I to form a local parallel window W, and a vertical density change ΔV of the density of the pixels A to I in the local parallel window W.
And the density change ΔH in the lateral direction are calculated by the following formula, and ΔV = (A + B + C) − (G + H + I) ΔH = (A + D + G) − (C + F + I) Further, the differential absolute value | e E | and the differential direction value ∠e E It is calculated by the following formula.

ただし、A〜Iは対応する画素の濃度を示している。以
上の演算を原画像P0の全画素について行なうことによ
り、検査対象物Oの輪郭や欠陥X1、異物X2等が存在して
いるような濃度変化が大きい部分と、その変化の方向と
を抽出することができるのである。
However, A to I indicate the densities of the corresponding pixels. By performing the above calculation for all the pixels of the original image P 0 , the contour of the inspection object O, the defect X 1 , the foreign substance X 2 and the like where the density change is large and the direction of the change is large. Can be extracted.

次に細線化処理が行なわれる。細線化処理は、微分絶
対値が大きいほど濃度変化が大きいことを表わしている
点に着目して行なわれる。すなわち、各画素の微分絶対
値を周囲の画素の微分絶対値と比較し、周囲の画素より
も大きくなるものを連結していくことにより、1画素の
幅を有したエッジが抽出されるのである。つまり、画面
上の各画素の位置をX−Y座標で表わし、微分絶対値を
Z軸に取れば、微分絶対値を表わす曲面が形成されるこ
とになるのであり、細線化処理は、この曲面における稜
線を求めることに相当する。この段階ではノイズ等によ
るエッジも含まれているから、適宜しきい値を設定し、
しきい値以上の値のみを採用してノイズ成分を除去す
る。
Next, thinning processing is performed. The thinning process is performed by paying attention to the fact that the larger the differential absolute value, the larger the density change. That is, an edge having a width of one pixel is extracted by comparing the differential absolute value of each pixel with the differential absolute value of surrounding pixels and connecting those that are larger than the surrounding pixels. . That is, if the position of each pixel on the screen is represented by XY coordinates and the differential absolute value is taken on the Z axis, a curved surface representing the differential absolute value is formed. This is equivalent to finding the ridgeline at. At this stage, edges such as noise are also included, so set the threshold appropriately,
The noise component is removed by using only the value that is equal to or greater than the threshold value.

細線化処理で得られた線画像は、原画像のコントラス
トが不十分であるときや、ノイズが多いようなときに
は、不連続線になりやすい。そこで、エッジ延長処理を
行なう。エッジ延長処理は、不連続線の端点から始め
て、注目する画素とその周囲の画素とを比較し、次式で
表わされる評価関数f(eJ)がもっとも大きくなる方向
にエッジを延長し、他の線の端点に衝突するまでこれを
続けるのである。
The line image obtained by the thinning process tends to be a discontinuous line when the contrast of the original image is insufficient or when there is a lot of noise. Therefore, edge extension processing is performed. The edge extension processing starts from the end point of the discontinuity line, compares the pixel of interest with the surrounding pixels, extends the edge in the direction in which the evaluation function f (e J ) represented by Keep doing this until you hit the end of the line.

ここに、e0は中心画素の微分データであり、eJは隣接画
素の微分データであって、J=1,2,……、8である。
Here, e 0 is the differential data of the central pixel, e J is the differential data of the adjacent pixel, and J = 1, 2, ...

以上の処理により、第1図(b)に示すように、検査
対象物O、欠陥X1、異物X2等の輪郭線l0〜l2が閉曲線の
パターンとなった線画像P1が得られるのである。次に、
この線画像P1に基づいて検査対象物Oの輪郭線l0上の欠
け、突起、異形等の存否を検査する輪郭検査と、検査対
象物Oの輪郭線l0の内側の傷、汚れ、変色等の存否を検
査する欠陥検査とが順次行なわれる。
With the above processing, as shown in Fig. 1 (b), the inspection object O, defect X 1, line images P 1 to outline l 0 to l 2 becomes a pattern of a closed curve of the foreign substance X 2 and the like to give Be done. next,
A contour inspection for inspecting the presence or absence of a chip, a protrusion, an irregular shape, etc. on the contour line l 0 of the inspection object O based on the line image P 1 , and a scratch, a stain on the inside of the contour line l 0 of the inspection object O, A defect inspection for inspecting the presence or absence of discoloration or the like is sequentially performed.

