JPH08278220A - Measuring apparatus of light beam shape - Google Patents

Measuring apparatus of light beam shape

Info

Publication number
JPH08278220A
JPH08278220A JP10716395A JP10716395A JPH08278220A JP H08278220 A JPH08278220 A JP H08278220A JP 10716395 A JP10716395 A JP 10716395A JP 10716395 A JP10716395 A JP 10716395A JP H08278220 A JPH08278220 A JP H08278220A
Authority
JP
Japan
Prior art keywords
light
light beam
receiving elements
state image
beam shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10716395A
Other languages
Japanese (ja)
Inventor
Takeshi Ishikawa
剛 石川
Kazuo Nakamura
一夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP10716395A priority Critical patent/JPH08278220A/en
Publication of JPH08278220A publication Critical patent/JPH08278220A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a measuring apparatus which eliminates a blooming phenomenon between adjacent elements when a light beam shape is measured by using a solid-state image sensing device and which can perform a measurement with high accuracy. CONSTITUTION: A sensor part 2 is constituted of a solid-state image sensing device 11 and of a shutter mechanism 12. A plurality of light receiving elements at the solid-state image sensing device 11 are operated selectively and sequentially by the shutter mechanism 12 driven by a controller 3 so as to obtain a light receiving signal. On the basis of the signal, a light beam shape is recognized by a signal processing means, signals from the adjacent light receiving elements can be acquired so as to be separated in terms of time, a blooming phenomenon between the adjacent light receiving elements is avoided, and the light beam shape can be measured with high accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレンズ性能を測定するた
めにレーザビーム等のような光ビームの断面形状を測定
するための装置に関し、特に微細な光センサアレイを用
いた測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring a sectional shape of a light beam such as a laser beam for measuring lens performance, and more particularly to a measuring apparatus using a fine photosensor array.

【0002】[0002]

【従来の技術】光学レンズが設計通りに製造されている
か否か、そのレンズの性能を測定するために、レンズに
レーザビームを透過させてレーザビームが最も絞られた
位置、すなわちビームウエスト位置やビーム形状を測定
することが行われる。このようなビーム形状の測定方法
として、従来から微小な受光素子が配列された固体撮像
素子を用いる方法が提案されている。例えば、特開昭5
5−74407号公報では、光ビームの直径よりも小さ
いピッチで配列されている固体撮像素子アレイに光ビー
ムを照射し、各固体撮像素子の出力値の分布を測定する
ことで、光ビームの断面方向の光強度分布を検出し、こ
れから光ビーム形状を測定する方法が提案されている。
2. Description of the Related Art In order to measure whether or not an optical lens is manufactured as designed, the performance of the lens is measured. Measuring the beam shape is performed. As a method of measuring such a beam shape, a method of using a solid-state image sensor in which minute light receiving elements are arranged has been conventionally proposed. For example, JP-A-5
According to Japanese Patent Laid-Open No. 5-74407, a solid-state image sensor array arranged at a pitch smaller than the diameter of the light beam is irradiated with the light beam, and the distribution of output values of the respective solid-state image sensors is measured to obtain a cross section of the light beam. A method has been proposed in which the light intensity distribution in the direction is detected and the light beam shape is measured from this.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、固体撮
像素子アレイは、1つの固体撮像素子に強い光が入射さ
れたときに、その素子で発生された電荷が隣接する固体
撮像素子にまで移動してその素子の出力に影響を与える
という、いわゆるブルーミング現象が生じるため、各固
体撮像素子の出力値が必ずしも光ビームの光強度分布に
比例したものとはならず、高精度の測定を行うことが難
しいという問題がある。
However, in the solid-state image sensor array, when strong light is incident on one solid-state image sensor, the charges generated in the solid-state image sensor move to the adjacent solid-state image sensor. Since a so-called blooming phenomenon that affects the output of the element occurs, the output value of each solid-state imaging element is not necessarily proportional to the light intensity distribution of the light beam, and it is difficult to perform high-precision measurement. There is a problem.

【0004】[0004]

【発明の目的】本発明の目的は、このような固体撮像素
子を用いて光ビーム形状を測定する場合でも、隣接する
素子間の影響を解消して高精度の測定を行うことを可能
にした光ビーム形状の測定装置を提供することにある。
An object of the present invention is to enable high precision measurement by eliminating the influence between adjacent elements even when measuring the shape of a light beam using such a solid-state image pickup element. An object of the present invention is to provide a light beam shape measuring device.

【0005】[0005]

【課題を解決するための手段】本発明の光ビーム形状の
測定装置は、測定を行う光ビームを受光してその光強度
に対応する信号を出力する複数の受光素子を備えるセン
サ部と、このセンサ部を駆動して前記受光素子を選択的
かつ順序的に動作させる駆動手段と、前記各受光素子か
ら出力される信号を処理して光ビーム形状を認識する信
号処理手段とを備えている。
A light beam shape measuring apparatus according to the present invention includes a sensor section having a plurality of light receiving elements for receiving a light beam to be measured and outputting a signal corresponding to the light intensity, and A driving unit that drives the sensor unit to selectively and sequentially operate the light receiving elements, and a signal processing unit that processes a signal output from each of the light receiving elements and recognizes a light beam shape are provided.

【0006】ここで、センサ部は、例えば、複数の受光
素子が光ビーム径よりも長い寸法に配列された1次元固
体撮像素子と、この固体撮像素子の前側に位置されて前
記複数の受光素子を個々に遮光可能なシャッタ機構とで
構成される。或いは、複数の受光素子が光ビーム径より
も大きな縦横寸法に配列された2次元固体撮像素子と、
この固体撮像素子の前側に位置されて前記複数の受光素
子を個々に遮光可能なシャッタ機構とで構成される。
Here, the sensor section includes, for example, a one-dimensional solid-state image pickup element in which a plurality of light-receiving elements are arranged in a dimension longer than a light beam diameter, and the plurality of light-receiving elements located in front of the solid-state image pickup element. And a shutter mechanism capable of individually blocking light. Alternatively, a two-dimensional solid-state image pickup device in which a plurality of light receiving elements are arranged in vertical and horizontal dimensions larger than the light beam diameter,
The shutter mechanism is located on the front side of the solid-state imaging device and can individually shield the plurality of light-receiving elements.

