JPH034130A - Spectrophotometer - Google Patents

Spectrophotometer

Info

Publication number
JPH034130A
JPH034130A JP13946989A JP13946989A JPH034130A JP H034130 A JPH034130 A JP H034130A JP 13946989 A JP13946989 A JP 13946989A JP 13946989 A JP13946989 A JP 13946989A JP H034130 A JPH034130 A JP H034130A
Authority
JP
Japan
Prior art keywords
wavelength
pixel
spectral
receiving element
spectral image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13946989A
Other languages
Japanese (ja)
Inventor
Yasutaka Mito
康敬 水戸
Hiroshi Noda
野田 廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP13946989A priority Critical patent/JPH034130A/en
Publication of JPH034130A publication Critical patent/JPH034130A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To shorten the time for measurement by providing arithmetic means for calculating the shape of spectra by specific equation from a change in respective picture element outputs of a photodetector during the movement of spectra. CONSTITUTION:The movement of the spectral image by about 50mum picture element component on the photodetector 3 by 10 deg. oscillation of a glass plate 4 if the average inclination with a central optical path toward the center of a diffraction grating 1 is previously and adequately adjusted through an inlet slit 2 of a quartz glass plate 4. A pulse motor 7 is driven and the output of the photodetector 3 is taken in via an interface 9 at every movement of the spectral image by 10mum, i.e. 0.2nm in wavelength. The computation to calculate the spectral intensity at every 0.2nm wavelength after the end of the spectral movement by 1nm is executed by the equation {where (i) is a picture element number (1 to n); (k) is sampling order; pik is the k-th sampling data of the i-th picture element; S(lambdai, k)is the spectral intensity at wavelength lambdai, k}.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はアレー状のリニヤ受光素子を用いた分光光度計
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a spectrophotometer using an array of linear light receiving elements.

(従来の技術) 分光光度計には波長走査型と一次元的な位置分解能を持
ったリニヤ受光素子を用い波長走査を行わない型とがあ
る。前者は波長分解能が優れているが、所定の波長範囲
を測定するのに時間がか\る。後者はスペクトル上の各
波長の光を同時に測定するので、所定の波長範囲を測定
するのに要する時間は前者に比し著るしく少くてすむ利
点を有するが波長分解能は前者より低い。リニヤ受光素
子を用いる分光光度計はその高速性を活かして時間的に
変化する試料の時間的変化を追跡する場合とかクロマト
グラフの検出手段として用いられる。
(Prior Art) There are two types of spectrophotometers: a wavelength scanning type and a type that uses a linear light-receiving element with one-dimensional positional resolution and does not perform wavelength scanning. The former has excellent wavelength resolution, but it takes time to measure a predetermined wavelength range. Since the latter measures light at each wavelength on the spectrum simultaneously, it has the advantage that the time required to measure a predetermined wavelength range is significantly shorter than the former, but the wavelength resolution is lower than the former. A spectrophotometer using a linear light-receiving element takes advantage of its high speed and is used to track temporal changes in a sample or as a detection means for chromatography.

(発明が解決しようとする課題) 上述したようにリニヤ受光素子を用いた分光光度計は測
定所要時間が短いと云う特徴を有するが、波長分解能が
リニヤ受光素子の画素数により制限されて、波長走査型
の分光光度計に比し低いと云う問題がある。本発明はリ
ニヤ受光素子を用いた分光光度計の波長分解能を向上さ
せようとするものである。
(Problems to be Solved by the Invention) As mentioned above, a spectrophotometer using a linear photodetector has the characteristic that the measurement time is short, but the wavelength resolution is limited by the number of pixels of the linear photodetector. There is a problem that it is lower than that of a scanning type spectrophotometer. The present invention aims to improve the wavelength resolution of a spectrophotometer using a linear light receiving element.

(課題を解決するための手段) 分光器の光学系にリニヤ受光素子上のスペクトル像を波
長分散方向に上記受光素子の一単位素子(画素)分移動
させる手段を設け、上記スペクトル移動の間の上記受光
素子の各画素出力の変化から前記(1)式を解いてスペ
クトルの形を算出する演算手段を設けた。
(Means for Solving the Problem) A means for moving the spectral image on the linear light receiving element in the wavelength dispersion direction by one unit element (pixel) of the light receiving element is provided in the optical system of the spectrometer, and A calculation means was provided for calculating the shape of the spectrum by solving the equation (1) from the change in the output of each pixel of the light receiving element.

