JPH08278270A - Device for measuring conductivity and specific resistance - Google Patents

Device for measuring conductivity and specific resistance

Info

Publication number
JPH08278270A
JPH08278270A JP10802795A JP10802795A JPH08278270A JP H08278270 A JPH08278270 A JP H08278270A JP 10802795 A JP10802795 A JP 10802795A JP 10802795 A JP10802795 A JP 10802795A JP H08278270 A JPH08278270 A JP H08278270A
Authority
JP
Japan
Prior art keywords
tic
tin
film
electrode
specific resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10802795A
Other languages
Japanese (ja)
Other versions
JP3229771B2 (en
Inventor
Ryosuke Fukushima
良助 福嶋
誠 ▲吉▼田
Makoto Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP10802795A priority Critical patent/JP3229771B2/en
Publication of JPH08278270A publication Critical patent/JPH08278270A/en
Application granted granted Critical
Publication of JP3229771B2 publication Critical patent/JP3229771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE: To enable electrode surface to be non-dynamic, stabilize electrical characteristics, and achieve an accurate measurement by forming TiN film or TiC film on the electrode surface. CONSTITUTION: For example, the surface of both electrodes 1 and 2 in AC double-pole system is set to be non-dynamic by forming TiN layer or TiC layer by applying nitriding treatment or carbonizing treatment on the surface of Ti. The electrodes 1 and 2 are chemically stable by the nondynamic state and the TiN or TiC is a conductor, thus reducing potential drop due to a capacitance component at an electrode interface, achieving improved stability against disturbance when temperature changes, and reliably performing measurement. Also, the TiN film or TiC film has an extremely solid characteristic, a large wear resistance, an improved durability, and is inexpensive and hence is best suited for industrial applications.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はサンプル液の導電率また
は比抵抗を測定するための装置の改良に関し、特に、半
導体の製造工程における純水の純度監視等の分野で利用
される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of an apparatus for measuring the electric conductivity or the specific resistance of a sample liquid, and is particularly used in the field of pure water purity monitoring in the semiconductor manufacturing process.

【0002】[0002]

【従来の技術】サンプル液中の導電率または比抵抗を測
定するための装置では、例えば図4に示すような交流2
極式の両電極1,2の素材として、白金、Ti、ステン
レスやTi表面にTiO処理(厚さ2〜3μm)を施し
たもの等が用いられていた。
2. Description of the Related Art An apparatus for measuring the electric conductivity or the specific resistance in a sample liquid is an alternating current 2 as shown in FIG.
As materials for the electrodes 2 and 1 of the polar type, platinum, Ti, stainless steel, and those obtained by subjecting a Ti surface to TiO treatment (thickness 2 to 3 μm) have been used.

【0003】[0003]

【発明が解決しようとする課題】しかし、電極の素材と
して白金を用いる場合には、材質的に安定であり、主と
して実験室等で用いられるいわゆるラボ用としては好ま
しいものであるが、工業用としての用途では、構造上堅
牢さが要求され、また電極自体が高価になり工業用とし
ては不適当である。
However, when platinum is used as the material of the electrode, the material is stable and is preferable for so-called laboratories mainly used in laboratories, but for industrial use. In the application, the structure is required to be robust, and the electrode itself is expensive, which is not suitable for industrial use.

【0004】また、Ti極の場合、使用中に表面が酸化
し、TiOが表層に形成される。TiOの厚さは徐々に
変化し、温度変化等の外乱によって電極特性が変化し易
く、指示影響が発生し、信頼性が低下する難点があっ
た。この比抵抗値の経時的な増大変化は、図5に示す純
水装置における実験データで確認することができる。
In the case of the Ti electrode, the surface is oxidized during use and TiO is formed on the surface layer. The thickness of TiO gradually changes, and electrode characteristics are likely to change due to external disturbances such as temperature changes, which causes a pointing effect and lowers reliability. This increase with time of the specific resistance value can be confirmed by the experimental data in the pure water device shown in FIG.