【0007】更に、シャッタ機構は、例えば、液晶装置
で構成され、複数の受光素子にそれぞれ対応する複数の
透明電極を配列形成し、これらの透明電極に対して選択
的かつ順序的に通電を行なう構成とされる。或いは、光
透過用の窓を配列形成した遮光板で構成され、この遮光
板を光ビームの軸方向と垂直な面上で受光素子の配列ピ
ッチ寸法の単位で移動可能とする。
Further, the shutter mechanism is composed of, for example, a liquid crystal device, and a plurality of transparent electrodes respectively corresponding to a plurality of light receiving elements are formed in an array, and the transparent electrodes are selectively and sequentially energized. It is composed. Alternatively, the light-shielding plate is formed by arranging light-transmitting windows in an array, and the light-shielding plate can be moved on a plane perpendicular to the axial direction of the light beam in units of the arrangement pitch of the light-receiving elements.

【0008】[0008]

【実施例】次に、本発明の実施例を図面を参照して説明
する。図1(a)は本発明の第1実施例の構成を示す斜
視図であり、(b)はその要部を部分に分解した斜視図
である。同図において、LBは図外のレーザ光源から射
出されて集光されるレーザビームであり、特にそのビー
ム系が絞られたレーザウエスト近傍を示している。ここ
ではレーザビームはZ軸に平行な方向の直線偏光状態に
あるものとする。1は本発明にかかる光ビーム形状の測
定装置であり、基本的には光センサアレイとしての1次
元固体撮像素子11及びシャッタ機構12とを備えるセ
ンサ部2と、このセンサ部2を駆動するとともに、セン
サ部2で検出した光強度に基づいてレーザビーム形状を
測定する制御部3とで構成される。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 (a) is a perspective view showing a configuration of a first embodiment of the present invention, and FIG. 1 (b) is a perspective view in which a main part thereof is disassembled into parts. In the figure, LB is a laser beam emitted from a laser light source (not shown) and condensed, and particularly indicates the vicinity of the laser waist where the beam system is narrowed. Here, it is assumed that the laser beam is in a linearly polarized state in a direction parallel to the Z axis. Reference numeral 1 denotes a light beam shape measuring device according to the present invention. Basically, a sensor unit 2 including a one-dimensional solid-state image pickup device 11 as a photosensor array and a shutter mechanism 12, and a sensor unit 2 are driven. , And a control unit 3 that measures the laser beam shape based on the light intensity detected by the sensor unit 2.

【0009】前記センサ部2はレーザビームLBの光軸
と平行に延設されたガイドレール13上を移動可能なス
ライダ14に構築されており、このスライダ14に垂直
上方に向けてポスト15が立設されており、このボスト
15の上端部にはレーザビームLBと垂直な面内でその
回転位置が変化できるようにセンサホルダ16が支持さ
れている。そして、前記センサ部2の一次元固体撮像素
子11とシャッタ機構12とはこのセンサホルダ16に
一体的に設けられている。
The sensor section 2 is constructed on a slider 14 which is movable on a guide rail 13 extending parallel to the optical axis of the laser beam LB, and a post 15 is erected vertically upward on the slider 14. A sensor holder 16 is supported on the upper end of the boss 15 so that its rotational position can be changed within a plane perpendicular to the laser beam LB. The one-dimensional solid-state image pickup device 11 and the shutter mechanism 12 of the sensor unit 2 are integrally provided on the sensor holder 16.

【0010】前記センサ部2の一次元固体撮像素子11
とシャッタ機構12は、図2(a),(b)にその正面
図と側断面図を合わせて示すように、液晶21を主体に
構成され、液晶の表面と裏面の両面にそれぞれ透明電極
22,23を配列している。即ち、表面の複数の透明電
極22は1次元固体撮像素子11の受光素子の素子アレ
イに対応した形状、寸法に形成され、裏面の透明電極2
3は素子アレイの領域にわたって連続した形状、寸法に
形成され、かつそれぞれが液晶21を挟んで対向するよ
うに配置されている。そして、裏面の透明電極23は駆
動信号線cに共通に接続されるが、表面の透明電極22
は1つ置きの電極22a,22bがそれぞれ駆動信号線
a,bに接続される。そして、これら透明電極22,2
3の間の液晶21は、その分子が連続的に90度ねじれ
て配列され、偏光方向が90度回転するように構成され
ている。また、透明電極23の背面にはY軸に平行な方
向の直線偏光を透過する偏光板24が設けられており、
両透明電極間に電圧が印加されない状態下で液晶21に
よる回転後の偏光方向が偏光板24を透過する偏光方向
と一致するように配置されている。
The one-dimensional solid-state image pickup device 11 of the sensor section 2
The shutter mechanism 12 is mainly composed of a liquid crystal 21 as shown in FIGS. 2 (a) and 2 (b), in which a front view and a side sectional view are shown together, and a transparent electrode 22 is provided on each of the front and back surfaces of the liquid crystal. , 23 are arranged. That is, the plurality of transparent electrodes 22 on the front surface are formed in a shape and size corresponding to the element array of the light receiving elements of the one-dimensional solid-state imaging device 11, and the transparent electrodes 2 on the rear surface are formed.
3 are formed in a continuous shape and size over the area of the element array, and are arranged so as to face each other with the liquid crystal 21 in between. The transparent electrode 23 on the back surface is commonly connected to the drive signal line c, but the transparent electrode 22 on the front surface is connected.
, Every other electrode 22a, 22b is connected to the drive signal lines a, b, respectively. Then, these transparent electrodes 22, 2
The liquid crystal 21 between 3 is arranged such that its molecules are continuously twisted and arranged by 90 degrees, and the polarization direction is rotated by 90 degrees. A polarizing plate 24 that transmits linearly polarized light in a direction parallel to the Y axis is provided on the back surface of the transparent electrode 23.
It is arranged so that the polarization direction after rotation by the liquid crystal 21 matches the polarization direction transmitted through the polarizing plate 24 under the condition that no voltage is applied between both transparent electrodes.

【0011】前記制御部3はセンサ部2を駆動する駆動
部4を有しており、この駆動部4は、図3に示すよう
に、前記駆動信号線a〜cに対してそれぞれ電位を供給
する一対の駆動回路31,32と、各駆動回路31,3
2を制御する制御回路33を有している。そして、制御
回路33の出力端子を前記一方の駆動回路31に接続
し、またこの出力端子にはインバータ34を接続してそ
の出力側を前記他方の駆動回路32に接続している。ま
た、駆動信号線cは共通接続している。したがって、制
御回路33の出力端子に信号「H」を出力したときに
は、駆動回路31が駆動され、駆動信号線a,c間に電
位を出力する。これにより、透明電極22aの領域にお
ける液晶21に電圧が印加された状態となり、この領域
の光透過率が低下され、この領域がマスクされる。ま
た、制御回路33の出力端子に信号「L」を出力したと
きには、駆動回路32が駆動され、駆動信号線b,c間
に電位を出力し、他方の透明電極22bの領域の光透過
率が低下される。
The control section 3 has a drive section 4 for driving the sensor section 2. The drive section 4 supplies a potential to each of the drive signal lines a to c as shown in FIG. Pair of drive circuits 31, 32 and each drive circuit 31, 3
It has a control circuit 33 for controlling the two. An output terminal of the control circuit 33 is connected to the one drive circuit 31, and an inverter 34 is connected to this output terminal so that its output side is connected to the other drive circuit 32. Further, the drive signal lines c are commonly connected. Therefore, when the signal “H” is output to the output terminal of the control circuit 33, the drive circuit 31 is driven and the potential is output between the drive signal lines a and c. As a result, a voltage is applied to the liquid crystal 21 in the region of the transparent electrode 22a, the light transmittance of this region is reduced, and this region is masked. When the signal “L” is output to the output terminal of the control circuit 33, the drive circuit 32 is driven to output a potential between the drive signal lines b and c, and the light transmittance of the other transparent electrode 22b region is increased. Be lowered.

【0012】前記制御部3は一次元固体撮像素子11か
ら出力される信号を処理する信号処理部5(図3参照)
を有しており、この信号処理部5は公知の固体撮像素子
の信号読出回路として構成されており、前記一次元固体
撮像素子11で受光した光強度に応じた電流信号を読み
出し、この信号を所定のアルゴリズムにより処理するこ
とで、前記レーザビームLBの形状を測定するように構
成される。また、この信号処理部5からは信号の読出し
に対応したタイミング信号が前記駆動部4に対して出力
される。
The control unit 3 processes a signal output from the one-dimensional solid-state image pickup element 11 (see FIG. 3).
The signal processing unit 5 is configured as a signal reading circuit of a known solid-state image pickup device, reads a current signal according to the light intensity received by the one-dimensional solid-state image pickup device 11, and outputs this signal. The shape of the laser beam LB is measured by processing with a predetermined algorithm. Further, the signal processing section 5 outputs a timing signal corresponding to the reading of the signal to the driving section 4.

【0013】この構成の測定装置を用いたレーザビーム
形状の測定手順を説明する。まず、スライダ14をガイ
ドレール13上で移動してセンサ部2をレーザビームL
Bの軸上の所定位置に設定した後、センサホルダ16を
ポスト15に対して回動させ、1次元固体撮像素子11
とシャッタ機構12を図1に示したようにその長さ方向
を垂直上下方向に向けてレーザビームLBに対してセン
サ部2を正対位置させ、制御部3において一次元固体撮
像素子11の信号の読み取りを開始する。そして、信号
処理部5からタイミング信号を駆動部4に送り、駆動部
4の制御回路33は出力端子に「H」信号を出力する。
これにより、駆動回路31が駆動状態となり、駆動信号
線a,cに駆動信号を出力するため、透明電極22aに
対向する液晶部分が電圧印加状態となり、この領域の光
透過率が低下される。したがって、固体撮像素子11は
透明電極22bに対応する1つ置きの素子で受光が行わ
れ、図4(a)のように、その信号出力が信号処理部5
に読み出される。
A procedure for measuring the laser beam shape using the measuring apparatus having this configuration will be described. First, the slider 14 is moved on the guide rail 13 to move the sensor unit 2 to the laser beam L.
After being set at a predetermined position on the axis of B, the sensor holder 16 is rotated with respect to the post 15 and the one-dimensional solid-state imaging device 11
As shown in FIG. 1, the shutter mechanism 12 is arranged such that the sensor unit 2 is directly opposed to the laser beam LB with the length direction thereof oriented in the vertical vertical direction, and the control unit 3 outputs the signal of the one-dimensional solid-state image pickup device 11. Start reading. Then, the signal processing unit 5 sends a timing signal to the driving unit 4, and the control circuit 33 of the driving unit 4 outputs the “H” signal to the output terminal.
As a result, the drive circuit 31 is driven and outputs a drive signal to the drive signal lines a and c, so that the liquid crystal portion facing the transparent electrode 22a is in a voltage applied state, and the light transmittance of this region is reduced. Therefore, the solid-state imaging device 11 receives light by every other device corresponding to the transparent electrode 22b, and its signal output is output by the signal processing unit 5 as shown in FIG.
Read out.