まず、輪郭検査は次のようにして行なわれる。ここ
に、外観検査では、同種の検査対象物Oを次々に検査す
るのであるから、検査対象物Oの基本形状や大きさは予
め知られており、また、画像入力手段により撮像される
空間領域の中での位置も毎回ほぼ同じ位置に定められて
いる。そこで、検査対象物Oのパターンを、予め設定さ
れている標準パターンと照合することにより、輪郭検査
を行なう。すなわち、まず、第3図に示すように、検査
対象物Oの近傍と考えられる背景部分から出発して、検
査対象物Oの輪郭線l0に交差する方向に走る探索ライン
a〜eを設定し、探索ラインa〜eと輪郭線l0との交点
を求める。各探索ラインa〜eと輪郭線l0との交点は、
第4図に示す手順に従って求められる。たとえば、1つ
の探索ラインaについて始点から1画素ずつ進み、明か
るさの変化点が有れば、この点を輪郭線l0との交点であ
るとして登録し、探索ラインaの終点まで進むのであ
る。同様にして各探索ラインb〜eについて交点を求め
て登録する。ここで、探索ラインa〜eは複数(5)本
が設定され、探索ラインa〜e上に異物X1等が存在して
いて1つの探索ラインa〜e上に複数個の交点が発生し
たような場合でも、どの交点が輪郭線l0上の交点である
のかが特定できるようにしてある。すなわち、すべての
探索ラインa〜e上に異物X1等が存在することはないと
仮定し、複数の交点が得られた探索ラインa〜e上の各
交点に対して、交点が1つだけ得られている探索ライン
a〜e上の交点からの方向を調べれば、どの交点が輪郭
線l0上の交点かが識別できるのである。こうして、輪郭
線の特定ができないというような事態を回避するのであ
る。次に、第5図の手順で、輪郭線l0上の交点のうちの
いずれか1つを出発点として輪郭線l0の追跡を行なう。
ここでは、各画素に対して微分方向値により与えられた
向き(第3図中に矢印で示す)に追跡を行なうのであ
り、輪郭線l0をなぞりながら輪郭線l0の曲率を逐次求
め、標準パターンにおける対応部位の曲率と比較し、そ
の曲率がマッチすれば、追跡が終了した画素を消去す
る。ここに、画素は輪郭線l0の追跡の途中で逐次消去し
てもよいし、また、追跡が完了してから一括して消去す
るようにしてもよい。曲率が一致しない場合には、輪郭
線l0上になんらかの欠陥が存在していると判定され、そ
の欠陥についての検査が行なわれる。このようにして、
検査対象物Oの輪郭線l0の追跡で欠陥が発見されずに終
了すると、第1図(c)のように、検査対象物Oに対応
する線が画像から消去されるのであり、残った線画像の
パターンは、検査対象物Oの内側の欠陥X1と、検査対象
物Oの外側の異物X2とに相当する欠陥部を表わしている
と考えられる。つまり、この時点で、従来のようにマス
クを用いることなく、検査対象物Oと欠陥部との分離が
行なわれるのである。
First, the contour inspection is performed as follows. Here, in the visual inspection, since the inspection objects O of the same kind are inspected one after another, the basic shape and size of the inspection object O are known in advance, and the space area imaged by the image input means is also known. The position in the car is set to the same position every time. Therefore, the contour inspection is performed by collating the pattern of the inspection object O with a preset standard pattern. That is, first, as shown in FIG. 3, search lines a to e that run in a direction intersecting the contour line l 0 of the inspection object O are set starting from the background portion considered to be in the vicinity of the inspection object O. Then, the intersection between the search lines a to e and the contour line l 0 is obtained. The intersection of each of the search lines a to e and the contour line l 0 is
It is obtained according to the procedure shown in FIG. For example, with respect to one search line a, one pixel is advanced from the start point, and if there is a change point of brightness, this point is registered as an intersection with the contour line l 0, and the search line a is advanced to the end point. is there. Similarly, intersections are obtained and registered for each of the search lines b to e. Here, a plurality of (5) search lines a to e are set, the foreign matter X 1 and the like exist on the search lines a to e, and a plurality of intersections occur on one search line a to e. Even in such a case, it is possible to identify which intersection is the intersection on the contour line l 0 . That is, assuming that the foreign matter X 1 etc. does not exist on all the search lines a to e, only one intersection is present for each intersection on the search lines a to e from which a plurality of intersections are obtained. By examining the direction from the obtained intersections on the search lines a to e, it is possible to identify which intersection is on the contour line l 0 . In this way, it is possible to avoid the situation where the contour line cannot be specified. Next, the procedure of Figure 5, performs the tracking of the contours l 0 as a starting point any one of the intersection points on the contour line l 0.
Here is of performing tracking in the direction given by the differentiation direction value for each pixel (indicated by arrows in FIG. 3), sequentially obtains the curvature of the contour line l 0 while tracing the contour line l 0, The curvature of the corresponding part in the standard pattern is compared, and if the curvature matches, the pixel for which tracking has been completed is deleted. Here, the pixels may be sequentially erased during the tracing of the contour line l 0 , or may be erased collectively after the tracing is completed. If the curvatures do not match, it is determined that some defect exists on the contour line l 0 , and the defect is inspected. In this way,
When the contour line l 0 of the inspection object O is traced without any defect being detected, the line corresponding to the inspection object O is erased from the image as shown in FIG. The pattern of the line image is considered to represent a defect portion corresponding to the defect X 1 inside the inspection object O and the foreign substance X 2 outside the inspection object O. That is, at this point, the inspection object O and the defective portion are separated without using a mask as in the conventional case.