【0005】同図より、測定初期には、サンプル液とし
ての純水の比抵抗値は約15MΩ・cmであったが、サ
ンプル液の変動がないにもかかわらず、30日以上経過
すると、理論純水の比抵抗値(18.24MΩ・cm)
を超えてしまう。このことは、Ti電極自体の表面変
化、つまりTiOが表層に生成されることも含め電極界
面における電気2重層に起因する電位降下によるものと
解される。なお、比抵抗の逆数である導電率の変化を図
6に示す。ちなみに理論純水の導電率は0.0548μ
s・cm-1である。
From the figure, the specific resistance value of pure water as the sample liquid was about 15 MΩ · cm at the initial stage of the measurement, but after 30 days or more, even if the sample liquid did not change, the theoretical Specific resistance of pure water (18.24 MΩ · cm)
Will exceed. It can be understood that this is due to the surface change of the Ti electrode itself, that is, the potential drop caused by the electric double layer at the electrode interface including the generation of TiO in the surface layer. The change in conductivity, which is the reciprocal of the specific resistance, is shown in FIG. By the way, the conductivity of theoretical pure water is 0.0548μ.
s · cm −1 .

【0006】ステンレス極の場合もTi極よりも変化の
程度は低いが、やはり比抵抗値が徐々に大となり指示影
響が生じる難点があった。
In the case of the stainless steel electrode, the degree of change is lower than that of the Ti electrode, but the specific resistance value is gradually increased and there is a problem that the indicating effect occurs.

【0007】また、Ti表面に厚膜のTiO処理を施し
た場合には、そのTiO層自体が不働態化しているた
め、表面の変化はないが、そのTiO層が絶縁体である
ため、温度変化等の外乱の影響を受けやすく、絶縁体故
の不具合がある。
When a thick TiO treatment is applied to the Ti surface, the surface of the TiO layer does not change because the TiO layer itself is passivated. However, since the TiO layer is an insulator, the temperature does not change. It is easily affected by disturbances such as changes, and there is a problem due to the insulator.

【0008】本発明はこのような実情に鑑みてなされ、
電気的特性が安定で信頼性の高い導電率または比抵抗を
測定するための装置を提供することを目的としている。
The present invention has been made in view of such circumstances.
It is an object of the present invention to provide an apparatus for measuring conductivity or specific resistance which has stable electric characteristics and high reliability.

【0009】[0009]

【課題を解決するための手段】本発明は、上述の課題を
解決するための手段を以下のように構成している。すな
わち、交流2極式の両電極表面に、TiN膜またはTi
C膜を形成してなることを特徴としている。なお、電極
の素材としては、Tiが好ましく、その他ステンレス等
を用いることもできる。
The present invention has means for solving the above-mentioned problems as follows. That is, a TiN film or a Ti
It is characterized in that a C film is formed. As the material of the electrode, Ti is preferable, and stainless steel or the like may be used.

【0010】[0010]

【作用】電極表面に、非常に硬い導電性のTiN膜もし
くはTiC膜を形成したことにより、電極表面が不働態
化され、電気的特性が安定化し、高い測定精度を信頼性
よく得ることができる。
[Function] By forming a very hard conductive TiN film or TiC film on the electrode surface, the electrode surface is passivated, the electrical characteristics are stabilized, and high measurement accuracy can be reliably obtained. .

【0011】[0011]

【実施例】以下に本発明の実施例を図面を参照しつつ説
明する。例えば図1に示すような交流2極式の両電極
1,2を、Tiの表面に窒化処理もしくは炭化処理を施
してTiN層またはTiC層を形成し、その電極表面を
不働態化させる。このような電極1,2は、不働態化に
よって化学的にも安定である上に、そのTiNまたはT
iCが導電体であることから、電極界面部での容量成分
に起因する電位降下が少なく、温度変化等の外乱に対し
てもきわめて安定であり、高い測定精度を信頼性よく得
ることができる。しかも、そのTiN膜またはTiC膜
が非常に強固な特性を有しており、耐摩耗性が大であ
り、耐久性が良好でかつコスト安であることから、工業
用としての採用条件に適うものとなる。
Embodiments of the present invention will be described below with reference to the drawings. For example, the alternating bipolar electrodes 1 and 2 as shown in FIG. 1 are subjected to a nitriding treatment or a carbonizing treatment on the surface of Ti to form a TiN layer or a TiC layer and passivate the electrode surface. Such electrodes 1 and 2 are chemically stable by passivation and, in addition, their TiN or T
Since iC is a conductor, there is little potential drop due to the capacitive component at the electrode interface portion, it is extremely stable against disturbances such as temperature changes, and high measurement accuracy can be reliably obtained. Moreover, since the TiN film or the TiC film has very strong characteristics, has great wear resistance, has good durability, and is inexpensive, it is suitable for industrial use. Becomes