【0014】ついで、信号処理部5からのタイミング信
号が駆動部4に送られ、駆動部4の制御回路33は出力
端子に「L」信号を出力する。これにより、駆動回路3
2が駆動状態となり、駆動信号線b,cに駆動信号を出
力するため、透明電極22bに対応する領域の光透過率
が低下される。したがって、固体撮像素子11は透明電
極22aに対応する1つ置きの素子、即ち前回受光した
素子の間の素子での受光が行われ、図4(b)のよう
に、その信号出力が信号処理部5に読み出される。
Then, the timing signal from the signal processing section 5 is sent to the drive section 4, and the control circuit 33 of the drive section 4 outputs the "L" signal to the output terminal. As a result, the drive circuit 3
2 is in a drive state and outputs a drive signal to the drive signal lines b and c, so that the light transmittance of the region corresponding to the transparent electrode 22b is reduced. Therefore, the solid-state imaging device 11 receives light at every other device corresponding to the transparent electrode 22a, that is, the device between the previously received devices, and its signal output is processed as shown in FIG. 4B. It is read by the unit 5.

【0015】そして、信号処理部5では、前回の信号と
今回の信号とをそれぞれ座標軸上で加算することで、図
4(c)のように光ビーム径の方向に配列された個々の
固体撮像素子における光強度のデータを得ることができ
る。したがって、このデータに基づいて光ビームのビー
ム径方向の光強度分布をガウス分布近似式により演算す
ることで、図4(d)のように、得られた光強度分布特
性から光ビーム径方向に連続される光強度分布を算出で
き、この光強度分布に対して所定のしきい値THを当て
はめることでレーザビーム径が測定できる。
Then, in the signal processing unit 5, the previous signal and the current signal are added on the coordinate axes to obtain individual solid-state image pickups arranged in the light beam diameter direction as shown in FIG. 4C. It is possible to obtain data on the light intensity in the device. Therefore, by calculating the light intensity distribution of the light beam in the beam radial direction based on this data by the Gaussian distribution approximation formula, as shown in FIG. The continuous light intensity distribution can be calculated, and the laser beam diameter can be measured by applying a predetermined threshold value TH to this light intensity distribution.

【0016】したがって、ガイドレール13上でスライ
ダ14を移動させてセンサ部2をレーザビームLBの光
軸に沿って移動させながら、複数の移動位置によって前
記した測定を行うことで、各移動位置におけるレーザビ
ーム径が測定できる。例えば、図5に示すように、複数
の点P1〜P5の各測定結果がそれぞれ(a)〜(e)
であるとすれば、これらの包絡線を得ることで、レーザ
ビームLBの垂直断面方向のビーム形状が測定できる。
また、この測定結果からレーザビームのビームウエスト
位置を測定することが可能となる。この場合にはP3が
ビームウエスト位置となる。
Therefore, while the slider 14 is moved on the guide rail 13 to move the sensor unit 2 along the optical axis of the laser beam LB, the above-described measurement is performed at a plurality of moving positions, so that each moving position is moved. Laser beam diameter can be measured. For example, as shown in FIG. 5, measurement results at a plurality of points P1 to P5 are (a) to (e), respectively.
Then, by obtaining these envelopes, the beam shape of the laser beam LB in the vertical sectional direction can be measured.
Further, the beam waist position of the laser beam can be measured from this measurement result. In this case, P3 is the beam waist position.

【0017】なお、レーザビーム径を2次元的に測定す
る場合には、図1に鎖線で示すようにセンサホルダ16
をポスト15に対して90度回転させ、1次元固体撮像
素子11とシャッタ機構12とを水平方向に向け、かつ
レーザビームLBの偏光方向をY軸に平行な方向に設定
した状態で同様な測定を行うことで、前回の測定と90
度異なる方向のビーム径を測定することができる。ま
た、このようにして測定したビーム径に基づけば、図6
のように、ビーム形状を3次元的に測定することも可能
となる。すなわち、この場合には、P1〜P5の各点で
測定したビーム形状が同図(a)〜(e)のように測定
され、この結果からビーム形状が3次元的に測定される
ことになる。
When the laser beam diameter is two-dimensionally measured, the sensor holder 16 as shown by the chain line in FIG.
Is rotated by 90 degrees with respect to the post 15 and the one-dimensional solid-state image pickup device 11 and the shutter mechanism 12 are oriented in the horizontal direction, and the polarization direction of the laser beam LB is set in the direction parallel to the Y axis. By performing the previous measurement and 90
The beam diameter in different directions can be measured. Further, based on the beam diameter measured in this way, FIG.
As described above, the beam shape can be measured three-dimensionally. That is, in this case, the beam shape measured at each point of P1 to P5 is measured as shown in (a) to (e) of the same figure, and the beam shape is measured three-dimensionally from this result. .

【0018】このように、本実施例では、1次元固体撮
像素子を1つ置きにマスクした状態で受光を行っている
ために、一の素子での受光が隣接する素子に対してブル
ーミング現象の影響が生じた場合でも、その際には隣接
する素子の受光は行われていないため、このプルーミン
グ現象の影響を受けることがない。したがって、ブルー
ミング現象により測定精度の低下が防止でき、高精度の
測定が可能となる。
As described above, in the present embodiment, since light is received in a state where every other one-dimensional solid-state image pickup device is masked, the light received by one device causes the blooming phenomenon to the adjacent device. Even if an influence occurs, the adjacent elements do not receive light at that time, and therefore, there is no influence of the plume phenomenon. Therefore, it is possible to prevent the measurement accuracy from deteriorating due to the blooming phenomenon, and it is possible to perform highly accurate measurement.