ところで、検査対象物Oのエッジの形状や検査対象物
Oに対する照明の仕方によっては、第3図に想像線l0
で示すような線が出現して、輪郭線が2重線になること
があるが、輪郭線l0の追跡は微分方向値により与えられ
た向きに進むから、たとえば、輪郭線l0を反時計方向に
進むのであれば、第6図に示すように、輪郭線l0′は輪
郭線l0の左側に発生することになる。したがって、探索
ラインa〜eとの交点を求めた輪郭線l0に対して内側
(左側)に2重線l0,l0′間の幅に相当するN画素分の
幅を持たせて輪郭線l0,l0′の消去を行なうようにすれ
ばよいのである。
By the way, depending on the shape of the edge of the inspection object O and the way of illuminating the inspection object O, an imaginary line l 0 ′ is shown in FIG.
A line such as shown in may appear, and the contour line may become a double line. However, since the tracing of the contour line l 0 proceeds in the direction given by the differential direction value, for example, the contour line l 0 is reversed. If proceeding in the clockwise direction, the contour line l 0 ′ will occur on the left side of the contour line l 0 as shown in FIG. Therefore, with respect to the contour line l 0 for which the intersections with the search lines a to e have been obtained, the contour is provided inside (on the left side) with a width of N pixels corresponding to the width between the double lines l 0 and l 0 ′. The lines l 0 and l 0 ′ should be erased.

以上のようにして検査対象物Oの輪郭線l0を消去した
後の画像P2に対し、原画像P0の濃度を参照して次の処理
が行なわれる。すなわち、第7図に示すように、検査対
象物Oは背景Bに比較して明かるく、検査対象物Oの内
側の欠陥X1は検査対象物Oよりは暗く、また、検査対象
物Oの外に存在する異物X2は背景よりも明かるいという
条件に着目し(第7図中の数値は明かるさレベルを示
す)、背景Bの明かるさと検査対象物Oとの明かるさと
の間で、しきい値を設定する。検査対象物Oの輪郭線l0
を消去した後に、各領域の輪郭線のすぐ外側の明かるさ
が上記しきい値よりも小さいならば、この領域は背景に
囲まれていると判断されるから、異物X2の輪郭線l2であ
ることがわかり、一方、領域の輪郭線の外側の明かるさ
が上記しきい値よりも大きいならば、この領域は検査対
象物Oの中にあると判断されるから、欠陥X1の輪郭線l1
であると判定できるのである。第7図では、便宜上、各
領域での明かるさレベルをそれぞれ均一にしているが、
実際には1つの領域内でも明かるさレベルにむらがある
のが普通であるから、各領域について代表値を設定して
おくのが望ましい。
The following processing is performed on the image P 2 after the contour line l 0 of the inspection object O is erased as described above with reference to the density of the original image P 0 . That is, as shown in FIG. 7, the inspection object O is brighter than the background B, the defect X 1 inside the inspection object O is darker than the inspection object O, and the inspection object O Focusing on the condition that the foreign substance X 2 existing outside is lighter than the background (the numerical value in FIG. 7 indicates the lightness level), the lightness of the background B and the lightness of the inspection object O are compared. Set the threshold between. Contour line l 0 of the inspection object O
If the brightness immediately outside the outline of each area is smaller than the above threshold after erasing, the area is judged to be surrounded by the background, so the outline l of the foreign substance X 2 2 is found, and on the other hand, if the brightness outside the contour of the area is larger than the threshold value, this area is judged to be in the inspection object O, and therefore the defect X 1 Contour line l 1
It can be determined that In FIG. 7, for the sake of convenience, the lightness level in each area is made uniform,
In reality, even in one area, the brightness level is usually uneven, so it is desirable to set a representative value for each area.

