JPH08278335A - Measuring device of resistivity - Google Patents

Measuring device of resistivity

Info

Publication number
JPH08278335A
JPH08278335A JP8359195A JP8359195A JPH08278335A JP H08278335 A JPH08278335 A JP H08278335A JP 8359195 A JP8359195 A JP 8359195A JP 8359195 A JP8359195 A JP 8359195A JP H08278335 A JPH08278335 A JP H08278335A
Authority
JP
Japan
Prior art keywords
circuit
power supply
voltage
terminal
resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8359195A
Other languages
Japanese (ja)
Other versions
JP3143036B2 (en
Inventor
Kenjiro Kitahara
健二郎 北原
Hitoshi Murata
等 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13806740&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH08278335(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP07083591A priority Critical patent/JP3143036B2/en
Publication of JPH08278335A publication Critical patent/JPH08278335A/en
Application granted granted Critical
Publication of JP3143036B2 publication Critical patent/JP3143036B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE: To provide a resistivity measuring circuit capable of expanding a range of resistivity measurement, enhancing the accuracy of the measurement and reducing a cost of a resistivity measuring device. CONSTITUTION: A resistivity measuring circuit comprises a constant current power source circuit 11 that supplies a constant current (i) to a specimen 14 to be measured in the measuring of the resistivity and a voltage measuring circuit 12 that measures an output voltage from the specimen 14. It further comprises a common power source circuit 13 that commonly supplies a DC voltage to the constant current power source circuit 11 and voltage measuring circuit 12. The voltage measuring circuit 12 comprises a differential amplifier 15 which is connected to a measuring terminal of an output voltage Δe from the specimen 14 and a constant voltage circuit 17 that supplies a constant voltage to a power source terminal of the differential amplifier 15. The constant voltage circuit 17 is connected to a terminal of the common power source circuit 13 via a constant current circuit 19.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリコンのバルク、ウ
ェーハ等の抵抗率、シート抵抗、等を直流4探針法を用
いて測定する抵抗率測定回路に係り、特に測定の広範囲
化・高精度化、測定装置の低廉化に好適な抵抗率測定回
路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistivity measuring circuit for measuring the resistivity of silicon bulk, wafer, etc., sheet resistance, etc. by using the DC 4-probe method, and in particular, widening the range and increasing the measurement range. The present invention relates to a resistivity measuring circuit suitable for improving accuracy and reducing the cost of a measuring device.

【0002】[0002]

【従来の技術】測定用4探針プローブを用いて試料の抵
抗率を測定する場合に、試料の抵抗率が高くなると試料
と測定用4探針プローブとの接触抵抗は例えばメグオー
ム台にもなる。このため、従来は、測定回路として定電
流電源からの漏洩電流を避けるため定電流電源回路をフ
ローティング方式にした回路構成が採られていた。具体
的には電源に電池を使う回路構成(図3)や、コンデン
サに充電して短時間フローティング回路を形成する回路
構成(図4)等が採られてきた。またあるいは、電圧測
定回路の出力を直流的に絶縁し、その電源部をフローテ
ィングにした回路構成を採っているものもある。
2. Description of the Related Art When the resistivity of a sample is measured by using a four-probe probe for measurement, the contact resistance between the sample and the four-probe probe for measurement becomes, for example, a megohm base when the resistivity of the sample becomes high. . Therefore, conventionally, a circuit configuration in which the constant current power supply circuit is a floating type has been adopted as the measurement circuit in order to avoid a leakage current from the constant current power supply. Specifically, a circuit configuration in which a battery is used as a power source (FIG. 3) and a circuit configuration in which a capacitor is charged to form a floating circuit for a short time (FIG. 4) have been adopted. Alternatively, there is a circuit configuration in which the output of the voltage measuring circuit is galvanically isolated and the power supply unit thereof is floating.