【0019】ここで、前記実施例では固体撮像素子に対
して1つ置きに透明電極の組を構成して2段階に切り替
えて光透過率を変化させているが、図7に示すように、
2つ置きの透明電極22a,22b,22cの組を3組
構成してこれらを順次選択的に駆動することで3段階に
切り替えて光透過率を変化させながら測定を行うように
してもよい。このようにすれば、隣接する素子によるブ
ルーミング現象の影響を更に有効に防止することができ
る。
Here, in the above-mentioned embodiment, a set of transparent electrodes is formed every other solid-state image pickup element and the light transmittance is changed by switching to two steps. However, as shown in FIG.
It is also possible to configure three sets of the transparent electrodes 22a, 22b, and 22c every other two, and selectively drive them sequentially to switch to three stages and perform the measurement while changing the light transmittance. By doing so, it is possible to more effectively prevent the influence of the blooming phenomenon due to the adjacent element.

【0020】また、図8に示すように、受光素子アレイ
がマトリクス配置された2次元固体撮像素子(図示せ
ず)を用いるとともに、シャッタ機構は透明電極22を
マトリクス配置した液晶21Aを用い、透明電極22を
縦横方向に1以上の間隔で組を構成してこれらを選択的
に駆動させて光透過率を変化制御することで、1回の測
定でレーザビームの光強度を2次元的に検出でき、少な
い回数で多数の測定信号を得て、迅速な測定を行うこと
が可能となる。
Further, as shown in FIG. 8, a two-dimensional solid-state image pickup device (not shown) in which a light receiving element array is arranged in a matrix is used, and a shutter mechanism uses a liquid crystal 21A in which transparent electrodes 22 are arranged in a matrix. The light intensity of the laser beam is two-dimensionally detected by one measurement by forming a set of the electrodes 22 in the vertical and horizontal directions at intervals of 1 or more and selectively driving them to control the change of the light transmittance. Therefore, it is possible to obtain a large number of measurement signals with a small number of times and perform quick measurement.

【0021】図9は本発明の第2実施例を示す図であ
り、センサ部の構成を示す斜視図である。ここでは、セ
ンサ部2のシャッタ機構12として遮光板41を用いて
いる。なおこの第2実施例においても、センサ部2は前
記第1実施例に示したのと同様のセンサホルダ16に搭
載されているものとする。前記シャッタ機構として、1
次元固定撮像素子の1つ置きの素子に対応するピッチ寸
法、即ち素子のピッチ寸法の2倍のピッチ寸法で直列状
態に複数の窓42を開設した遮光板41を一次元固体撮
像素子11の前側に配置し、図外のブラケットによりそ
の長さ方向、即ち同図の場合には上下方向に移動可能に
支持する。また、遮光板41を上下方向の中間位置に習
性付けるためにセンサホルダ16との間にスプリング4
3を掛装する。そして、前記遮光板41の上の各両端部
にはそれぞれ磁性体44を取着する。
FIG. 9 is a diagram showing a second embodiment of the present invention and is a perspective view showing the structure of the sensor section. Here, the light shielding plate 41 is used as the shutter mechanism 12 of the sensor unit 2. In the second embodiment as well, the sensor unit 2 is assumed to be mounted on the same sensor holder 16 as that shown in the first embodiment. As the shutter mechanism, 1
The front side of the one-dimensional solid-state image sensor 11 is a light-shielding plate 41 having a plurality of windows 42 arranged in series at a pitch dimension corresponding to every other element of the dimensionally fixed image sensor, that is, a pitch dimension twice the pitch dimension of the element. And is supported by a bracket (not shown) so as to be movable in the longitudinal direction thereof, that is, in the case of FIG. Further, in order to adjust the light shielding plate 41 to an intermediate position in the vertical direction, the spring 4 is provided between the light shielding plate 41 and the sensor holder 16.
Hang up 3. Then, magnetic bodies 44 are attached to both ends of the light shielding plate 41, respectively.

【0022】一方、遮光板41の上下の両側には前記磁
性体44に対して前記一次元固体撮像素子11の受光素
子アレイのピッチ寸法だけ離してそれぞれ電磁石45,
46を配置し、これらの電磁石45,46はセンサホル
ダ16に固定状態に支持する。また、これらの電磁石4
5,46には、図3に示したと同様の駆動部4を接続
し、各電磁石45,46にそれぞれ選択的に通電を行う
ように構成する。
On the other hand, on both the upper and lower sides of the light shield plate 41, the electromagnets 45, which are separated from the magnetic body 44 by the pitch dimension of the light receiving element array of the one-dimensional solid-state image pickup device 11, respectively.
46 is arranged, and these electromagnets 45 and 46 are fixedly supported by the sensor holder 16. Also, these electromagnets 4
A drive unit 4 similar to that shown in FIG. 3 is connected to the motors 5 and 46 so that the electromagnets 45 and 46 are selectively energized.

【0023】したがって、この構成のセンサ部では、図
10(a)のように、例えばセンサ部2を垂直上下方向
に回転位置を設定した上で駆動部4により、一方(上
側)の電磁石45に通電を行えば、電磁石45と磁性体
44との間に磁力による吸引力が作用し、遮光板41が
上側に移動される。これにより、遮光板41に設けられ
た窓42を透して一次元固体撮像素子の1つ置きの素子
が開口され、レーザビームを受光して信号を出力する。
次いで、図10(b)のように、今度は他方(下側)の
電磁石46に通電を行えば、この電磁石46と磁性体4
4との間に吸引力が作用するため、遮光板41は受光素
子アレイの1ピッチだけ下方向に移動され、前回とは異
なる1つの置きの素子が遮光板41の窓42によって開
口され、レーザビームを受光して信号を出力する。
Therefore, in the sensor unit having this structure, as shown in FIG. 10A, for example, the sensor unit 2 is set in the vertical vertical direction and then the driving unit 4 is used to set the electromagnet 45 on one side (upper side). When energized, an attractive force due to magnetic force acts between the electromagnet 45 and the magnetic body 44, and the light shielding plate 41 is moved upward. As a result, every other one-dimensional solid-state image pickup device is opened through the window 42 provided in the light shielding plate 41, and the laser beam is received to output a signal.
Next, as shown in FIG. 10B, if the other (lower) electromagnet 46 is energized, the electromagnet 46 and the magnetic body 4 are turned on.
4, the light blocking plate 41 is moved downward by one pitch of the light receiving element array, and one element different from the previous one is opened by the window 42 of the light blocking plate 41, and It receives a beam and outputs a signal.

【0024】これにより、第1実施例と全く同様の信号
を得ることができ、レーザビームのビームウエスト位置
を測定することが可能となる。したがって、この第2実
施例においても、一の素子での受光が隣接する素子に対
してブルーミング現象の影響が生じた場合でも、その際
には隣接する素子の受光は行われることがなく、プルー
ミング現象の影響を受けることがなく、ブルーミング現
象により測定精度の低下が防止でき、高精度の測定が可
能となる。
As a result, the same signal as in the first embodiment can be obtained and the beam waist position of the laser beam can be measured. Therefore, also in the second embodiment, even if the light reception by one element affects the adjacent element by the blooming phenomenon, the light reception by the adjacent element is not performed at that time, and the plumming is performed. Without being affected by the phenomenon, it is possible to prevent the measurement accuracy from deteriorating due to the blooming phenomenon, and it is possible to perform highly accurate measurement.

【0025】なお、レーザビーム径を2次元的に測定す
る場合には、第1実施例と同様にセンサホルダをポスト
に対して90度回転させ、1次元固体撮像素子とシャッ
タ機構とを水平方向に向けて状態で同様な測定を行えば
よいことは言うまでもない。また、センサ部をレーザビ
ームの光軸方向に沿って移動させることで、レーザビー
ムを三次元に測定することができることも前記第1実施
例と同じである。
When the laser beam diameter is two-dimensionally measured, the sensor holder is rotated 90 degrees with respect to the post as in the first embodiment, and the one-dimensional solid-state image pickup device and the shutter mechanism are horizontally moved. It goes without saying that the same measurement can be performed in the state toward. Further, the laser beam can be measured three-dimensionally by moving the sensor unit along the optical axis direction of the laser beam, as in the first embodiment.

【0026】また、2次元固体撮像素子を用いるととも
に、遮光板にマトリクス状に窓を開設し、かつ遮光板を
水平及び垂直方向にそれぞれ1ピッチ寸法だけ移動でき
るように構成してもよく、このように構成すれば1回の
測定でレーザビームの光強度を2次元的に検出でき、少
ない回数で多数の測定信号を得て、迅速な測定を行うこ
とが可能となる。
Further, a two-dimensional solid-state image pickup device may be used, and windows may be opened in a matrix in the light shielding plate, and the light shielding plate may be moved in the horizontal and vertical directions by one pitch each. With this configuration, the light intensity of the laser beam can be two-dimensionally detected by one measurement, and a large number of measurement signals can be obtained with a small number of times to perform quick measurement.

【0027】また、この場合でも、窓のピッチ寸法を2
ピッチ以上に設定し、遮光板を第1の位置から第3の位
置まで間欠的に移動させるように構成すれば、隣接する
素子によるブルーミング現象の影響を更に有効に防止す
ることができる。
Also in this case, the window pitch dimension is set to 2
If the pitch is set to be equal to or more than the pitch and the light shielding plate is intermittently moved from the first position to the third position, the influence of the blooming phenomenon due to the adjacent elements can be more effectively prevented.

【0028】[0028]

【発明の効果】以上説明したように本発明は、複数の受
光素子を配列したセンサ部を駆動手段により駆動して複
数の受光素子を選択的かつ順序的に動作して信号を得て
おり、この信号に基づいて信号処理手段において光ビー
ム形状を認識しているので、隣接する受光素子からの信
号を時間的に離間して取得することが可能となり、隣接
受光素子間におけるブルーミング現象を回避した高精度
の出力を得ることができ、光ビーム形状を高精度に測定
することが可能となる。
As described above, according to the present invention, the sensor section in which a plurality of light receiving elements are arranged is driven by the driving means to selectively and sequentially operate the plurality of light receiving elements to obtain a signal, Since the light beam shape is recognized in the signal processing means based on this signal, it becomes possible to obtain the signals from the adjacent light receiving elements while being temporally separated, and avoiding the blooming phenomenon between the adjacent light receiving elements. Highly accurate output can be obtained, and the light beam shape can be measured with high accuracy.

【0029】また、センサ部を、複数の受光素子が光ビ
ーム径よりも長い寸法に配列された1次元固体撮像素子
と、この固体撮像素子の前側に位置されて前記複数の受
光素子を個々に遮光可能なシャッタ機構とで構成するこ
とで、光ビームに対する一方向の光強度分布を得て、そ
の方向のビーム径が測定できる。このため、固体撮像素
子の方向を変化させた位置で測定を行えば、光ビーム径
を2次元的に測定することが可能となる。
Further, the sensor section includes a one-dimensional solid-state image pickup device in which a plurality of light-receiving elements are arranged in a dimension longer than the light beam diameter, and the plurality of light-receiving elements arranged individually in front of the solid-state image pickup element. By configuring with a shutter mechanism capable of blocking light, it is possible to obtain a light intensity distribution in one direction for the light beam and measure the beam diameter in that direction. Therefore, if the measurement is performed at a position where the direction of the solid-state image sensor is changed, the light beam diameter can be measured two-dimensionally.

【0030】あるいは、センサ部を、複数の受光素子が
光ビーム径よりも大きな縦横寸法に配列された2次元固
体撮像素子と、この固体撮像素子の前側に位置されて前
記複数の受光素子を個々に遮光可能なシャッタ機構とで
構成することで、1回の測定により光ビームの光強度分
布を2次元的に測定することが可能となり、測定の迅速
化が可能となる。
Alternatively, the sensor section includes a two-dimensional solid-state image pickup device in which a plurality of light-receiving elements are arranged in vertical and horizontal dimensions larger than a light beam diameter, and the plurality of light-receiving elements are arranged in front of the solid-state image pickup element. With the shutter mechanism capable of blocking light, the light intensity distribution of the light beam can be two-dimensionally measured by one measurement, and the measurement can be speeded up.