以上のようにして、欠陥X1と異物X2との識別もできる
のであり、欠陥X1について、輪郭線l1上の微分値の総和
や輪郭線l1近傍の濃度分布等により、欠陥X1の程度を判
定することもできる。
As described above, it is able also identify the defective X 1 and the foreign matter X 2, for defects X 1, the concentration distribution and the like of the sum and outline l 1 near the differential value on the contour line l 1, defect X It is also possible to determine the degree of 1 .

[発明の効果] 本発明は上述のように、線画像より検査対象物の輪郭
線に相当する線を追跡するとともに輪郭線の曲率を逐次
求め、求めた曲率があらかじめ設定されている標準パタ
ーンの曲率とマッチする線を消去し、残された線画像の
中で線に囲まれている領域を欠陥部の候補とし、欠陥分
の候補となっている領域について欠陥と異物との識別判
定を行なうものであり、マスクを形成せずに欠陥や異物
に相当する線を抽出することができるから、マスクを形
成する場合に比較して処理が容易になり、とくに、検査
対象物が処理領域内に多数存在している場合や、検査対
象物の形状が複雑である場合に有効な方法となる利点が
ある。しかも、輪郭線に相当する線を追跡して逐次求め
た曲率を標準パターンの曲率と照合することにより輪郭
線と認識された線を消去するから、輪郭線に相当する線
を消去した線画像には輪郭線の一部がほとんど取り残さ
れることがなく、欠陥と異物との識別判定を行なう際に
輪郭線の一部を欠陥部の候補と誤認する可能性が少ない
という利点を有する。また、検査対象物の輪郭線を消去
した線画像が得られるから、欠陥以外にも検査対象物の
周囲に存在している異物等の背景上の他の物体を識別す
ることもできるのである。
[Effects of the Invention] As described above, the present invention traces a line corresponding to the contour line of the inspection object from the line image and sequentially obtains the curvature of the contour line, and the obtained curvature of the standard pattern is preset. The line that matches the curvature is erased, the area surrounded by the line in the remaining line image is set as the candidate of the defect portion, and the defect and the foreign matter are discriminated from each other in the area of the defect candidate. Since the lines corresponding to defects and foreign substances can be extracted without forming a mask, the process becomes easier compared to the case where a mask is formed. There is an advantage that it is an effective method when there are a large number or when the shape of the inspection object is complicated. Moreover, since the line recognized as the contour line is erased by matching the curvature obtained by tracing the line corresponding to the contour line with the curvature of the standard pattern, a line image in which the line corresponding to the contour line is erased is obtained. Has an advantage that a part of the contour line is hardly left behind, and there is little possibility that a part of the contour line is erroneously recognized as a candidate of a defective portion when the discrimination determination between the defect and the foreign substance is performed. Further, since a line image in which the contour line of the inspection object is erased is obtained, it is possible to identify other objects on the background such as foreign substances existing around the inspection object in addition to the defect.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)〜(c)はそれぞれ本発明における原画
像、線画像、欠陥部の線画像の一例を示す説明図、第2
図は同上における局所並列ウインドウを示す説明図、第
3図は同上における輪郭線と探索ラインとの関係を示す
動作説明図、第4図は同上における輪郭線と探索ライン
との交点を求める手順を示す動作説明図、第5図は同上
における輪郭線の追跡の手順を示す動作説明図、第6図
は同上における2重線の輪郭線を示す拡大図、第7図は
同上において欠陥と異物との判定方法を示す動作説明
図、第8図は従来例における内部マスクを示す説明図、
第9図(a)(b)は従来例では検査が困難であった画
像の例を示す図である。 l0〜l2…輪郭線、O…検査対象物、X1…欠陥、X2…異
物。
1 (a) to 1 (c) are explanatory views showing an example of an original image, a line image, and a line image of a defective portion in the present invention, respectively.
FIG. 4 is an explanatory view showing a local parallel window in the same as above, FIG. 3 is an operation explanatory view showing a relationship between the contour line and the search line in the same as above, and FIG. 4 is a procedure for obtaining an intersection of the contour line and the search line in the same as above. FIG. 5 is an operation explanatory view showing the procedure for tracing the contour line in the same as above, FIG. 6 is an enlarged view showing the double-line contour line in the same as above, and FIG. FIG. 8 is an operation explanatory view showing the determination method of FIG.
FIGS. 9 (a) and 9 (b) are diagrams showing an example of an image that was difficult to inspect in the conventional example. l 0 to l 2 ... contour line, O ... inspection object, X 1 ... defect, X 2 ... foreign matter.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G06T 7/60 9061−5H G06F 15/70 330 N ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G06T 7/60 9061-5H G06F 15/70 330 N

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】画像入力手段により検査対象物を含む空間
領域を撮像した後、画像入力手段により得られた原画像
を画素の濃度差に基づいて線画像に変換し、得られた線
画像より検査対象物の輪郭線に相当する線を追跡すると
ともに輪郭線の曲率を逐次求め、求めた曲率があらかじ
め設定されている標準パターンの曲率とマッチする線を
消去し、残された線画像の中で線に囲まれている領域を
欠陥部の候補とし、欠陥部の候補となっている領域につ
いて欠陥と異物との識別判定を行なうことを特徴とする
外観検査方法。
1. An image input device captures an image of a spatial region including an inspection object, and then an original image obtained by the image input device is converted into a line image based on a difference in pixel density. Trace the line corresponding to the contour line of the inspection object and sequentially find the curvature of the contour line, delete the line that matches the curvature of the standard pattern that is set in advance, and delete the remaining line image. An appearance inspection method characterized in that a region surrounded by a line is used as a candidate for a defective portion, and a region that is a candidate for the defective portion is discriminated from a defect and a foreign substance.
JP63101610A 1988-04-25 1988-04-25 Appearance inspection method Expired - Lifetime JPH0827841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63101610A JPH0827841B2 (en) 1988-04-25 1988-04-25 Appearance inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63101610A JPH0827841B2 (en) 1988-04-25 1988-04-25 Appearance inspection method

Publications (2)

Publication Number Publication Date
JPH01273181A JPH01273181A (en) 1989-11-01
JPH0827841B2 true JPH0827841B2 (en) 1996-03-21

Family

ID=14305168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63101610A Expired - Lifetime JPH0827841B2 (en) 1988-04-25 1988-04-25 Appearance inspection method

Country Status (1)

Country Link
JP (1) JPH0827841B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095204A (en) * 1990-08-30 1992-03-10 Ball Corporation Machine vision inspection system and method for transparent containers
JP2000171227A (en) * 1998-12-08 2000-06-23 Hitachi Metals Ltd Apparatus and method for inspecting foreign matter on wafer with pattern
JP4966110B2 (en) * 2007-06-26 2012-07-04 パナソニック株式会社 Object identification method and object identification device
KR102419162B1 (en) * 2015-03-17 2022-07-11 삼성전자주식회사 method for detecting patternsand substrate manufacturing apparatus using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592069A (en) * 1982-06-28 1984-01-07 Tsutomu Sato Erasing method of image
JPS61126437A (en) * 1984-11-26 1986-06-13 Matsushita Electric Works Ltd Video processor
JPS62148838A (en) * 1985-12-24 1987-07-02 Oki Electric Ind Co Ltd Defect recognizing method

Also Published As

Publication number Publication date
JPH01273181A (en) 1989-11-01

Similar Documents

Publication Publication Date Title
CN107543828B (en) Workpiece surface defect detection method and system
CN111179243A (en) Small-size chip crack detection method and system based on computer vision
JP5175528B2 (en) Tunnel lining crack inspection system
US20040247171A1 (en) Image processing method for appearance inspection
JP6811217B2 (en) Crack identification method, crack identification device, crack identification system and program on concrete surface
KR102242996B1 (en) Method for atypical defects detect in automobile injection products
CN110246139B (en) Method for rapidly extracting plankton in-situ image ROI (region of interest) based on double thresholds
JP3890844B2 (en) Appearance inspection method
JPH0827841B2 (en) Appearance inspection method
JP4293653B2 (en) Appearance inspection method
JPH06207909A (en) Inspection apparatus for surface defect
JPH06103275B2 (en) Defect extraction method by visual inspection
JP3508518B2 (en) Appearance inspection method
JP4115378B2 (en) Defect detection method
JPH0718811B2 (en) Defect inspection method
JPH0718812B2 (en) Foreign object detection method
Mustapha et al. Crack Detection on Surfaces Using Digital Image Processing
JP3494006B2 (en) Appearance inspection method
JPH0624014B2 (en) Gray image processing method
JPH08190633A (en) Defect judging method
JP2563865B2 (en) Image recognition apparatus and method
JP2710685B2 (en) Defect detection method by visual inspection
JPH0949717A (en) Method and apparatus for detecting surface flaw of work
JPH0797410B2 (en) Image processing method
JP3038092B2 (en) Appearance inspection method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080321

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090321

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090321

Year of fee payment: 13