【0003】[0003]

【発明が解決しようとする課題】上記のような従来技術
においては次のような問題がある。すなわち、 (1)フローティング回路の絶縁抵抗を充分高める必要
がある。絶縁抵抗を流れる漏洩電流で誤差を生ずる恐れ
があるからである。 (2)フローティングされる回路から外部誘導雑音(交
流電源)を受け易く雑音分による測定誤差を生じ易い。 (3)フローティング回路は特殊な部材が必要で装置が
高価となる。
The above-mentioned conventional techniques have the following problems. (1) It is necessary to sufficiently increase the insulation resistance of the floating circuit. This is because the leakage current flowing through the insulation resistance may cause an error. (2) External induction noise (AC power supply) is easily received from the floating circuit, and measurement error due to noise is likely to occur. (3) The floating circuit requires a special member, which makes the device expensive.

【0004】これらの問題をさらに図面を用いて説明す
る。図3は電池を電源としたフローティング定電流電源
方式の例であり、破線で囲まれた部分がフローティング
定電流電源部を示す部分である。図4はリレー44を閉
としてコンデンサ45に電源43から充電しておき測定
時に44を開として破線部分をフローティング定電流電
源回路として構成するものである。
These problems will be further described with reference to the drawings. FIG. 3 is an example of a floating constant current power supply system using a battery as a power source, and the portion surrounded by a broken line is a portion showing the floating constant current power supply unit. In FIG. 4, the relay 44 is closed and the capacitor 45 is charged from the power supply 43. During measurement, 44 is opened and the broken line portion is configured as a floating constant current power supply circuit.

【0005】図5は図3の回路において外部電源50、
雑音電源50′により電圧測定用増幅器56に対し障害
信号が流入する様子を示す。漏洩電流や誘導電流は、絶
縁抵抗54または浮遊容量55を通してフローティング
電源部と結合し、測定試料57を介して流れる電流53
として発生する。
FIG. 5 shows an external power source 50 in the circuit of FIG.
It shows how a noise power supply 50 'causes a fault signal to flow into the voltage measurement amplifier 56. The leakage current or the induced current is coupled to the floating power source through the insulation resistance 54 or the floating capacitance 55, and flows through the measurement sample 57 as a current 53.
Occurs as.

【0006】この電流は試料57との探針の接触抵抗5
9(r1〜r4)を通じて流れるため電流53はr2また
はr3により電圧降下を発生させる。このため障害信号
が増幅器56に印加され、これが測定値に対する誤差電
圧、あるいは誘導雑音となり、測定器としての性能低下
をもたらす。特に試料の内部抵抗や試料との上記接触抵
抗が大きい場合にはこの性能低下も大きくなりがちで測
定範囲が限定される。
This current is the contact resistance 5 of the probe with the sample 57.
9 (r 1 to r 4 ), the current 53 causes a voltage drop due to r 2 or r 3 . Therefore, a fault signal is applied to the amplifier 56, which becomes an error voltage with respect to the measured value or induced noise, which causes deterioration of the performance of the measuring instrument. In particular, when the internal resistance of the sample or the above-mentioned contact resistance with the sample is large, this performance deterioration tends to be large and the measurement range is limited.

【0007】さらに、図3、図4のフローティング回路
はテフロン(登録商標)等の絶縁部材を必要とし、また
誘導雑音信号遮蔽のためのシールドボックスを設けるな
ど特殊な部材を必要とする。
Further, the floating circuits shown in FIGS. 3 and 4 require an insulating member such as Teflon (registered trademark) and a special member such as a shield box for shielding an inductive noise signal.

【0008】本発明の目的は、抵抗率測定における範囲
の拡大および測定の高精度化と、抵抗率測定装置の低廉
化を図った抵抗率測定回路を提供することにある。
It is an object of the present invention to provide a resistivity measuring circuit in which the range of resistivity measurement is expanded, the precision of measurement is improved, and the cost of the resistivity measuring device is reduced.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
め、本発明では例えば図1に示すように、抵抗率の測定
における被測定試料14に定電流iを与える定電流電源
回路11と、該試料14からの出力電圧を測定する電圧
測定回路12とを有する抵抗率測定回路において、上記
定電流電源回路11と上記電圧測定回路12に共通に直
流電圧を印加する共通電源13の回路構成を備えるとと
もに、上記電圧測定回路12は、上記試料14からの出
力電圧Δeの測定端子に差動増幅器15を接続し、該差
動増幅器15の電源端子に定電圧を与える定電圧回路1
7と該定電圧回路17を定電流回路19を介して上記共
通電源13の端子に接続する回路構成を備えることとす
る。
In order to achieve the above object, in the present invention, for example, as shown in FIG. 1, a constant current power supply circuit 11 for supplying a constant current i to a sample 14 to be measured in measuring resistivity, In a resistivity measuring circuit having a voltage measuring circuit 12 for measuring an output voltage from the sample 14, a circuit configuration of a common power source 13 for commonly applying a DC voltage to the constant current power source circuit 11 and the voltage measuring circuit 12 is provided. In addition, the voltage measuring circuit 12 includes a constant voltage circuit 1 in which a differential amplifier 15 is connected to a measuring terminal for the output voltage Δe from the sample 14 and a constant voltage is applied to a power supply terminal of the differential amplifier 15.
7 and the constant voltage circuit 17 are connected to a terminal of the common power source 13 via a constant current circuit 19 in a circuit configuration.