【0031】さらに、シャッタ機構を液晶装置で構成
し、複数の受光素子にそれぞれ対応する複数の透明電極
を配列形成し、これらの透明電極に対して選択的かつ順
序的に通電を行なうことで、隣接する受光素子からの信
号を選択的かつ順序的に得ることができ、ブルーミング
現象の回避が実現される。同様に、シャッタ機構を光透
過用の窓を配列形成した遮光板で構成し、この遮光板を
光ビームの軸方向と垂直な面上で受光素子の配列ピッチ
寸法の単位で移動可能としても、隣接する受光素子から
の信号を選択的かつ順序的に得ることができ、ブルーミ
ング現象の回避が実現される。
Further, the shutter mechanism is composed of a liquid crystal device, a plurality of transparent electrodes respectively corresponding to a plurality of light receiving elements are formed in an array, and the transparent electrodes are selectively and sequentially energized, Signals from adjacent light receiving elements can be selectively and sequentially obtained, and the blooming phenomenon can be avoided. Similarly, even if the shutter mechanism is composed of a light-shielding plate in which windows for transmitting light are arrayed, and this light-shielding plate can be moved in units of the arrangement pitch dimension of the light-receiving elements on a plane perpendicular to the axial direction of the light beam, Signals from adjacent light receiving elements can be selectively and sequentially obtained, and the blooming phenomenon can be avoided.

【0032】また、信号処理手段は、複数の受光素子の
個々の出力信号をサンプリングデータとし、光ビームの
ビーム径方向の光強度分布をガウス分布近似式により演
算し、得られた光強度分布特性から光ビームのビーム径
が測定でき、かつ異なる光ビーム位置での測定を行うこ
とで光ビームのウェスト位置を測定することが可能とな
る。
Further, the signal processing means uses the individual output signals of the plurality of light receiving elements as sampling data, calculates the light intensity distribution of the light beam in the beam diameter direction by a Gaussian distribution approximation formula, and obtains the obtained light intensity distribution characteristics. Thus, the beam diameter of the light beam can be measured, and the waist position of the light beam can be measured by performing measurement at different light beam positions.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の全体構成とその要部の分
解構成を示す斜視図である。
FIG. 1 is a perspective view showing an overall configuration of a first embodiment of the present invention and an exploded configuration of a main part thereof.

【図2】センサ部の正面図と断面図である。FIG. 2 is a front view and a cross-sectional view of a sensor unit.

【図3】制御部の一例を示す回路図である。FIG. 3 is a circuit diagram showing an example of a control unit.

【図4】信号処理部の動作を説明するための出力信号を
示す図である。
FIG. 4 is a diagram showing an output signal for explaining the operation of the signal processing unit.

【図5】ビームウエストを測定する方法の一例を示す模
式図である。
FIG. 5 is a schematic diagram showing an example of a method for measuring a beam waist.

【図6】ビーム形状を測定する方法の一例を示す模式図
である。
FIG. 6 is a schematic diagram showing an example of a method for measuring a beam shape.

【図7】第1実施例のセンサ部の変形例の構成を示す断
面図である。
FIG. 7 is a cross-sectional view showing the configuration of a modified example of the sensor unit of the first embodiment.

【図8】第1実施例のセンサ部の他の変形例の構成を示
す斜視図である。
FIG. 8 is a perspective view showing the configuration of another modified example of the sensor unit of the first embodiment.

【図9】本発明の第2実施例のセンサ部の斜視図であ
る。
FIG. 9 is a perspective view of a sensor unit according to a second embodiment of the present invention.

【図10】第2実施例の動作を説明するための断面図で
ある。
FIG. 10 is a cross-sectional view for explaining the operation of the second embodiment.

【符号の説明】[Explanation of symbols]

1 光ビーム形状測定装置 2 センサ部 3 制御部 4 駆動部 5 信号処理部 11 一次元固体撮像素子 12 シャッタ機構 21 液晶 22,23 透明電極 24 偏光板 31,32 駆動回路 33 制御回路 41 遮光板 42 窓 44 磁性体 45,46 電磁石 DESCRIPTION OF SYMBOLS 1 Light beam shape measuring device 2 Sensor part 3 Control part 4 Driving part 5 Signal processing part 11 One-dimensional solid-state image sensor 12 Shutter mechanism 21 Liquid crystal 22,23 Transparent electrode 24 Polarizing plate 31,32 Driving circuit 33 Control circuit 41 Light-shielding plate 42 Window 44 magnetic material 45,46 electromagnet