(作用) 受光素子上の各画素に端から1〜nの番号をつける。受
光素子上のスペクトル像を基準位置において、S(λ)
とする。この基準位置はスペクトル像を移動させるとき
の、移動開始時の受光素子に対するスペクトル像の位置
である。この基準位置におけるi番目の画素上のスペク
トル分散方向e等分点の各波長をλil+λ12・・・
λieとする(λilは同画素の一方の端の波長、第2
図参照)。このように決めると、スペクトル像が基準位
置にあるときの受光素子の各画素の出力FilはpH−
S(λ11)+SCλ12)+・ S(λN)P21−
S(λ21)+・・・ Pil=S(λ if)十−−5(λ i  e )ス
ペクトル像を−ステップ即ち画素幅の1/eだけ移動さ
せたときの各画素の出力をpH,P21、・・・で表わ
し、一般ににステップ移動させたときのi番目の画°素
の出力をPikで表わすと、下式のようになる。これは
前記(1)式を具体的に書き表わしたものである。
(Operation) Each pixel on the light receiving element is numbered from 1 to n from the end. With the spectral image on the light receiving element at the reference position, S(λ)
shall be. This reference position is the position of the spectral image relative to the light receiving element at the start of movement when the spectral image is moved. Each wavelength of the point equally divided in the spectral dispersion direction e on the i-th pixel at this reference position is λil+λ12...
λie (λil is the wavelength at one end of the same pixel,
(see figure). When determined in this way, the output Fil of each pixel of the light receiving element when the spectral image is at the reference position is pH-
S(λ11)+SCλ12)+・S(λN)P21-
S(λ21)+... Pil=S(λ if) 10−5(λ ie) The output of each pixel when the spectral image is moved by -step, that is, 1/e of the pixel width, is pH, P21 , . . , and the output of the i-th pixel when it is generally moved in steps is expressed as Pik, as shown in the following equation. This is a concrete representation of the above formula (1).

pH−5(λII)+5(λ12)+・・・+S(λI
t’)Pl2−     S(λ12)+・・・+S(
λ1 e )+S(λ21)2l− 5(λ21)十・・・ Pik−5(λ、k)+S(λi、k+l)−+S(λ
ik+e)となり、各画素につきe個、全画素について
eXn個の測定値が得られ、それらの測定値について、
上記(1)式が成立つ。この式は式の個数がeXn個、
未知数であるS(λik)の個数が波長λllからλn
eまでeX (n+1)−1個あり、このま\では(1
)式を解いてS(λik)を算出することはできない。
pH-5(λII)+5(λ12)+...+S(λI
t') Pl2- S(λ12)+...+S(
λ1 e )+S(λ21)2l- 5(λ21) 10... Pik-5(λ, k)+S(λi, k+l)-+S(λ
ik+e), and e measurement values are obtained for each pixel and eXn measurement values for all pixels, and for these measurement values,
The above formula (1) holds true. This formula has eXn formulas,
The number of unknowns S(λik) varies from wavelength λll to λn
There are eX (n+1)-1 pieces up to e, and at this moment (1
) cannot be used to calculate S(λik).

しかし実際上光学系の設計を適当にしてスペクトル像が
受光素子の全長にわたって存在せず、受光素子の端の方
には入射光0の画素が存在しているようにすることが出
来る。今仮にスペクトル像が基準位置にあるとき、第3
図実線のようになっていて1番目の画素の出力が0であ
ったとする。即ちスペクトルが第3図のように形成され
ているものとする。この場合前記(10)式の一番目の
式は左右両辺ともOである。次にスペクトル像を1ステ
ツプ左へ移動させると、スペクトルは第3図鎖線のよう
になり1番目の画素の出力P12はS(λ11)シS(
λle)までがOであるから、Pl、2=S(λ21)
となる。更にlステップ左へ移動させると、(1)式の
3番目の式のPl3はS(λ21)+S(λ22)とな
るが、S(λ21)が既に求まっているのでS(λ22
)が求まる。以下同様にして順次S(λ23)・・・S
(λik)・・・を決めて行(ことができる。
However, in practice, it is possible to properly design the optical system so that the spectral image does not exist over the entire length of the light receiving element, and there are pixels with zero incident light at the end of the light receiving element. Now, if the spectral image is at the reference position, the third
Assume that the output of the first pixel is 0 as shown by the solid line in the figure. That is, it is assumed that the spectrum is formed as shown in FIG. In this case, both the left and right sides of the first equation (10) are O. Next, when the spectral image is moved one step to the left, the spectrum becomes as shown by the dashed line in Figure 3, and the output P12 of the first pixel is S(λ11) and S(
λle) is O, so Pl, 2=S(λ21)
becomes. If we move further l steps to the left, Pl3 in the third equation (1) becomes S(λ21) + S(λ22), but since S(λ21) has already been found, S(λ22
) can be found. In the same way, S(λ23)...S
(λik)... can be determined and carried out.