【0010】ここで、上記定電圧回路17を浮動電源回
路とすることもできる。図1はこの場合を例示するもの
として、定電圧回路17を電池表示で示している。(な
お、浮動電源回路により定電圧を与えられた差動増幅器
の構成、すなわち、図1の破線で囲んだ18の部分を以
下浮動電源付き差動増幅器という。) あるいは上記定電圧回路は、例えば図2に示すように、
その電源端子として、上記定電流回路22または22′
を介して上記共通電源の各端子に接続する第1の電源端
子S1と第2の電源端子S2を有し、該第1の電源端子
S1と上記差動増幅器の各出力端子aおよびbとの間に
同一抵抗値の抵抗Rをそれぞれ接続し、これと同じ抵抗
値の抵抗Rを、上記第2の電源端子S2と上記差動増幅
器の各出力端子aおよびbとの間にそれぞれ接続する回
路構成を備えるとともに、上記第1の電源端子S1と第
2の電源端子S2の各電圧を上記差動増幅器の各電源端
子cおよびdにそれぞれ与える回路構成として、その電
源端子にエミッタを、上記第1の電源端子S1および第
2の電源端子S2のそれぞれにベースを、また上記共通
電源の各端子にコレクタをそれぞれ接続するトランジス
タ23および23′の構成を備えるようにしてもよい。
The constant voltage circuit 17 may be a floating power supply circuit. As an example of this case, FIG. 1 shows the constant voltage circuit 17 in a battery display. (Note that the configuration of the differential amplifier to which a constant voltage is applied by the floating power supply circuit, that is, the portion 18 surrounded by the broken line in FIG. 1 is hereinafter referred to as a floating power supply-equipped differential amplifier.) Alternatively, the constant voltage circuit may be, for example, As shown in FIG.
As the power supply terminal, the constant current circuit 22 or 22 'is used.
Has a first power supply terminal S1 and a second power supply terminal S2 connected to the respective terminals of the common power supply via the first power supply terminal S1 and the output terminals a and b of the differential amplifier. A circuit in which resistors R having the same resistance value are respectively connected between them, and resistors R having the same resistance value are respectively connected between the second power supply terminal S2 and the output terminals a and b of the differential amplifier. In addition to the above configuration, a circuit configuration is provided for supplying the respective voltages of the first power supply terminal S1 and the second power supply terminal S2 to the respective power supply terminals c and d of the differential amplifier, and the power supply terminal is provided with an emitter. You may make it provide the structure of the transistor 23 and 23 'which connects a base to each of the 1 power supply terminal S1 and the 2nd power supply terminal S2, and connects a collector to each terminal of the said common power supply, respectively.

【0011】[0011]

【作用】抵抗率は4探針法により次のように測定され
る。すなわち、図1において、定電流電源回路11の出
力電流iを4探針プローブを介し、例えばシリコンの試
料14に流し、試料の抵抗率に比例した電圧Δeを測定
端子に発生させる。Δeは電圧測定回路12により計測
されるが、これにより抵抗率ρは(数1)で計算され
る。
The resistivity is measured by the 4-probe method as follows. That is, in FIG. 1, the output current i of the constant current power supply circuit 11 is passed through a 4-probe probe to, for example, a silicon sample 14, and a voltage Δe proportional to the sample resistivity is generated at a measurement terminal. Δe is measured by the voltage measuring circuit 12, and thereby the resistivity ρ is calculated by (Equation 1).