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 測定を行う光ビームを受光してその光強
度に対応する信号を出力する複数の受光素子を備えるセ
ンサ部と、前記センサ部を駆動して前記受光素子を選択
的かつ順序的に動作させる駆動手段と、前記各受光素子
から出力される信号を処理して光ビーム形状を認識する
信号処理手段とを備えることを特徴とする光ビーム形状
の測定装置。
1. A sensor unit comprising a plurality of light receiving elements for receiving a light beam to be measured and outputting a signal corresponding to the light intensity, and driving the sensor unit to selectively and sequentially operate the light receiving elements. And a signal processing means for recognizing a light beam shape by processing signals output from the respective light receiving elements.
【請求項2】 センサ部は、複数の受光素子が光ビーム
径よりも長い寸法に配列された1次元固体撮像素子と、
この固体撮像素子の前側に位置されて前記複数の受光素
子を個々に遮光可能なシャッタ機構とで構成される請求
項1の光ビーム形状の測定装置。
2. The sensor unit includes a one-dimensional solid-state imaging device in which a plurality of light receiving elements are arranged in a dimension longer than a light beam diameter,
The light beam shape measuring apparatus according to claim 1, wherein the measuring device is a front side of the solid-state image pickup device and comprises a shutter mechanism capable of individually shielding the plurality of light receiving elements.
【請求項3】 センサ部は、複数の受光素子が光ビーム
径よりも大きな縦横寸法に配列された2次元固体撮像素
子と、この固体撮像素子の前側に位置されて前記複数の
受光素子を個々に遮光可能なシャッタ機構とで構成され
る請求項1の光ビーム形状の測定装置。
3. The sensor unit comprises a two-dimensional solid-state image sensor in which a plurality of light-receiving elements are arranged in a vertical and horizontal dimension larger than a light beam diameter, and the plurality of light-receiving elements located in front of the solid-state image sensor. The light beam shape measuring apparatus according to claim 1, wherein the shutter mechanism is capable of blocking light.
【請求項4】 シャッタ機構は液晶装置であり、複数の
受光素子にそれぞれ対応する複数の透明電極を配列形成
し、これらの透明電極に対して選択的かつ順序的に通電
を行なう請求項2または3の光ビーム形状の測定装置。
4. The shutter mechanism is a liquid crystal device, wherein a plurality of transparent electrodes respectively corresponding to a plurality of light receiving elements are formed in an array, and the transparent electrodes are selectively and sequentially energized. 3. Measuring device of light beam shape.
【請求項5】 シャッタ機構は光透過用の窓を配列形成
した遮光板であり、この遮光板を光ビームの軸方向と垂
直な面上で受光素子の配列ピッチ寸法の単位で移動可能
とする請求項2または3の光ビーム形状の測定装置。
5. The shutter mechanism is a light-shielding plate in which light-transmitting windows are arranged in an array, and the light-shielding plate can be moved on a plane perpendicular to the axial direction of the light beam in units of the arrangement pitch dimension of the light-receiving elements. The light beam shape measuring device according to claim 2 or 3.
【請求項6】 遮光板の少なくとも一側に電磁石を配置
し、この電磁石に通電したときの磁力により遮光板を移
動する請求項5の光ビーム形状の測定装置。
6. The light beam shape measuring device according to claim 5, wherein an electromagnet is arranged on at least one side of the light shielding plate, and the light shielding plate is moved by a magnetic force when the electromagnet is energized.
【請求項7】 信号処理手段は、複数の受光素子の個々
の出力信号をサンプリングデータとし、光ビームのビー
ム径方向の光強度分布をガウス分布近似式により演算
し、得られた光強度分布特性から光ビームのビーム径を
測定し、かつこの光ビーム径を光ビームの異なる軸位置
で行うことで光ビーム径のウェスト位置を測定する請求
項1ないし6のいずれかの光ビーム形状の測定装置。
7. The signal processing means uses the individual output signals of the plurality of light receiving elements as sampling data, calculates the light intensity distribution of the light beam in the beam radial direction by a Gaussian distribution approximation formula, and obtains the obtained light intensity distribution characteristics. 7. The light beam shape measuring device according to claim 1, wherein the waist position of the light beam diameter is measured by measuring the beam diameter of the light beam from the laser beam and performing the light beam diameter at different axial positions of the light beam. .
JP10716395A 1995-04-07 1995-04-07 Measuring apparatus of light beam shape Pending JPH08278220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10716395A JPH08278220A (en) 1995-04-07 1995-04-07 Measuring apparatus of light beam shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10716395A JPH08278220A (en) 1995-04-07 1995-04-07 Measuring apparatus of light beam shape

Publications (1)

Publication Number Publication Date
JPH08278220A true JPH08278220A (en) 1996-10-22

Family

ID=14452094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10716395A Pending JPH08278220A (en) 1995-04-07 1995-04-07 Measuring apparatus of light beam shape

Country Status (1)

Country Link
JP (1) JPH08278220A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226869A (en) * 2010-04-16 2011-11-10 Sharp Corp Emission measuring device
CN109738360A (en) * 2019-01-28 2019-05-10 广州玉科仪器有限公司 Micro- transmission measurement instrument and micro- transmission measurement bracket

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226869A (en) * 2010-04-16 2011-11-10 Sharp Corp Emission measuring device
CN109738360A (en) * 2019-01-28 2019-05-10 广州玉科仪器有限公司 Micro- transmission measurement instrument and micro- transmission measurement bracket

Similar Documents

Publication Publication Date Title
US10382701B2 (en) Active imaging systems and method
US5528038A (en) Temperature distribution measurement apparatus and its application to a human body detecting system
US4749848A (en) Apparatus for and method of measuring distances to objects present in a plurality of directions with plural two-dimensional detectors
JPS5928884B2 (en) Distance detection method
US4916302A (en) Apparatus for and method of measuring distances to objects present in a plurality of directions
US5940525A (en) Fingerprint detection apparatus
JPH0682305A (en) Two-dimensional detector
JPH11211439A (en) Surface form measuring device
EP3841394A1 (en) Waveguide diffusers for lidars
JPH08278220A (en) Measuring apparatus of light beam shape
JP3552170B2 (en) Raster scanner beam steering sensor
US5021660A (en) Pyroelectric infrared detector and driving method therefor
EP0177273B1 (en) Camera for visual inspection
US7595481B2 (en) Scanning optical system measuring device and scanning optical system measuring method
WO2007007998A1 (en) 3-dimensional image detector
JP3959041B2 (en) Imaging device and luminance distribution measuring device
JPH1183721A (en) Auto alignment mechanism for particle size distribution measurement device
WO2018089089A1 (en) Laser scanning active imaging systems and method
JP2001012942A (en) Three-dimensional scanner
US20220342205A1 (en) Piezoelectric based mems device with time sharing actuation and sensing circuitry
JPH034130A (en) Spectrophotometer
JPH11153749A (en) Distance detector
JP2003344459A (en) Photoelectric magnetic field sensor and photoelectric magnetic field detection device
JPH076835B2 (en) Radiometer on-orbit calibration device
JP2000164845A (en) Solid-state image pickup device and positioning device provided with the same