(実施例) 第1図に本発明の一実施例分光光度計を示す。(Example) FIG. 1 shows a spectrophotometer according to an embodiment of the present invention.

lは凹面回折格子、2は入口スリット、3は受光素子の
一次元のホトダイオードアレーである。これら3者は図
のように固定配置されており、受光素子3上にスペクト
ル像が形成されるようになっている。入口スリット2と
回折格子1との間の光路内に石英ガラス板4が挿入され
ている。この石英板は光路外の軸5を支点として、図の
紙面内で回動可能に支持され、軸5と反対側の端から延
出された腕がカム6に当接せしめられており、カム6の
回転により約10°の角範囲で揺動せしめられる。受光
素子は一画素の幅が約25μmで、512素子よりなっ
ており、その上に200nmから700nmまでの波長
範囲のスペクトル像が形成される。従って受光素子の一
画素当りの波長範囲はlnmで、これがこの型の分光光
度計の従来の意味における波長分解能である。石英ガラ
ス板は厚さ約1mmで上述したように10’範囲で揺動
できる。石英ガラス板の入口スリット2がら回折格子中
心に向う中心光路に対する平均の傾きを適当に調整して
おくことにより、石英板4の10°の揺動により、受光
素子3上でスペクトル像を一画素分約50μm移動させ
ることができる。7はカム6を駆動するパルスモータで
ある。石英ガラス(n=1.46)の揺動によって光ビ
ームを移動させるときの関係は第4図に示すように低角
度では揺動角と移動量とは事実上比例関係にある。8は
III御回路で、パルスモータ7を駆動し、受光素子上
をスペクトル像が10μm即ち波長にして0.2nm分
移動する毎にインターフェース9を介して受光素子3の
出力を取込み、lnm分のスペクトル移動を終った後、
波長0.2nm毎のスペクトル強度算出演算を行い、そ
の結果を記憶し、或は表示する。
1 is a concave diffraction grating, 2 is an entrance slit, and 3 is a one-dimensional photodiode array as a light receiving element. These three elements are fixedly arranged as shown in the figure, so that a spectral image is formed on the light receiving element 3. A quartz glass plate 4 is inserted into the optical path between the entrance slit 2 and the diffraction grating 1. This quartz plate is rotatably supported within the plane of the figure with a shaft 5 outside the optical path as a fulcrum, and an arm extending from the end opposite to the shaft 5 is brought into contact with a cam 6. 6, it can be swung within an angular range of about 10 degrees. The light receiving element has a width of about 25 μm per pixel and is made up of 512 elements, on which a spectral image in a wavelength range of 200 nm to 700 nm is formed. Therefore, the wavelength range per pixel of the light receiving element is 1 nm, which is the wavelength resolution of this type of spectrophotometer in the conventional sense. The quartz glass plate has a thickness of about 1 mm and can be oscillated over a range of 10' as described above. By appropriately adjusting the average inclination of the entrance slit 2 of the quartz glass plate with respect to the central optical path toward the center of the diffraction grating, the spectral image can be divided into one pixel on the light receiving element 3 by swinging the quartz plate 4 by 10°. It can be moved approximately 50 μm per minute. 7 is a pulse motor that drives the cam 6. As shown in FIG. 4, when the light beam is moved by swinging the quartz glass (n=1.46), the swing angle and the amount of movement are practically proportional at low angles. 8 is a III control circuit that drives the pulse motor 7, receives the output of the light receiving element 3 via the interface 9 every time the spectral image moves on the light receiving element by 10 μm, that is, 0.2 nm in wavelength, and receives the output of the light receiving element 3 through the interface 9; After finishing the spectrum movement,
Spectral intensity calculation calculations are performed for each wavelength of 0.2 nm, and the results are stored or displayed.