【0012】[0012]

【数1】 [Equation 1]

【0013】これらの計算式、測定法は公知のものであ
る。
These calculation formulas and measuring methods are known.

【0014】本発明では定電流電源回路11は上記のよ
うに共通電源13に直接接続されているから、従来技術
で述べたような、電源のフローティングに伴い電源に結
合して流れる漏洩電流や誘導電流の入り込む余地が極め
て小さく、測定電圧Δeの発生に誤差が少なく、かつ試
料内部抵抗や探針の接触抵抗の広範囲の値に対応して発
生する例えば数Vから数10V以上にわたる広範囲な出
力電圧においても定電流特性を維持し、高精度な測定電
圧Δeの発生を得ることが可能になる。
In the present invention, the constant current power supply circuit 11 is directly connected to the common power supply 13 as described above. Therefore, as described in the prior art, the leakage current and the induction current which are coupled to the power supply as the power supply floats. There is very little room for current to enter, there is little error in the generation of the measured voltage Δe, and a wide range of output voltages, for example, several V to several tens of V, generated corresponding to a wide range of sample internal resistance and probe contact resistance. The constant current characteristic can be maintained even in the above step, and highly accurate generation of the measurement voltage Δe can be obtained.

【0015】このように抵抗測定の広範囲にわたる高精
度化した測定電圧の発生に対応して、その電圧測定回路
においても充分高精度測定を可能にする必要がある。本
発明において、共通電源に接続された電圧測定回路12
はこれを可能にするものである。すなわち後述において
もさらに詳述もするように、差動増幅器15は定電圧が
与えられ、しかも浮動電源付き差動増幅器18が内部抵
抗の高い定電流回路19を介して共通電源に接続されて
おり、広範囲の同相入力電圧に対して追従して動作する
ので、浮動電源付き差動増幅器18は高精度で高い安定
度の出力が確保可能となる。この場合に浮動電源付き差
動増幅器18の入力端子間には、測定信号電圧Δeに比
例する電圧が含まれるとともに、それぞれの入力端子に
は共通に図1に示す同相電圧(この電圧は試料の内部抵
抗や探針の接触抵抗の大きさに関係して発生する電圧で
あり、以下コモンモード電圧ともいう)ecが含まれて
いるが、浮動電源付き差動増幅器18の差動出力からは
コモンモード電圧が除かれ、測定電圧Δeに比例する出
力電圧のみが得られることになる。すなわち、本発明の
電圧測定回路12の構成によれば、広範な大きさのコモ
ンモード電圧に対しても、これに無関係な安定出力電圧
が得られ、高精度の電圧測定が可能になる。
As described above, in response to the generation of highly accurate measurement voltage over a wide range of resistance measurement, it is necessary to enable sufficiently high accuracy measurement even in the voltage measurement circuit. In the present invention, the voltage measuring circuit 12 connected to the common power source
Makes this possible. That is, as will be described later and in more detail, the differential amplifier 15 is supplied with a constant voltage, and the differential amplifier 18 with a floating power supply is connected to the common power supply via the constant current circuit 19 having a high internal resistance. Since it operates following a wide range of common-mode input voltages, the floating power supply-equipped differential amplifier 18 can secure a highly accurate and highly stable output. In this case, a voltage proportional to the measurement signal voltage Δe is included between the input terminals of the floating power supply-equipped differential amplifier 18, and the common mode voltage shown in FIG. a voltage generated in relation to the magnitude of the internal resistance and probe of a contact resistance, hereinafter also referred to as common mode voltage) but e c is included, from the differential output of the floating-powered differential amplifier 18 The common mode voltage is removed and only the output voltage proportional to the measured voltage Δe is obtained. That is, according to the configuration of the voltage measurement circuit 12 of the present invention, a stable output voltage irrelevant to a wide range of common mode voltages can be obtained, and highly accurate voltage measurement can be performed.