【0012】上述の電極1,2の表面に生じる電極界面
について説明すると、測定時における電極1,2の表面
を含む界面の等価回路を図2のように示すことができる
が、電極1,2の表面の合成インピーダンス(R’)は
式で表わされる。 1/R’=1/R1 +2πfc1 … このR’が一定かつ小さな値であることが測定精度の維
持向上のための要件となる。なお、R:サンプル液の抵
抗(測定対象)、R1 :電極/液間の抵抗、c1 :電極
/液間の容量である。
The electrode interface generated on the surfaces of the electrodes 1 and 2 will be described. An equivalent circuit of the interface including the surfaces of the electrodes 1 and 2 at the time of measurement can be shown as shown in FIG. The composite impedance (R ') of the surface of is expressed by the equation. 1 / R ′ = 1 / R 1 + 2πfc 1 ... A constant and small value of R ′ is a requirement for maintaining and improving the measurement accuracy. Note that R is the resistance of the sample liquid (measurement target), R 1 is the resistance between the electrodes and the liquid, and c 1 is the capacitance between the electrodes and the liquid.

【0013】上記式にて、TiNまたはTiCが導電
体であることから、R1 は小さく、また、容量分の2π
fcのcが大きいため、結果として、R’が非常に小さ
な値となる。このことは、例えば工業用として使用する
場合等で懸念される温度の変化等の外乱に対して測定誤
差を発生させる要因が少ないことを意味しており、面倒
な温度補償を施さなくても高い信頼性を得ることができ
る。なお、TiNの比抵抗値は、2.2×10-5Ω・c
m、また、TiCの比抵抗値は6.8×10-5Ω・cm
であるのに対して、TiOの比抵抗値は≧1014Ω・c
mと非常に高い。従って、TiOの場合、R1 が非常に
大となり、外乱の影響を受けやすくなる。
In the above formula, since TiN or TiC is a conductor, R 1 is small, and the capacitance of 2π
Since c of fc is large, as a result, R ′ has a very small value. This means that there are few factors that cause a measurement error with respect to a disturbance such as a change in temperature that may be a concern when used for industrial purposes, etc., and it is high without troublesome temperature compensation. The reliability can be obtained. The specific resistance value of TiN is 2.2 × 10 −5 Ω · c.
m, and the specific resistance value of TiC is 6.8 × 10 −5 Ω · cm
On the other hand, the specific resistance value of TiO is ≧ 10 14 Ω · c
It is very high at m. Therefore, in the case of TiO, R 1 becomes very large and is easily affected by disturbance.

【0014】ちなみに、上述のTiN及びTiCの他
に、上記式におけるR’の値が一定であるという条件
を満たす電極材料としては、Ti+TiO、Pt、Au
メッキ等がある。また、強度的に安定しているものとし
て、Ti+TiO、Ptがあり、Ptは特にR’の値が
小さい。しかし、これらは、R’の値が一定であり、か
つその値が小さく、強度的に安定で、コスト安であると
いう工業的採用条件を全て満たすことはできない。これ
らの条件を全て満たすことができるのがTiNおよびT
iCである。
Incidentally, in addition to the above TiN and TiC, as the electrode material satisfying the condition that the value of R ′ in the above formula is constant, Ti + TiO, Pt, Au.
There is plating etc. Further, Ti + TiO and Pt are stable in strength, and Pt has a particularly small value of R ′. However, these cannot satisfy all the industrial adoption conditions that the value of R ′ is constant, the value is small, the strength is stable, and the cost is low. TiN and T can satisfy all of these conditions.
iC.