受光素子上でスペクトル像を移動させる手段は任意で石
英ガラス板の他動には圧電素子を用いるとか電磁バイブ
レータを用いることができる。石英ガラス板の代りに鏡
を揺動させてもよい。或は受光素子そのものを波長分散
方向に往復運動させてもよく、その場合の駆動素子とし
ても圧電素子を利用することもできる。
The means for moving the spectral image on the light receiving element is arbitrary, and a piezoelectric element or an electromagnetic vibrator may be used to passively move the quartz glass plate. A mirror may be used instead of the quartz glass plate. Alternatively, the light receiving element itself may be reciprocated in the wavelength dispersion direction, and a piezoelectric element may also be used as the driving element in that case.

なお上述説明では省略したが、ホトダイオードアレーの
ような撮像素子は画素毎に感度のばらつきがあること及
び迷光補正のため、予め試料なしの状態で光源および受
光素子の総合分光特性を既述の要領で測定し算定してお
いて、試料測定の際は各画素の出力を画素毎の上記分光
特性で割算したデータにより上述したスペクトルの算出
演算を行う。また実施例では512画素の素子を用いて
いるが、これに限るものでなく、256画素或は102
412素等の素子を用い得るものであることも云うまで
もない。  (発明の効果)分散素子による波長走査を
行わないで、スペクトル像を撮像素子を用いて一度に測
定する型の分光光度計は波長走査型の分光光度計に比し
、−回の測定に要する時間が著るしく短い特徴があるが
、本発明によれば、その特徴に加えて、高い波長分解能
が得られる。
Although omitted in the above explanation, since the sensitivity of image sensors such as photodiode arrays varies from pixel to pixel, and to correct for stray light, it is necessary to measure the overall spectral characteristics of the light source and photodetector without a sample in advance as described above. When measuring a sample, the above-mentioned spectrum calculation operation is performed using data obtained by dividing the output of each pixel by the above-mentioned spectral characteristics for each pixel. Further, in the embodiment, a 512-pixel element is used, but the device is not limited to this, and 256 pixels or 102 pixels are used.
Needless to say, elements such as 412 elements can be used. (Effect of the invention) A type of spectrophotometer that measures a spectral image at once using an image sensor without performing wavelength scanning using a dispersive element requires -1 measurement time compared to a wavelength scanning type spectrophotometer. Although it has a characteristic that the time is extremely short, according to the present invention, in addition to this characteristic, high wavelength resolution can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例装置の平面図、第2図は本発
明の作用説明図、第3図も同じく作用説明図、第4図は
ガラス板4の揺動角と光ビームのずれとの関係グラフで
ある。 l・・・回折格子、2・・・出口スリット、3・・・受
光素子(例えばホトダイオードアレー)、4・・・石英
ガラス板、5・・・支軸、6・・・カム、7・・・モー
タ、8・・・制御回路、9・・・インターフェース。 メ4 口
FIG. 1 is a plan view of an apparatus according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of the operation of the present invention, FIG. 3 is also an explanatory diagram of the operation, and FIG. This is a relationship graph with deviation. l... Diffraction grating, 2... Exit slit, 3... Light receiving element (for example, photodiode array), 4... Quartz glass plate, 5... Support shaft, 6... Cam, 7... - Motor, 8...control circuit, 9...interface. Me4 Mouth

Claims (1)

【特許請求の範囲】 一次元的な位置分解能を持った受光素子上にスペクトル
像を形成し、同受光素子の各単位素子(以下画素という
)の出力からスペクトルデータを得る型の分光光度計に
おいて、受光素子上でスペクトル像を相対的に一画素分
移動させる手段と、上記スペクトル像移動期間中に上記
受光素子の各画素の出力を複数回サンプリングし、サン
プリングされたデータからl×n個の下式(1)を解い
て、スペクトル像の形S(λ)を算出する演算手段とを
設けたことを特徴とする分光光度計。 Pik=S(λi、k)+S(λi、k+1)+・・・
S(λi、k+l)・・・(1)但し、iは画素番号(
1〜n)、kはサンプリング順位(1〜l)、Pikは
i番目の画素のk番目のサンプリングデータ、S(λi
、k)は波長λi、ににおけるスペクトル強度。
[Claims] In a spectrophotometer of a type that forms a spectral image on a light-receiving element with one-dimensional positional resolution and obtains spectral data from the output of each unit element (hereinafter referred to as a pixel) of the light-receiving element. , a means for relatively moving a spectral image by one pixel on the light-receiving element, and sampling the output of each pixel of the light-receiving element multiple times during the spectral image movement period, and extracting l×n pieces of data from the sampled data. A spectrophotometer characterized in that it is provided with arithmetic means for calculating the shape S(λ) of a spectral image by solving the following equation (1). Pik=S(λi,k)+S(λi,k+1)+...
S(λi, k+l)...(1) However, i is the pixel number (
1 to n), k is the sampling order (1 to l), Pik is the k-th sampling data of the i-th pixel, and S(λi
, k) is the spectral intensity at wavelength λi.
JP13946989A 1989-05-31 1989-05-31 Spectrophotometer Pending JPH034130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13946989A JPH034130A (en) 1989-05-31 1989-05-31 Spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13946989A JPH034130A (en) 1989-05-31 1989-05-31 Spectrophotometer

Publications (1)

Publication Number Publication Date
JPH034130A true JPH034130A (en) 1991-01-10

Family

ID=15245966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13946989A Pending JPH034130A (en) 1989-05-31 1989-05-31 Spectrophotometer

Country Status (1)

Country Link
JP (1) JPH034130A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4017317A1 (en) * 1990-05-30 1991-12-05 Bodenseewerk Perkin Elmer Co System for enhancing spectrometer resolution - shifts spectrum periodically relative to detector array
JP2001311664A (en) * 2000-04-28 2001-11-09 Minolta Co Ltd Photometric device
JP2008116469A (en) * 2001-08-31 2008-05-22 Respironics Inc Microspectrometer gas analyzer
JP2012208050A (en) * 2011-03-30 2012-10-25 Tokyo Electron Ltd Measuring device and plasma processor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4017317A1 (en) * 1990-05-30 1991-12-05 Bodenseewerk Perkin Elmer Co System for enhancing spectrometer resolution - shifts spectrum periodically relative to detector array
DE4017317C2 (en) * 1990-05-30 2000-02-17 Bodenseewerk Perkin Elmer Co Anode to improve the resolution of a spectrometer
JP2001311664A (en) * 2000-04-28 2001-11-09 Minolta Co Ltd Photometric device
JP2008116469A (en) * 2001-08-31 2008-05-22 Respironics Inc Microspectrometer gas analyzer
JP2012208050A (en) * 2011-03-30 2012-10-25 Tokyo Electron Ltd Measuring device and plasma processor

Similar Documents

Publication Publication Date Title
JP4368163B2 (en) Spectral element array, spectral image measuring apparatus including the same, and spectral image measuring method
CN105486665B (en) A kind of SPR detection methods
EP2526392B1 (en) Compact interferometer spectrometer
EP0479379B1 (en) Spectrophotometer having means for simultaneous modulation, switching and wavelength selection of a light source
US4804266A (en) Continuously rotating grating rapid-scan spectrophotometer
JP2007132934A (en) Spectroscopy system
CN106404713A (en) Double-detector micro near-infrared spectrometer with whole spectral band of 800-2,500nm
JP2015504523A (en) Tunable light source system with wavelength measurement function for hyperspectral imaging system
US9903758B2 (en) Spectral measurement device and analysis apparatus
CN102538966A (en) Short wave infrared laboratory spectrum calibration and correction method for hyper spectral imager
CN101539457A (en) Miniature spectrometer based on MEMS micro lens array
JPH09145477A (en) Spectroscope
JPH034130A (en) Spectrophotometer
US9546903B2 (en) Data knitting tandem dispersive range monochromator
JP2017219533A (en) Spectrum measuring instrument and analyzing device
US20140085637A1 (en) Tunable light source system and method having wavelength reference capability
JP2001235368A (en) Micro spectrometer
JPH02126106A (en) Polarization analyzer
CN115389441A (en) High-precision mid-infrared spectrum detection method
KR101054017B1 (en) Calibration method of the spectrometer
JP2014035224A (en) Spectrophotometer
JPH075400Y2 (en) Multi-channel curse measuring device
IL280200B2 (en) Optical technique for material characterization
JP3113708B2 (en) Optical transmission characteristics measurement device
WO2023127269A1 (en) Spectroscopic device