【0016】定電圧回路の電圧として、定電流が流れる
抵抗の端子電圧を利用することとして、その電圧を例え
ばトランジスタを介して増幅器の電源端子に印加すれ
ば、上記抵抗に流れる電流が一定である限り一定の電圧
を増幅器に印加できるようになる。
If the terminal voltage of a resistor through which a constant current flows is used as the voltage of the constant voltage circuit and the voltage is applied to the power supply terminal of the amplifier via, for example, a transistor, the current flowing through the resistor is constant. As long as a constant voltage can be applied to the amplifier.

【0017】さらに、本発明によれば、回路をフローテ
ィングさせるための部材を必要としないので装置を廉価
にすることもできるようになる。
Further, according to the present invention, since the member for floating the circuit is not required, the cost of the device can be reduced.

【0018】[0018]

【実施例】図1は本発明の抵抗率測定回路の実施例を示
すものであり、図2は本発明の電圧測定回路の他の実施
例を示すものである。上述した中で、特に本発明の特徴
的構成を図1および図2を引用して説明した。また、図
1に示した本発明の構成のうち、定電流電源回路11に
ついてはさらに詳述する必要もなく明らかと思われるの
で、以下特に図2の電圧測定回路の実施例を用いて広範
なコモンモード電圧で動作可能となることを詳細に説明
する。
1 shows an embodiment of the resistivity measuring circuit of the present invention, and FIG. 2 shows another embodiment of the voltage measuring circuit of the present invention. In the above description, the characteristic configuration of the present invention has been described with reference to FIGS. 1 and 2. Further, among the configurations of the present invention shown in FIG. 1, the constant current power supply circuit 11 seems to be clear without further detailed description. Therefore, a wide range will be described below with reference to the embodiment of the voltage measuring circuit of FIG. It will be described in detail that it becomes possible to operate with a common mode voltage.

【0019】図2において、21は一般的な計測用差動
演算増幅器である。22、22′は定電流回路、23、
23′は21の増幅器の電源端子c、dへ定電圧を供給
するためのトランジスタである。23、23′のベース
エミッタ間の電圧Vbeは通常0.6V位で23のベース
電圧es1、23′のベース電圧es2は、ほぼc点、d点
の電圧と見なしてもよい。そこで21の増幅器の電源電
圧、すなわちc−d間の電圧は、 Vs=es1−es2 ………(数2) で表してもかまわない。ここでコモンモード電圧ec
変動してもVsが一定であれば21の増幅器は広範なコ
モンモード電圧で動作可能となる。この点をさらに次に
説明する。
In FIG. 2, reference numeral 21 is a general measurement differential operational amplifier. 22, 22 'are constant current circuits, 23,
Reference numeral 23 'is a transistor for supplying a constant voltage to the power supply terminals c and d of the amplifier 21. 23 base voltage e s2 'of the base voltage e s1, 23 of the voltage Vbe is typically 0.6V position 23 between the emitter and the base of the' may be considered substantially point c, and the voltage of point d. Therefore the power supply voltage of 21 of the amplifier, that is, the voltage between the c-d is, it may be expressed as Vs = e s1 -e s2 ......... (number 2). Here, even if the common mode voltage e c fluctuates, the amplifier 21 can operate in a wide range of common mode voltages if Vs is constant. This point will be further described below.

【0020】21の入力をΔeとする。The input of 21 is Δe.

【0021】[0021]

【数3】 (Equation 3)

【0022】b点の出力ebは eb=ec−n・Δe ………(数4) s1点の電圧es1は es1=ea+i1・R ………(数5) または es1=eb+i2・R ………(数6) s2点の電圧es2は es2=eb−i2′・R ………(数7) または es2=ea−i1′・R ………(数8) (数3)、(数4)を(数5)〜(数8)に代入すると es1=ec+i1・R+n・Δe ………(数9) es1=ec+i2・R−n・Δe ………(数10) es2=ec−i2′・R−n・Δe ………(数11) es2=ec−i1′・R−n・Δe ………(数12) (数9)〜(数12)を(数2)に代入して(数9)、
(数11)から Vs=es1−es2=i1・R+i2′・R ………(数13) が得られ、(数10)、(数12)から Vs=es1−es2=i2・R+i1′・R ………(数14) を得る。(数13)、(数14)の両辺を加えると 2Vs=i1・R+i2′・R+i2・R+i1′・R =(i1+i2+i1′+i2′)・R ………(数15) となる。s1、s2点での23、23′のベース電流を無
視すれば i1+i2=i=i1′+i2′ となり、これを(数15)に代入して 2Vs=2i・
R すなわち Vs=i・R ………(数16) を得る。
The point b output e b is e b = voltage e s1 of e c -n · Δe ......... (number 4) s 1 points e s1 = e a + i 1 · R ......... ( 5) or e s1 = e b + i 2 · R ......... ( 6) voltage e s2 of s 2 points e s2 = e b -i 2 ' · R ......... ( 7) or e s2 = e a - i 1 ′ · R (Equation 8) Substituting (Equation 3) and (Equation 4) into (Equation 5) to (Equation 8), e s1 = e c + i 1 · R + n · Δe ………… (Equation 5) 9) e s1 = e c + i 2 · R-n · Δe ......... ( number 10) e s2 = e c -i 2 '· R-n · Δe ......... ( number 11) e s2 = e c - i 1 ′ · R−n · Δe ... (Equation 12) Substituting (Equation 9) to (Equation 12) into (Equation 2), (Equation 9),
From (Equation 11), Vs = e s1 −e s2 = i 1 · R + i 2 ′ · R (Equation 13) is obtained, and from (Equation 10) and (Equation 12) Vs = e s1 −e s2 = i 2 · R + i 1 ′ · R (Equation 14) is obtained. If both sides of (Equation 13) and (Equation 14) are added, 2Vs = i 1 · R + i 2 ′ · R + i 2 · R + i 1 ′ · R = (i 1 + i 2 + i 1 ′ + i 2 ′) · R ... Equation 15) is obtained. Ignoring the base currents of 23 and 23 'at s 1 and s 2 points, i 1 + i 2 = i = i 1 ′ + i 2 ′, which is substituted into (Equation 15) and 2Vs = 2i ·
That is, R, that is, Vs = i · R ... (Equation 16) is obtained.

【0023】したがって、Vsはecやecの変化には無
関係で定電流電源22、22′の電圧出力許容範囲内で
はecの大きさの変化に対しても一定電圧Vsを21の電
源として供給可能となる。その間21は差動増幅器とし
ての動作を維持する。ここで21の差動出力電圧(ea
−eb)は(数3)、(数4)から
Therefore, Vs is independent of changes in e c and e c , and within the voltage output allowable range of the constant current power supplies 22 and 22 ′, the constant voltage Vs maintains the power supply of 21 with respect to changes in the magnitude of e c. Can be supplied as. In the meantime, 21 maintains the operation as a differential amplifier. Where 21 differential output voltages (e a
-E b ) is calculated from (Equation 3) and (Equation 4).

【0024】[0024]

【数17】 [Equation 17]

【0025】でコモンモード電圧ecと無関係となり
(ea−eb)を図1の差動入力型A/D変換器16の入
力とすればΔeの測定が可能となる。
Then, if the (e a −e b ) which has no relation to the common mode voltage e c is input to the differential input type A / D converter 16 of FIG. 1, Δe can be measured.

【0026】[0026]

【発明の効果】本発明によれば、測定回路上の誤差要因
が除去できるため、高抵抗、低抵抗の広範囲の測定範囲
に対して高精度の抵抗率測定ができる。また、回路をフ
ローティングさせるための部材、すなわち、電池、充電
用コンデンサ、絶縁増幅器、切換リレー等が不要となり
測定装置が廉価となる。
According to the present invention, the error factor on the measuring circuit can be eliminated, so that highly accurate resistivity measurement can be performed in a wide measuring range of high resistance and low resistance. Further, a member for floating the circuit, that is, a battery, a charging capacitor, an insulating amplifier, a switching relay and the like are not required, which makes the measuring device inexpensive.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の抵抗率測定回路の実施例図。FIG. 1 is an embodiment diagram of a resistivity measuring circuit of the present invention.

【図2】本発明の電圧測定回路の他の実施例図。FIG. 2 is a diagram showing another embodiment of the voltage measuring circuit according to the present invention.

【図3】電池を用いたフローティング電源方式の従来例
図。
FIG. 3 is a diagram illustrating a conventional example of a floating power supply system using a battery.

【図4】コンデンサを用いたフローティング電源方式の
従来例図。
FIG. 4 is a conventional example diagram of a floating power supply system using a capacitor.

【図5】従来技術における障害信号の流入例を示す図。FIG. 5 is a diagram showing an example of inflow of a fault signal in the related art.

【符号の説明】[Explanation of symbols]

11…定電流電源回路 12…電圧測
定回路 13…共通電源 14…試料 15…差動増幅器 16…差動入
力型A/D変換器 17…定電圧回路または浮動電源を意味する電池表示 18…浮動電源付き差動増幅器 19…定電流
回路 21…計測用差動演算増幅器 22、22′…定電流
回路 23、23′…トランジスタ 31…定電流回路 32…電池 36…差動演算増幅器 37…試料 38…A/D変換器 41…定電流回路 43…電源 44…リレー 45…コンデ
ンサ 46…差動演算増幅器 47…試料 48…A/D変換器 50…外部電源 50′…雑音電
源 51…定電流回路 53…電流
(障害信号電流) 54…絶縁抵抗 55…浮遊容
量 56…差動演算増幅器 57…試料 58…A/D変換器 59…探針の
接触抵抗
11 ... Constant current power supply circuit 12 ... Voltage measurement circuit 13 ... Common power supply 14 ... Sample 15 ... Differential amplifier 16 ... Differential input type A / D converter 17 ... Battery display meaning constant voltage circuit or floating power supply 18 ... Floating Differential amplifier with power source 19 ... Constant current circuit 21 ... Differential operational amplifier for measurement 22, 22 '... Constant current circuit 23, 23' ... Transistor 31 ... Constant current circuit 32 ... Battery 36 ... Differential operational amplifier 37 ... Sample 38 ... A / D converter 41 ... Constant current circuit 43 ... Power supply 44 ... Relay 45 ... Capacitor 46 ... Differential operational amplifier 47 ... Sample 48 ... A / D converter 50 ... External power supply 50 '... Noise power supply 51 ... Constant current circuit 53 ... Current (fault signal current) 54 ... Insulation resistance 55 ... Stray capacitance 56 ... Differential operational amplifier 57 ... Sample 58 ... A / D converter 59 ... Probe contact resistance

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】抵抗率の測定における被測定試料に定電流
を与える定電流電源回路と、該試料からの出力電圧を測
定する電圧測定回路とを有する抵抗率測定回路におい
て、 上記定電流電源回路と上記電圧測定回路に共通に直流電
圧を印加する共通電源の回路構成を備えるとともに、 上記電圧測定回路は、上記試料からの出力電圧測定端子
に差動増幅器を接続し、該差動増幅器の電源端子に定電
圧を与える定電圧回路と該定電圧回路を定電流回路を介
して上記共通電源の端子に接続する回路構成を備えるこ
とを特徴とする抵抗率測定回路。
1. A resistivity measuring circuit having a constant current power supply circuit for applying a constant current to a sample to be measured in measuring resistivity and a voltage measuring circuit for measuring an output voltage from the sample, comprising: And a circuit configuration of a common power supply for commonly applying a DC voltage to the voltage measurement circuit, wherein the voltage measurement circuit has a differential amplifier connected to an output voltage measurement terminal from the sample, and a power supply for the differential amplifier. A resistivity measuring circuit comprising: a constant voltage circuit for applying a constant voltage to a terminal; and a circuit configuration for connecting the constant voltage circuit to a terminal of the common power source via a constant current circuit.
【請求項2】請求項1記載の抵抗率測定回路において、
上記定電圧回路を浮動電源回路とすることを特徴とする
抵抗率測定回路。
2. The resistivity measuring circuit according to claim 1,
A resistivity measuring circuit, wherein the constant voltage circuit is a floating power supply circuit.
【請求項3】請求項1記載の抵抗率測定回路において、
上記定電圧回路は、その電源端子として、上記定電流回
路を介して上記共通電源の各端子に接続する第1の電源
端子と第2の電源端子とを有し、該第1の電源端子と上
記差動増幅器の各出力端子との間に同一抵抗値の抵抗を
それぞれ接続し、これと同じ抵抗値の抵抗を、上記第2
の電源端子と上記差動増幅器の各出力端子との間にそれ
ぞれ接続する回路構成を備えるとともに、上記第1の電
源端子と第2の電源端子の各電圧を上記差動増幅器の各
電源端子にそれぞれ与える回路構成として、差動増幅器
の電源端子にエミッタを、上記第1の電源端子および第
2の電源端子のそれぞれにベースを、また上記共通電源
の各端子にコレクタをそれぞれ接続するトランジスタの
構成を備えるものであることを特徴とする抵抗率測定回
路。
3. The resistivity measuring circuit according to claim 1, wherein:
The constant voltage circuit has, as its power supply terminals, a first power supply terminal and a second power supply terminal connected to each terminal of the common power supply via the constant current circuit. A resistor having the same resistance value is connected between each output terminal of the differential amplifier and a resistor having the same resistance value is connected to the second terminal.
And a circuit configuration for connecting between each of the output terminals of the differential amplifier and each of the voltages of the first power supply terminal and the second power supply terminal to each power supply terminal of the differential amplifier. As a circuit configuration for giving each, a transistor configuration in which an emitter is connected to the power supply terminal of the differential amplifier, a base is connected to each of the first power supply terminal and the second power supply terminal, and a collector is connected to each terminal of the common power supply. A resistivity measuring circuit comprising:
JP07083591A 1995-04-10 1995-04-10 Resistivity measurement circuit Expired - Lifetime JP3143036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07083591A JP3143036B2 (en) 1995-04-10 1995-04-10 Resistivity measurement circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07083591A JP3143036B2 (en) 1995-04-10 1995-04-10 Resistivity measurement circuit

Publications (2)

Publication Number Publication Date
JPH08278335A true JPH08278335A (en) 1996-10-22
JP3143036B2 JP3143036B2 (en) 2001-03-07

Family

ID=13806740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07083591A Expired - Lifetime JP3143036B2 (en) 1995-04-10 1995-04-10 Resistivity measurement circuit

Country Status (1)

Country Link
JP (1) JP3143036B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014021090A (en) * 2012-07-24 2014-02-03 Panasonic Corp Current detection circuit and ultrasonic diagnostic apparatus using the current detection circuit
CN105486928A (en) * 2015-11-25 2016-04-13 广东工业大学 Thermoelectric material resistivity measurement circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014021090A (en) * 2012-07-24 2014-02-03 Panasonic Corp Current detection circuit and ultrasonic diagnostic apparatus using the current detection circuit
CN105486928A (en) * 2015-11-25 2016-04-13 广东工业大学 Thermoelectric material resistivity measurement circuit
CN105486928B (en) * 2015-11-25 2019-02-15 广东工业大学 A kind of thermoelectric material resistivity measurement circuit

Also Published As

Publication number Publication date
JP3143036B2 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
US6952103B2 (en) Circuit and method for detecting insulation faults
US6154027A (en) Monolithic magnetic sensor having externally adjustable temperature compensation
JP3373587B2 (en) Electric signal generator
JPH02233007A (en) Apparatus and method for detecting current of mos transistor
KR930700855A (en) System and method for simultaneously executing electronic device test and lead inspection
US7489122B2 (en) Method and device for measuring voltage
JP3143036B2 (en) Resistivity measurement circuit
JPH0735788A (en) Power-computing device
JP3399522B2 (en) Broadband current sensor
JP3197309B2 (en) Electrical measuring device
JPH11248756A (en) Flying capacitor circuit
JP3496899B2 (en) Hall element and power multiplying circuit using the same
JP3147486B2 (en) Semiconductor element measurement circuit
JP2000258509A (en) Method for testing semiconductor integrated circuit
JP3075135B2 (en) LSI tester
JPH08320346A (en) Coulombmeter
Shafran A MEMS-based, high-resolution Electric-Field meter
JPS58111533A (en) Input circuit
SU1185271A1 (en) Apparatus for measuring current follower gain factor
RU2184937C1 (en) Gyroscopic angular accelerometer
JPH0572259A (en) Measuring method for semiconductor integrated circuit device
JPH02301151A (en) Transistor having current detecting function
JPH04203971A (en) Current detection circuit
JPH0546506B2 (en)
JPH0333020Y2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071222

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 13

EXPY Cancellation because of completion of term