【0015】このようなTiN処理を施した電極の純水
装置内での比抵抗値の推移状況は図3のグラフに表わさ
れる。同グラフから明らかなように、比抵抗値の経時的
な変化はほとんど認められず、TiNが電気的・化学的
に非常に安定であることを確認できる。なお、同グラフ
は測定値を平均化したものであり、その測定値は16.
5〜17.7MΩ・cmの間で浮動が認められている。
The transition of the specific resistance value of the electrode treated with such TiN in the pure water apparatus is shown in the graph of FIG. As is clear from the graph, almost no change in specific resistance with time was observed, and it can be confirmed that TiN is very stable electrically and chemically. The graph is an average of the measured values, and the measured values are 16.
Floating is recognized between 5 and 17.7 MΩ · cm.

【0016】また、TiC処理を施した電極においても
同様に電気的・化学的に安定であることが確認されてい
る。なお、このようなTiN処理またはTiC処理を施
した交流2極式の電極は、検出回路の構成如何によって
比抵抗のみならず導電率をも測定可能であるのはいうま
でもない。
Further, it has been confirmed that the electrode treated with TiC is also electrically and chemically stable. Needless to say, the AC bipolar electrode subjected to such TiN treatment or TiC treatment can measure not only the specific resistance but also the electrical conductivity depending on the configuration of the detection circuit.

【0017】[0017]

【発明の効果】以上説明したように、本発明の導電率ま
たは比抵抗を測定するための装置によれば、交流2極式
の両電極表面にTiN膜またはTiC膜を形成したの
で、そのTiN膜、TiC膜が導電性で比抵抗が小さ
く、かつ非常に硬く不働態化されて電気的特性が安定化
し、高い測定精度を信頼性よく得られ、かつ安価であ
り、工業用として最適なものとなる。
As described above, according to the apparatus for measuring the electric conductivity or the specific resistance of the present invention, since the TiN film or the TiC film is formed on the surfaces of both electrodes of the AC bipolar type, the TiN film is formed. The film and TiC film are conductive and have a low specific resistance, and they are extremely hard and passivated to stabilize the electrical characteristics, high measurement accuracy can be obtained reliably, and they are inexpensive, and are most suitable for industrial use. Becomes

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の導電率または比抵抗を測定するための
装置の一実施例を示す断面図である。
FIG. 1 is a cross-sectional view showing an embodiment of an apparatus for measuring conductivity or specific resistance of the present invention.

【図2】電極界面の説明をするための等価回路の模式図
である。
FIG. 2 is a schematic diagram of an equivalent circuit for explaining an electrode interface.

【図3】本発明のTiN処理を施した電極の抵抗値の推
移を表わすグラフである。
FIG. 3 is a graph showing the transition of the resistance value of an electrode that has been treated with TiN according to the present invention.

【図4】交流2極式電極の模式図である。FIG. 4 is a schematic diagram of an AC bipolar electrode.

【図5】従来のTi極の比抵抗値の経時的な変化を表わ
すグラフである。
FIG. 5 is a graph showing changes over time in the specific resistance value of a conventional Ti electrode.

【図6】同導電率の経時的な変化を表わすグラフであ
る。
FIG. 6 is a graph showing changes in the conductivity with time.

【符号の説明】[Explanation of symbols]

1,2…電極 1, 2 ... Electrodes

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 交流2極式の両電極表面に、TiN膜ま
たはTiC膜を形成してなることを特徴とする導電率ま
たは比抵抗を測定するための装置。
1. An apparatus for measuring conductivity or specific resistance, comprising a TiN film or a TiC film formed on both surfaces of an AC bipolar electrode.
JP10802795A 1995-04-08 1995-04-08 Equipment for measuring conductivity or resistivity Expired - Fee Related JP3229771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10802795A JP3229771B2 (en) 1995-04-08 1995-04-08 Equipment for measuring conductivity or resistivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10802795A JP3229771B2 (en) 1995-04-08 1995-04-08 Equipment for measuring conductivity or resistivity

Publications (2)

Publication Number Publication Date
JPH08278270A true JPH08278270A (en) 1996-10-22
JP3229771B2 JP3229771B2 (en) 2001-11-19

Family

ID=14474116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10802795A Expired - Fee Related JP3229771B2 (en) 1995-04-08 1995-04-08 Equipment for measuring conductivity or resistivity

Country Status (1)

Country Link
JP (1) JP3229771B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151890A (en) * 1997-08-08 1999-02-26 Saginomiya Seisakusho Inc Conductivity meter
WO2001059441A1 (en) * 2000-02-07 2001-08-16 Organo Corporation Electric conductometer, electrode for measuring electric conductivity, and method for producing the same
WO2001063269A1 (en) * 2000-02-22 2001-08-30 Organo Corporation Apparatus for measuring conductivity
WO2001063268A1 (en) * 2000-02-23 2001-08-30 Organo Corporation Multiple electric conductivity measuring apparatus
WO2001075428A1 (en) * 2000-03-30 2001-10-11 Organo Corporation Ion concentration meter
JP2001296263A (en) * 2000-02-07 2001-10-26 Japan Organo Co Ltd Conductivity meter, conductivity measuring electrode and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151890A (en) * 1997-08-08 1999-02-26 Saginomiya Seisakusho Inc Conductivity meter
WO2001059441A1 (en) * 2000-02-07 2001-08-16 Organo Corporation Electric conductometer, electrode for measuring electric conductivity, and method for producing the same
JP2001296263A (en) * 2000-02-07 2001-10-26 Japan Organo Co Ltd Conductivity meter, conductivity measuring electrode and manufacturing method thereof
US6603320B2 (en) 2000-02-07 2003-08-05 Organo Corporation Electric conductometer, electrode for measuring electric conductivity, and method for producing the same
WO2001063269A1 (en) * 2000-02-22 2001-08-30 Organo Corporation Apparatus for measuring conductivity
US6650127B2 (en) 2000-02-22 2003-11-18 Organo Corporation Apparatus for measuring conductivity
WO2001063268A1 (en) * 2000-02-23 2001-08-30 Organo Corporation Multiple electric conductivity measuring apparatus
WO2001075428A1 (en) * 2000-03-30 2001-10-11 Organo Corporation Ion concentration meter

Also Published As

Publication number Publication date
JP3229771B2 (en) 2001-11-19

Similar Documents

Publication Publication Date Title
Ambrus et al. Conductivity relaxation in a concentrated aqueous electrolyte solution
JP2825206B2 (en) Metal oxide electrode
Smith et al. Electrical conduction in polyimide between 20 and 350 C
Li et al. Electric properties and pitting susceptibility of passive films formed on iron in chromate solution
JPS59202052A (en) Humidity sensitive element
JPH08278270A (en) Device for measuring conductivity and specific resistance
Ogura et al. AC impedance spectroscopy of humidity sensor using poly (o-phenylenediamine)/poly (vinyl alcohol) composite film
Lauks et al. The Si 3 N 4/Si ion-sensitive semiconductor electrode
JP2014182086A (en) Temperature sensor
JPH06308078A (en) Ion-sensing type field-effect transistor chip
Irhzo et al. The role of alloyed tungsten on the conductivity of stainless steel passive layers
Gholamian et al. In situ resistance measurement of a conducting polymer electrode
Costa et al. Effect of electrode alterations on the ac behaviour of Li2O ZnO humidity sensors
Grzeszczuk et al. The double layer and redox capacitances of polyaniline electrodes in aqueous trichloroacetic acid
Knight The use of complex plane plots in studying the electrical response of rocks
JPH05256894A (en) Method for diagnosing insulation deterioration of power cable
Portales et al. Cyclic voltammetry and impedance spectroscopy analysis for graphene-modified solid-state electrode transducers
JPS60253209A (en) Method of continuously monitoring thickness of oxide formed on aluminum foil for electrolytic condenser
JPS5888645A (en) Measuring sensor for content of oxygen in gas
JP6834558B2 (en) Corrosion monitoring measurement module, corrosion monitoring measurement method, corrosion monitoring system, and corrosion monitoring method
US3294662A (en) ph meter
RU2086971C1 (en) Sensor structure
KR100433187B1 (en) Dielectic sensor and manufacture method for the cure monitoring of the high temperature composites
Valincius et al. Differential surface stress of a tin oxide electrode
Karabaliev et al. Electrostriction techniques for preparation of thin lipid films on different solid supports

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees