JP2001235368A - Micro spectrometer - Google Patents

Micro spectrometer

Info

Publication number
JP2001235368A
JP2001235368A JP2000048075A JP2000048075A JP2001235368A JP 2001235368 A JP2001235368 A JP 2001235368A JP 2000048075 A JP2000048075 A JP 2000048075A JP 2000048075 A JP2000048075 A JP 2000048075A JP 2001235368 A JP2001235368 A JP 2001235368A
Authority
JP
Japan
Prior art keywords
light
light receiving
microspectrometer
diffraction grating
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000048075A
Other languages
Japanese (ja)
Inventor
Yutaka Kinugasa
豊 衣笠
Masaaki Nakada
公明 中田
Hiroyuki Yoshida
浩之 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2000048075A priority Critical patent/JP2001235368A/en
Publication of JP2001235368A publication Critical patent/JP2001235368A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the size and cost of spectrometer without requiring many light receiving elements. SOLUTION: This micro spectrometer is provided with a light entering part 2, a diffraction grating part 3 for diffracting light from the light entering part 2, and a light receiving part 5 for receiving diffracted light diffracted by the diffraction grating part 3. The light entering part 2 and the diffraction grating part 3 are integrally formed on a base, and the light receiving part 5 is made freely movable along an imaging part of the diffracted light. A spectrum can be measured with a small number of the light receiving elements. Or, a second light entering part 22 where a reference light out of a wavelength range for a measuring object enters is provided, and a second light receiving element for receiving the reference light of different spectral sensitivity wavelength from the light receiving element for receiving light from the measuring object is installed in the light receiving part 5. A shift of an imaging position can be corrected by using an output of the second light receiving element for receiving the reference light even when the imaging position of the diffracted light is shifted due to an individual difference of width of grating of the diffraction grating part 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光を波長ごとに分解
してそのスペクトル強度分布を算出するマイクロスペク
トロメータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microspectrometer for calculating a spectral intensity distribution by decomposing light for each wavelength.

【0002】[0002]

【従来の技術】マイクロスペクトロメータとして、図2
0に示すように、光ファイバー20の端部を固定してい
る入光部2と、光ファイバー20を通じて入光した光を
回折させるためのグレーティング30を施した回折格子
部3と、ミラー4等を基台1に一体成形したものに、波
長ごとに回折した光を受光する受光部5を取り付けたも
のがある。ここにおける受光部5には多数の受光素子を
等間隔で並べたフォトダイオードアレーが用いられてお
り、各受光素子が各波長の結像部と一致するように位置
決めして基台1に接着固定しておくことで、回折格子部
3によって回折させた各波長の光を各受光素子で受光す
ることができるようにしている。
2. Description of the Related Art FIG.
As shown in FIG. 2, a light incident portion 2 fixing an end of the optical fiber 20, a diffraction grating portion 3 provided with a grating 30 for diffracting light incident through the optical fiber 20, a mirror 4 and the like are provided. There is a type integrally formed with the base 1 to which a light receiving unit 5 for receiving light diffracted for each wavelength is attached. Here, a photodiode array in which a large number of light receiving elements are arranged at equal intervals is used for the light receiving section 5, and each light receiving element is positioned so as to coincide with the image forming section of each wavelength and is adhered and fixed to the base 1. By doing so, light of each wavelength diffracted by the diffraction grating section 3 can be received by each light receiving element.

【0003】[0003]

【発明が解決しようとする課題】しかし、フォトダイオ
ードアレーで構成した受光部5はきわめて高価であり、
入光部と回折格子部とを基台に一体化することで安価に
成形できたとしても、全体の価格が跳ね上がってしま
う。可視領域光(VIS)の回折光を受光するための2
56素子Siフォトダイオードアレーは数万円、近赤外
光(NIR)の回折光を受光するためのInGaAsあ
るいはGeフォトダイオードアレーにいたっては数十万
円する。
However, the light receiving section 5 composed of a photodiode array is extremely expensive.
Even if the light-entering portion and the diffraction grating portion are integrated on the base, the molding can be performed at low cost, but the overall price jumps. 2 for receiving the diffracted light of the visible region light (VIS)
The 56-element Si photodiode array costs several hundred thousand yen, and the InGaAs or Ge photodiode array for receiving diffracted light of near-infrared light (NIR) costs several hundred thousand yen.

【0004】本発明はこのような点に鑑みなされたもの
であって、その目的とするところは小型で安価なマイク
ロスペクトロメータを提供するにある。
[0004] The present invention has been made in view of the above points, and an object of the present invention is to provide a small and inexpensive microspectrometer.

【0005】[0005]

【課題を解決するための手段】しかして本発明の第1の
特徴とするところは、入光部と、入光部からの光を回折
させる回折格子部と、回折格子部による回折光を受光す
る受光部とを備えているマイクロスペクトロメータにお
いて、入光部と回折格子部とが基台上に一体に形成され
ており、受光部は回折光の結像部に沿って移動自在とな
っていることにある。小数の受光素子でスペクトル計測
を行うことができる。
Means for Solving the Problems A first feature of the present invention is that a light incident portion, a diffraction grating portion for diffracting the light from the light incident portion, and a device for receiving the diffracted light by the diffraction grating portion. In a microspectrometer including a light receiving portion, a light incident portion and a diffraction grating portion are integrally formed on a base, and the light receiving portion is movable along an image forming portion of the diffracted light. Is to be. Spectrum measurement can be performed with a small number of light receiving elements.

【0006】また本発明の第2の特徴とするところは、
入光部と、入光部からの光を回折させる回折格子部と、
回折格子部による回折光の結像部に沿って移動自在とさ
れた受光部とを備えているマイクロスペクトロメータに
おいて、測定対象とする波長域の域外の波長の参照光を
入光する第2入光部を備えるとともに、回折光の結像部
に沿って移動自在となっている受光部は参照光の受光用
であって測定対象光のための受光素子と分光感度波長が
異なる第2の受光素子を備えていることにある。このも
のでは、回折格子部の格子幅の固体差で回折光の結像位
置がずれても参照光を受光する第2の受光素子の出力を
利用することで結像位置のずれについての補正を行うこ
とができる。なお、第2入光部は入光部で代用してもよ
い。つまり、測定すべき光にこの光の波長域と異なる波
長の参照用光を合成して入光部から送り込むようにして
もよいものである。
A second feature of the present invention is that
A light incident portion, a diffraction grating portion for diffracting light from the light incident portion,
A light receiving portion movable along an image forming portion of the diffracted light by the diffraction grating portion, wherein the second input portion receives the reference light having a wavelength outside the wavelength range to be measured. The second light receiving portion, which has a light portion and is movable along the image forming portion of the diffracted light, is for receiving the reference light and has a different spectral sensitivity wavelength from the light receiving element for the light to be measured. That the device is provided. In this device, even when the imaging position of the diffracted light shifts due to the individual difference in the grating width of the diffraction grating portion, the correction of the imaging position shift is performed by using the output of the second light receiving element that receives the reference light. It can be carried out. It should be noted that the second light incident section may be replaced by a light incident section. In other words, the reference light having a wavelength different from the wavelength range of the light to be measured may be combined with the light to be measured and sent from the light incident portion.

【0007】受光部が備える分光感度波長が異なる少な
くとも2つの受光素子のうちの一つはInGaAs素子
であることや、受光部が備える分光感度波長が異なる少
なくとも2つの受光素子のうちの一つがSi素子である
ことが好ましい。
[0007] One of the at least two light receiving elements having different spectral sensitivity wavelengths provided in the light receiving section is an InGaAs element, and one of the at least two light receiving elements having different spectral sensitivity wavelengths provided in the light receiving section is Si. It is preferably an element.

【0008】回折光の結像位置に一端を位置させた導波
路の他端に受光部が対向して上記導波路を介して受光部
が回折光を受光してもよく、この場合、導波路の他端を
円周上に位置させて、回転体上に位置させた受光部が回
転体の回転により上記導波路の他端の並びに沿って移動
自在となるようにしておいてもよい。
A light receiving portion may face the other end of the waveguide whose one end is located at the image forming position of the diffracted light, and the light receiving portion may receive the diffracted light via the waveguide. The other end of the waveguide may be positioned on the circumference so that the light receiving unit positioned on the rotating body is movable along the other end of the waveguide by rotation of the rotating body.

【0009】受光部の移動時間の計測部を備えて受光部
の移動時間と受光部からの出力信号との関係からスペク
トル分布を測定するほか、受光部の移動位置の検出部材
を備えて、該検出部材による受光部の移動位置と受光部
からの出力信号との関係からスペクトル分布を測定する
ようにしてもよい。
[0009] In addition to measuring the spectrum distribution based on the relationship between the moving time of the light receiving unit and the output signal from the light receiving unit, a measuring unit for measuring the moving time of the light receiving unit is provided. The spectral distribution may be measured from the relationship between the position of the light receiving unit moved by the detection member and the output signal from the light receiving unit.

【0010】また、受光部の移動を複数回繰り返してス
ペクトル分布を測定することも好ましい。
It is also preferable to measure the spectral distribution by repeating the movement of the light receiving section a plurality of times.

【0011】受光部を移動させる点に関しては、軸回り
に回転駆動されるねじ軸との螺合でねじ軸の軸方向に移
動するようにしたり、回転駆動されるピニオンと噛合し
ているラック上に受光部を設けて移動自在としたり、空
気圧やばね圧にて駆動されるアクチュエータ上に受光部
を設けて移動自在としたり、回転駆動されるカムとの係
合で往復運動を行うカムフォロア上に設けて移動自在と
したりすることができる。また、バイメタルとこれを加
熱するヒータとを駆動源として受光部を移動させたり、
形状記憶合金とこれを加熱するヒータとを駆動源として
受光部を移動させるようにしてもよい。
Regarding the point of moving the light receiving portion, the light receiving portion is moved in the axial direction of the screw shaft by being screwed with the screw shaft which is driven to rotate around the axis, or on a rack which is engaged with the pinion which is driven to rotate. A light receiving part is provided on the actuator, and a light receiving part is provided on an actuator driven by air pressure or spring pressure to make it movable, or on a cam follower that reciprocates by engaging with a rotationally driven cam. It can be provided to be movable. Also, the light receiving unit is moved by using the bimetal and the heater for heating the bimetal as a driving source,
The light receiving unit may be moved using the shape memory alloy and a heater for heating the shape memory alloy as a drive source.

【0012】さらには、受光部を電磁駆動手段により移
動させるようにしてもよい。
Further, the light receiving section may be moved by electromagnetic driving means.

【0013】また、受光部は入光部と回折格子部とを一
体に形成している基台に一体に設けた支持部材により移
動自在としておくのも好ましい。
It is also preferable that the light receiving section is movable by a support member integrally provided on a base on which the light input section and the diffraction grating section are integrally formed.

【0014】[0014]

【発明の実施の形態】以下本発明を実施の形態の一例に
基づいて詳述すると、図示例のマイクロスペクトロメー
タは、光ファイバー20の端部を固定している入光部2
と、光ファイバー20を通じて入光した光を回折させる
ためのグレーティングを施した回折格子部3と、ミラー
4等を基台1に一体成形したFastie-Ebert型のものに受
光部5を取り付けたものであるが、ここにおける受光部
5は回折光の結像位置に沿って移動自在となっているも
ので、受光素子51は少数(図示例では1個)を備える
だけのものとなっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to an example of an embodiment. The microspectrometer shown in the figure is a light-incoming unit 2 for fixing an end of an optical fiber 20.
And a diffraction grating section 3 provided with a grating for diffracting light incident through an optical fiber 20, and a Fastie-Ebert type in which a mirror 4 and the like are integrally formed on the base 1, and a light receiving section 5 is attached. However, the light receiving section 5 here is freely movable along the image forming position of the diffracted light, and the light receiving element 51 has only a small number (one in the illustrated example).

【0015】上記入光部2の光ファイバー20に測定対
象光を送り込み、ミラー4で反射させた後、回折格子部
3で回折させ、該回折光を再度ミラー4で反射させて受
光部4が移動自在となっている結像位置に送るのである
が、回折光の結像位置に沿って受光部5を移動させ、こ
の移動の速度及びデータサンプリング時間を調整するこ
とにより、測定データの分解能を調整することができる
ものとなっている。
The light to be measured is sent to the optical fiber 20 of the light input section 2 and is reflected by the mirror 4, then diffracted by the diffraction grating section 3, and the diffracted light is reflected by the mirror 4 again to move the light receiving section 4. The light is sent to the free imaging position, but the resolution of the measurement data is adjusted by moving the light receiving unit 5 along the imaging position of the diffracted light and adjusting the speed of this movement and the data sampling time. It is something that can be done.

【0016】ところで入光部2や回折格子部3等を一体
化させた基台1の量産にあたっては、基台1の成形時に
おける成形条件のわずかな変化に伴う収縮率の変化が回
折格子部3の回折格子の格子幅に影響を及ぼして、光学
設計通りの位置に結像しないことが生じる。これは回折
光の結像部に沿って受光部5を往復走行させるもの、す
なわち結像部が光学設計通りの位置にあることを前提と
するものでは、個体差となって品質のばらつきが生じ
る。この点について対処した例を図2に示す。
In the mass production of the base 1 in which the light incident portion 2 and the diffraction grating portion 3 are integrated, a change in the shrinkage rate due to a slight change in the molding conditions at the time of molding the base 1 is caused by the change in the diffraction grating portion. Influence on the grating width of the diffraction grating No. 3 to cause an image not to be formed at a position according to the optical design. In the case where the light receiving unit 5 reciprocates along the image forming part of the diffracted light, that is, on the assumption that the image forming part is located at the position according to the optical design, there is an individual difference and a quality variation occurs. . FIG. 2 shows an example that addresses this point.

【0017】ここで示したマイクロスペクトロメータ
は、光ファイバー20の端部を固定している入光部2
と、同じく光ファイバー21の端部を固定している第2
入光部22と、光ファイバー20,21を通じて入光し
た光を回折させるためのグレーティングを施した回折格
子部3と、ミラー4等を基台1に一体成形したものに、
受光部5を取り付けたものであり、ここにおける受光部
5は、分光感度波長域が異なる少なくとも2つの受光素
子51,52を備えて、回折光の結像位置に沿って移動
自在となっている。
The micro-spectrometer shown here is a light-entering section 2 for fixing the end of the optical fiber 20.
And the second fixing the end of the optical fiber 21
A light input part 22, a diffraction grating part 3 provided with a grating for diffracting light incident through the optical fibers 20, 21 and a mirror 4 and the like are integrally formed on the base 1.
The light receiving unit 5 is attached thereto. The light receiving unit 5 includes at least two light receiving elements 51 and 52 having different spectral sensitivity wavelength ranges, and is movable along an image forming position of the diffracted light. .

【0018】上記受光部5の2種の受光素子51,52
は上述のように分光感度波長域が異なるもので、たとえ
ば受光素子51は、図3に示すように、Si素子からな
る可視光領域で感度を持つもの、他方の受光素子52は
InGaAs素子からなる近赤外光領域で感度を持つも
のとなっている。そして、測定したい光の波長域が近赤
外光領域である1200nm〜1800nmである場合
は、受光素子52を測定対象光用、受光素子51を参照
光用として用いる。
The two types of light receiving elements 51 and 52 of the light receiving section 5
Has a different spectral sensitivity wavelength range as described above. For example, as shown in FIG. 3, the light receiving element 51 has sensitivity in a visible light region made of an Si element, and the other light receiving element 52 is made of an InGaAs element. It has sensitivity in the near infrared light region. When the wavelength range of the light to be measured is in the near-infrared light range of 1200 nm to 1800 nm, the light receiving element 52 is used for the light to be measured and the light receiving element 51 is used for the reference light.

【0019】一方、上記入光部2の光ファイバー20に
は測定対象光を送り込み、ミラー4で反射させた後、回
折格子部3で回折させ、該回折光を再度ミラー4で反射
させて受光部4が移動自在となっている結像位置に送る
のであるが、第2入光部22の光ファイバー21には参
照光を送り込む。この参照光には、受光素子51が感度
を有している可視光を用いる。なお、可視光としては、
輝線スペクトルを持っているものが好ましい。
On the other hand, the light to be measured is sent to the optical fiber 20 of the light entering section 2 and is reflected by the mirror 4, then diffracted by the diffraction grating section 3, and the diffracted light is reflected by the mirror 4 again to receive light. The reference light 4 is sent to the movable imaging position where the reference light 4 is sent to the optical fiber 21 of the second light input unit 22. As the reference light, visible light to which the light receiving element 51 has sensitivity is used. In addition, as visible light,
Those having an emission line spectrum are preferred.

【0020】入光部2から測定対象光を送り込むととも
に入光部22から参照光を送り込んだ状態で回折光の結
像位置に沿って受光部5を移動させれば、この移動の時
間軸もしくは位置軸に応じて、たとえば図4に示すよう
な出力を受光素子51,52から得ることができる。従
って、回折光の結像位置について、参照光を受光した受
光素子51と測定対象光を受光する受光素子52との相
関関係を予め計算で把握しておけば、回折格子部3の格
子幅が変化しても、容易に補正することができる。参照
光を受けた受光素子51の出力をトリガーとして測定の
開始や終了を行うようにすることもできる。受光素子5
1と受光素子52の対は複数対であってもよいのはもち
ろんである。
If the light receiving unit 5 is moved along the imaging position of the diffracted light while the light to be measured is sent from the light input unit 2 and the reference light is sent from the light input unit 22, the time axis of the movement or For example, outputs as shown in FIG. 4 can be obtained from the light receiving elements 51 and 52 according to the position axis. Therefore, if the correlation between the light receiving element 51 that receives the reference light and the light receiving element 52 that receives the light to be measured is calculated in advance with respect to the image forming position of the diffracted light, the grating width of the diffraction grating unit 3 becomes larger. Even if it changes, it can be easily corrected. The start and end of the measurement can be performed by using the output of the light receiving element 51 receiving the reference light as a trigger. Light receiving element 5
It goes without saying that a plurality of pairs of 1 and the light receiving element 52 may be provided.

【0021】近赤外光領域のための受光素子52とし
て、この領域での感度特性が良い上に常温で動作させる
ことができるために、近赤外光領域での吸収の多い有機
物の分析に好適なInGaAs素子を示したが、他の素
子を用いることを妨げない。
As the light receiving element 52 for the near-infrared light region, since it has good sensitivity characteristics in this region and can be operated at room temperature, it can be used to analyze organic substances having a large absorption in the near-infrared light region. Although a preferred InGaAs device has been shown, it does not prevent other devices from being used.

【0022】また、可視光領域での受光素子51とし
て、この領域での感度特性が良い上に常温で動作させる
ことが可能であり、しかも輝線スペクトルを作りやすい
Si素子を示したが、これも他の素子を用いることを妨
げない。
Further, as the light receiving element 51 in the visible light region, a Si device which has good sensitivity characteristics in this region, can be operated at room temperature, and easily produces a bright line spectrum has been described. It does not prevent using other elements.

【0023】図5に他例を示す。これは回折光の結像位
置に一端を位置させた複数本の光ファイバーからなる導
波路7の各他端を一直線上に並べてこれら導波路7の他
端の並びに沿って受光部5を移動自在としたものを示し
ている。これは光学系の関係で結像位置が一直線上にな
らない場合において、特に有効である。たとえば図6に
示すように、回折格子部3として凹面回折格子を用いた
Rowlandマウントの場合、回折光はRowlan
d円上に結像するために、この円に沿って受光部5を位
置ずれなく移動させようとすると移動構造が複雑となる
が、導波路7を介在させて、該導波路7の各一端を結像
位置である上記円上に、他端を一直線上に並べること
で、受光部5は直線移動させるだけでよくなり、受光部
5を移動させるための駆動機構の構成が簡単になるとと
もに測定精度も向上する。
FIG. 5 shows another example. This means that the other end of each of the waveguides 7 composed of a plurality of optical fibers whose one end is located at the image forming position of the diffracted light is arranged in a straight line, and the light receiving unit 5 is movable along the other end of the waveguides 7. This is shown. This is particularly effective when the imaging position is not on a straight line due to the optical system. For example, as shown in FIG. 6, in the case of a Rowland mount using a concave diffraction grating as the diffraction grating section 3, the diffracted light is in a Rowland mount.
If an attempt is made to move the light receiving unit 5 along the circle without any positional deviation to form an image on the circle d, the moving structure becomes complicated. Are arranged on the above-mentioned circle, which is an image forming position, and the other end is arranged in a straight line, so that the light receiving section 5 only needs to be moved linearly, and the configuration of the drive mechanism for moving the light receiving section 5 is simplified, and Measurement accuracy is also improved.

【0024】導波路7の他端は一直線上に並べるのでは
なく、図7に示すように、円周上に並べ、受光部5は回
転体70上に配置して回転体70の回転で導波路7の他
端の円の並びに沿って移動自在させるようにしてもよ
い。この場合、受光部5を移動させるための駆動機構を
簡単なものとすることができる。
The other ends of the waveguides 7 are not arranged in a straight line, but are arranged in a circle as shown in FIG. 7, and the light receiving section 5 is arranged on a rotating body 70 and guided by the rotation of the rotating body 70. The wave path 7 may be freely movable along the circle at the other end. In this case, the driving mechanism for moving the light receiving unit 5 can be simplified.

【0025】前述のように、受光素子51,52の出力
からスペクトル測定を行う場合、受光部5の移動につい
ての時間軸あるいは位置軸に基づいて測定することにな
るが、受光部5の移動速度を定速度とすることができる
のであれば、受光部5の移動時間の計測部を設けて、図
8に示すように、時間軸と出力信号との関係からスペク
トル分布測定を行うのが好ましい。高い測定精度を得る
ことができる。
As described above, when the spectrum is measured from the outputs of the light receiving elements 51 and 52, the measurement is performed based on the time axis or the position axis of the movement of the light receiving section 5. It is preferable to provide a measuring unit for measuring the moving time of the light receiving unit 5 and measure the spectrum distribution from the relationship between the time axis and the output signal as shown in FIG. High measurement accuracy can be obtained.

【0026】しかし、受光部5の移動速度が一定でない
場合には、図9に示すように、受光部5の移動位置の検
出部材8、たとえばレーザー変位センサを設けて、受光
部5の移動位置(移動距離)と出力信号との関係からス
ペクトル分布を測定することができる。受光部5を定速
度で移動させなくてもすむために、駆動部の構成を簡略
化することができる。
However, when the moving speed of the light receiving unit 5 is not constant, a detecting member 8 for detecting the moving position of the light receiving unit 5, for example, a laser displacement sensor is provided as shown in FIG. The spectrum distribution can be measured from the relationship between the (moving distance) and the output signal. Since it is not necessary to move the light receiving unit 5 at a constant speed, the configuration of the driving unit can be simplified.

【0027】また、スペクトル測定を行うにあたって
は、特に位置軸に基づいて測定を行う場合には、図10
に示すように、受光部5の移動の往路と復路の両方で測
定を行い、複数の測定結果の平均値を取ってこれを測定
値とすることで、測定精度を向上させることができる。
Further, when performing the spectrum measurement, particularly when the measurement is performed based on the position axis, FIG.
As shown in (5), the measurement accuracy can be improved by performing the measurement on both the outward path and the return path of the movement of the light receiving unit 5, taking an average value of a plurality of measurement results, and using this as a measured value.

【0028】図11は受光部5を移動させるための駆動
部の構成の具体例を示しており、モータ54によって回
転駆動されるねじ軸53にスライドガイドされているス
ライダー55を螺合させて、ねじ軸53の回転でねじ軸
53の軸方向に移動するスライダー55上に受光部5を
配している。この場合、受光部5の移動速度の管理が容
易である。
FIG. 11 shows a specific example of the configuration of a drive unit for moving the light receiving unit 5. A slider 55 slidably guided by a screw shaft 53 driven by a motor 54 is screwed into the screw shaft 53. The light receiving unit 5 is arranged on a slider 55 that moves in the axial direction of the screw shaft 53 by the rotation of the screw shaft 53. In this case, management of the moving speed of the light receiving unit 5 is easy.

【0029】図12に示すように、回転駆動されるピニ
オン60と噛合するラック61上に受光部5を設けて
も、受光部5を簡単に且つ精度良く直線移動させること
ができる。
As shown in FIG. 12, even if the light receiving section 5 is provided on the rack 61 which meshes with the pinion 60 which is driven to rotate, the light receiving section 5 can be linearly moved easily and accurately.

【0030】図13に示すように、エアシリンダー62
で駆動されるアクチュエータ63上に受光部5を設けて
もよい。
As shown in FIG.
The light receiving unit 5 may be provided on the actuator 63 that is driven by.

【0031】また、図14に示すようにばね76,77
の各一端が連結されているアクチュエータ63上に受光
部5を設けて、ばね77の他端が連結されているスイッ
チ78を手動で引いてばね76,77にばね力を蓄積
し、スイッチ78から指を離すことでばね76,77の
ばね力により受光部5を往復動させるようにしてもよ
い。
Also, as shown in FIG.
The light receiving unit 5 is provided on the actuator 63 to which one end of each of the springs 77 is connected, and the switch 78 to which the other end of the spring 77 is connected is manually pulled to accumulate spring force in the springs 76, 77. By releasing the finger, the light receiving unit 5 may be reciprocated by the spring force of the springs 76 and 77.

【0032】さらに図15に示すように、偏心軸67を
備えたカム66を回転させれば、偏心軸67が長孔69
に係合するカムフォロア67を往復直線運動させる機構
におけるカムフォロア67上に受光部5を配してもよ
い。正確な往復直線運動を得ることができる。
When the cam 66 having the eccentric shaft 67 is rotated as shown in FIG.
The light receiving unit 5 may be arranged on the cam follower 67 in the mechanism for linearly reciprocating the cam follower 67 that engages with the lens. Accurate reciprocating linear motion can be obtained.

【0033】このほか、図16に示すように、ヒータ7
5による加熱で伸張するバイメタル71で受光部5が配
されたアクチュエータ63を駆動したり、図17に示す
ように、ヒータ75による加熱で伸張する形状記憶合金
72で受光部5が配されたアクチュエータ63を駆動す
るものでは、温度を調節するだけで受光部5を移動させ
ることができる。
In addition, as shown in FIG.
The actuator 63 provided with the light receiving unit 5 is driven by the bimetal 71 expanded by heating by the heater 5, or the actuator provided by the shape memory alloy 72 expanded by heating by the heater 75 as shown in FIG. In the one that drives 63, the light receiving section 5 can be moved only by adjusting the temperature.

【0034】図18は電磁駆動によって受光部5を移動
させることができるようにした例を示しており、受光部
5に設けた互いに異極が対向する一対の永久磁石56間
に導体部57を配置するとともに、平行に配置した2本
の金属棒58,58に上記導体部57をスライド自在に
接触させ、上記両金属棒58,58とこの金属棒58,
58間を短絡する上記導体部57に電流を流すことで、
金属棒58の長手方向に受光部5を電磁力で動かす。な
お、受光部5を動かす方向はスイッチ59によって切り
換えることができるようにしてある。
FIG. 18 shows an example in which the light receiving section 5 can be moved by electromagnetic driving. A conductor section 57 is provided between a pair of permanent magnets 56 provided on the light receiving section 5 and having mutually opposite polarities. The conductor portion 57 is slidably contacted with two metal bars 58, 58 arranged in parallel with each other, and the two metal bars 58, 58 and the metal bars 58, 58 are arranged.
By passing a current through the conductor portion 57 that short-circuits between 58,
The light receiving unit 5 is moved by electromagnetic force in the longitudinal direction of the metal bar 58. The direction in which the light receiving section 5 is moved can be switched by the switch 59.

【0035】さらには、図19に示すように、基台1に
ヒンジばね15を一体に形成して、該ヒンジばね15の
先端に受光部5を取り付けるようにしてもよい。なお、
ヒンジばね15を撓ませることは手動で行って、ヒンジ
ばね15のばね力により受光部5を往復動させる。受光
部5の往復動支持のための部材を別途用意する必要がな
くなるものである。この時、受光部5は円弧状の軌跡を
描くが、光学設計によりミラー4の曲面の角度及び曲率
を計算して加工しておくことで、上記円弧状の軌跡上に
光を結像させることができるようにしておく。前述の光
ファイバーからなる導波路7を併用するようにしてもよ
い。
Further, as shown in FIG. 19, a hinge spring 15 may be formed integrally with the base 1, and the light receiving section 5 may be attached to the tip of the hinge spring 15. In addition,
The bending of the hinge spring 15 is manually performed, and the light receiving unit 5 is reciprocated by the spring force of the hinge spring 15. This eliminates the need to separately prepare a member for reciprocating the light receiving unit 5. At this time, the light receiving unit 5 draws an arc-shaped trajectory, but by calculating and processing the angle and curvature of the curved surface of the mirror 4 by optical design, light can be imaged on the arc-shaped trajectory. To be able to do. The above-described waveguide 7 made of an optical fiber may be used in combination.

【0036】[0036]

【発明の効果】以上のように本発明においては、入光部
と、入光部からの光を回折させる回折格子部と、回折格
子部による回折光を受光する受光部とを備えているマイ
クロスペクトロメータにおいて、入光部と回折格子部と
が基台上に一体に形成されており、受光部は回折光の結
像部に沿って移動自在となっているために、小数の受光
素子でスペクトル計測を行うことができるものであり、
一体型であることによる小型化と同時に安価なものを得
ることができるほか、サンプリング間隔の調整で測定分
解能も調節することができる。
As described above, according to the present invention, a micro unit including a light incident portion, a diffraction grating portion for diffracting light from the light incident portion, and a light receiving portion for receiving light diffracted by the diffraction grating portion is provided. In the spectrometer, the light incident part and the diffraction grating part are integrally formed on the base, and the light receiving part is movable along the image forming part of the diffracted light. It can perform spectrum measurement,
In addition to being compact and inexpensive at the same time as being integrated, the measurement resolution can be adjusted by adjusting the sampling interval.

【0037】また、入光部と、入光部からの光を回折さ
せる回折格子部と、回折格子部による回折光の結像部に
沿って移動自在とされた受光部とを備えているマイクロ
スペクトロメータにおいて、測定対象とする波長域の域
外の波長の参照光を入光する第2入光部を備えるととも
に、回折光の結像部に沿って移動自在となっている受光
部は参照光の受光用であって測定対象光のための受光素
子と分光感度波長が異なる第2の受光素子を備えている
ものでは、回折格子部の格子幅の固体差で回折光の結像
位置がずれても参照光を受光する第2の受光素子の出力
を利用することで結像位置のずれについての補正を容易
に行うことができるものであり、このために受光部を少
数の受光素子で構成することができて安価に提供できる
ものでありながら高精度なスペクトル分布の算出を行う
ことができ、さらにはサンプリング間隔の調整で測定分
解能も調節することができるものである。
Further, a micro-device comprising a light incident portion, a diffraction grating portion for diffracting the light from the light incident portion, and a light receiving portion movable along an image forming portion of the diffracted light by the diffraction grating portion. The spectrometer includes a second light incident portion for receiving a reference light having a wavelength outside the wavelength region to be measured, and a light receiving portion movable along an image forming portion of the diffracted light includes a reference light. In the case of a light receiving device having a second light receiving device having a different spectral sensitivity wavelength from the light receiving device for the light to be measured, the imaging position of the diffracted light is shifted due to the individual difference in the grating width of the diffraction grating portion. Even by using the output of the second light receiving element that receives the reference light, it is possible to easily correct the deviation of the imaging position, and therefore, the light receiving unit is configured with a small number of light receiving elements. Can be provided at a low cost Can be performed calculation of the precise spectral distribution, or even those that can also be adjusted measurement resolution in the adjustment of the sampling interval.

【0038】そして、参照光を利用するものでは、受光
部が備える分光感度波長が異なる少なくとも2つの受光
素子のうちの一つはInGaAs素子であることや、受
光部が備える分光感度波長が異なる少なくとも2つの受
光素子のうちの一つがSi素子であることが、常温での
測定や感度といった点で好ましい。
In the case where the reference light is used, one of the at least two light receiving elements having different spectral sensitivity wavelengths provided in the light receiving section is an InGaAs element, or at least one having a different spectral sensitivity wavelength provided in the light receiving section. It is preferable that one of the two light receiving elements is a Si element in terms of measurement at normal temperature and sensitivity.

【0039】また、回折光の結像位置に一端を位置させ
た導波路の他端に受光部が対向して上記導波路を介して
受光部が回折光を受光するようにすれば、測定精度を向
上させることができるとともに受光部を移動させるため
の駆動部の構成を簡略化することができ、殊に導波路の
他端を円周上に位置させて、回転体上に位置させた受光
部が回転体の回転により上記導波路の他端の並びに沿っ
て移動自在とすれば、受光部を定速で移動させることが
できるものを簡便に得ることができる。
Further, if the light receiving portion is opposed to the other end of the waveguide whose one end is located at the image forming position of the diffracted light and the light receiving portion receives the diffracted light via the waveguide, the measurement accuracy can be improved. And the configuration of the driving unit for moving the light receiving unit can be simplified. In particular, the light receiving unit positioned on the rotating body by positioning the other end of the waveguide on the circumference. If the portion can be moved along the other end of the waveguide by the rotation of the rotating body, a device that can move the light receiving portion at a constant speed can be easily obtained.

【0040】そして、受光部の移動時間の計測部を設け
て、受光部の移動時間と受光部からの出力信号との関係
からスペクトル分布を測定することで測定精度を向上さ
せることができるものであり、また受光部の移動位置の
検出部材を備えて、該検出部材による受光部の移動位置
と受光部からの出力信号との関係からスペクトル分布を
測定することで、受光部を移動させるための駆動部の構
成を単純化することができる。
A measuring unit for measuring the moving time of the light receiving unit is provided, and the measurement accuracy can be improved by measuring the spectrum distribution from the relationship between the moving time of the light receiving unit and the output signal from the light receiving unit. There is also provided a detecting member for detecting the moving position of the light receiving unit, and for measuring the spectral distribution from the relationship between the moving position of the light receiving unit by the detecting member and the output signal from the light receiving unit, to move the light receiving unit. The configuration of the driving unit can be simplified.

【0041】また、受光部の移動を複数回繰り返してス
ペクトル分布を測定すれば、再現性の確認を行うことが
できる。
Further, if the spectrum distribution is measured by repeating the movement of the light receiving section a plurality of times, reproducibility can be confirmed.

【0042】受光部は、軸回りに回転駆動されるねじ軸
との螺合でねじ軸の軸方向に移動するようにしたり、回
転駆動されるピニオンと噛合しているラック上に受光部
を設けて移動自在としたり、空気圧やばね圧にて駆動さ
れるアクチュエータ上に受光部を設けて移動自在とした
り、回転駆動されるカムとの係合で往復運動を行うカム
フォロア上に設けて移動自在としたりすることで、移動
させるための構成を単純化することができて、安価なも
のを得ることができる。
The light receiving portion is adapted to move in the axial direction of the screw shaft by screwing with a screw shaft driven to rotate around the axis, or to provide a light receiving portion on a rack meshed with a pinion driven to rotate. Light-receiving unit on an actuator driven by air pressure or spring pressure, or movable on a cam follower that reciprocates by engaging with a cam driven by rotation. By doing so, the configuration for moving can be simplified, and an inexpensive device can be obtained.

【0043】また、バイメタルとこれを加熱するヒータ
とを駆動源として受光部を移動させたり、形状記憶合金
とこれを加熱するヒータとを駆動源として受光部を移動
させるようにした場合には、温度調節だけで受光部を移
動させることができるものを得ることができる。
When the light receiving section is moved by using the bimetal and the heater for heating the bimetal as a driving source, or when the light receiving section is moved by using the shape memory alloy and the heater for heating the bimetal and the heater for heating the same, It is possible to obtain a device that can move the light receiving unit only by adjusting the temperature.

【0044】さらに電磁駆動手段により移動自在とする
ようにしても、駆動部の構成を単純化することができ
る。
Further, the structure of the drive section can be simplified even if the movable section is made movable by the electromagnetic drive means.

【0045】また、受光部は入光部と回折格子部とを一
体に形成している基台に一体に設けた支持部材により移
動自在としておけば、受光部の支持のための部材数の削
減を図ることができるために、生産性が高くて安価なも
のとすることができる。
Further, if the light receiving portion is made movable by a support member integrally provided on a base on which the light incident portion and the diffraction grating portion are integrally formed, the number of members for supporting the light receiving portion can be reduced. Therefore, productivity can be increased and the cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例の概略斜視図であ
る。
FIG. 1 is a schematic perspective view of an example of an embodiment of the present invention.

【図2】本発明の実施の形態の他例例の概略斜視図であ
る。
FIG. 2 is a schematic perspective view of another example of the embodiment of the present invention.

【図3】同上の2つの受光素子の感度特性図である。FIG. 3 is a sensitivity characteristic diagram of two light receiving elements of the above.

【図4】同上の2つの受光素子の出力の説明図である。FIG. 4 is an explanatory diagram of outputs of two light receiving elements according to the first embodiment.

【図5】さらに他例の概略斜視図である。FIG. 5 is a schematic perspective view of still another example.

【図6】別の例の概略平面図である。FIG. 6 is a schematic plan view of another example.

【図7】さらに別の例の概略斜視図である。FIG. 7 is a schematic perspective view of still another example.

【図8】同上の動作説明図である。FIG. 8 is an operation explanatory view of the above.

【図9】同上の他例の動作説明図である。FIG. 9 is an operation explanatory diagram of another example of the above.

【図10】同上のさらに他例の動作説明図である。FIG. 10 is an operation explanatory diagram of still another example of the above.

【図11】移動駆動手段の一例の概略斜視図である。FIG. 11 is a schematic perspective view of an example of a movement driving unit.

【図12】移動駆動手段の他例の概略斜視図である。FIG. 12 is a schematic perspective view of another example of the movement driving means.

【図13】(a)(b)は夫々移動駆動手段のさらに他例の概
略斜視図である。
FIGS. 13A and 13B are schematic perspective views of still another example of the movement driving means.

【図14】移動駆動手段の別の例の概略斜視図である。FIG. 14 is a schematic perspective view of another example of the movement driving means.

【図15】移動駆動手段のさらに別の例の概略斜視図で
ある。
FIG. 15 is a schematic perspective view of still another example of the movement driving means.

【図16】移動駆動手段の他例の側面図である。FIG. 16 is a side view of another example of the movement driving means.

【図17】移動駆動手段のさらに他例の側面図である。FIG. 17 is a side view of still another example of the movement driving means.

【図18】移動駆動手段の別の例の概略斜視図である。FIG. 18 is a schematic perspective view of another example of the movement driving means.

【図19】移動駆動手段のさらに別の例の概略斜視図で
ある。
FIG. 19 is a schematic perspective view of still another example of the movement driving means.

【図20】従来例を示しており、(a)は概略斜視図、(b)
は回折格子部の斜視図である。
FIG. 20 shows a conventional example, where (a) is a schematic perspective view and (b)
FIG. 4 is a perspective view of a diffraction grating portion.

【符号の説明】[Explanation of symbols]

1 基台 2 入光部 3 回折格子部 5 受光部 22 第2入光部 REFERENCE SIGNS LIST 1 base 2 light incident part 3 diffraction grating part 5 light receiving part 22 second light incident part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 浩之 大阪府門真市大字門真1048番地松下電工株 式会社内 Fターム(参考) 2G020 AA03 AA04 CB42 CB43 CC04 CC63 CD03 CD04 CD24 CD39 CD57 2H037 AA04 BA01 BA11 CA33  ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hiroyuki Yoshida 1048 Kazuma Kadoma, Kadoma City, Osaka Prefecture F-term in Matsushita Electric Works, Ltd. (reference) 2G020 AA03 AA04 CB42 CB43 CC04 CC63 CD03 CD04 CD24 CD39 CD57 2H037 AA04 BA01 BA11 CA33

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 入光部と、入光部からの光を回折させる
回折格子部と、回折格子部による回折光を受光する受光
部とを備えているマイクロスペクトロメータにおいて、
入光部と回折格子部とが基台上に一体に形成されてお
り、受光部は回折光の結像部に沿って移動自在となって
いることを特徴とするマイクロスペクトロメータ。
1. A microspectrometer comprising: a light incident portion; a diffraction grating portion for diffracting light from the light incident portion; and a light receiving portion for receiving light diffracted by the diffraction grating portion.
A microspectrometer, wherein a light incident portion and a diffraction grating portion are integrally formed on a base, and a light receiving portion is movable along an image forming portion of diffracted light.
【請求項2】 入光部と、入光部からの光を回折させる
回折格子部と、回折格子部による回折光の結像部に沿っ
て移動自在とされた受光部とを備えているマイクロスペ
クトロメータにおいて、測定対象とする波長域の域外の
波長の参照光を入光する第2入光部を備えるとともに、
回折光の結像部に沿って移動自在となっている受光部は
参照光の受光用であって測定対象光のための受光素子と
分光感度波長が異なる第2の受光素子を備えていること
を特徴とするマイクロスペクトロメータ。
2. A micro-computer comprising: a light incident portion; a diffraction grating portion for diffracting the light from the light incident portion; and a light receiving portion movable along an image forming portion of the diffracted light by the diffraction grating portion. In the spectrometer, while having a second light input section for receiving the reference light of a wavelength outside the wavelength range to be measured,
The light receiving portion movable along the image forming portion of the diffracted light is provided with a second light receiving device for receiving the reference light and having a different spectral sensitivity wavelength from the light receiving device for the light to be measured. A microspectrometer characterized by the following.
【請求項3】 受光部が備える分光感度波長が異なる少
なくとも2つの受光素子のうちの一つがInGaAs素
子であることを特徴とする請求項2記載のマイクロスペ
クトロメータ。
3. The microspectrometer according to claim 2, wherein one of the at least two light receiving elements provided with the light receiving portions and having different spectral sensitivity wavelengths is an InGaAs element.
【請求項4】 受光部が備える分光感度波長が異なる少
なくとも2つの受光素子のうちの一つがSi素子である
ことを特徴とする請求項2または3記載のマイクロスペ
クトロメータ。
4. The microspectrometer according to claim 2, wherein one of at least two light receiving elements of the light receiving section having different spectral sensitivity wavelengths is an Si element.
【請求項5】 回折光の結像位置に一端を位置させた導
波路の他端に受光部が対向して上記導波路を介して受光
部が回折光を受光していることを特徴とする請求項1〜
4のいずれかの項に記載のマイクロスペクトロメータ。
5. A light-receiving portion facing one end of a waveguide whose one end is located at an image forming position of the diffracted light, and the light-receiving portion receives the diffracted light via the waveguide. Claim 1
5. The microspectrometer according to any one of the items 4 to 4.
【請求項6】 導波路の他端が円周上に位置しており、
受光部は回転体上に位置して回転体の回転により上記導
波路の他端の並びに沿って移動自在となっていることを
特徴とする請求項5記載のマイクロスペクトロメータ。
6. The other end of the waveguide is located on a circumference,
6. The microspectrometer according to claim 5, wherein the light receiving section is located on the rotating body and is movable along the other end of the waveguide by rotation of the rotating body.
【請求項7】 受光部の移動時間の計測部を備えて受光
部の移動時間と受光部からの出力信号との関係からスペ
クトル分布を測定していることを特徴とする請求項1〜
6のいずれかの項に記載のマイクロスペクトロメータ。
7. The apparatus according to claim 1, further comprising a measuring unit for measuring a moving time of the light receiving unit, wherein a spectrum distribution is measured from a relationship between a moving time of the light receiving unit and an output signal from the light receiving unit.
7. The microspectrometer according to any one of the above items 6.
【請求項8】 受光部の移動位置の検出部材を備えて、
該検出部材による受光部の移動位置と受光部からの出力
信号との関係からスペクトル分布を測定していることを
特徴とする請求項1〜6のいずれかの項に記載のマイク
ロスペクトロメータ。
8. A device for detecting a movement position of a light receiving unit,
The microspectrometer according to any one of claims 1 to 6, wherein a spectrum distribution is measured from a relationship between a movement position of the light receiving unit by the detection member and an output signal from the light receiving unit.
【請求項9】 受光部の移動を複数回繰り返してスペク
トル分布を測定していることを特徴とする請求項1〜8
のいずれかの項に記載のマイクロスペクトロメータ。
9. The spectrum distribution is measured by repeating the movement of the light receiving section a plurality of times.
The microspectrometer according to any one of the above items.
【請求項10】 受光部は軸回りに回転駆動されるねじ
軸との螺合でねじ軸の軸方向に移動自在となっているこ
とを特徴とする請求項1〜9のいずれかの項に記載のマ
イクロスペクトロメータ。
10. The light receiving section according to claim 1, wherein the light receiving section is movable in the axial direction of the screw shaft by being screwed with a screw shaft that is driven to rotate around the axis. The described microspectrometer.
【請求項11】 受光部は回転駆動されるピニオンと噛
合しているラック上に設けられて移動自在となっている
ことを特徴とする請求項1〜9のいずれかの項に記載の
マイクロスペクトロメータ。
11. The microspectros according to claim 1, wherein the light receiving section is provided on a rack meshing with a rotatable pinion and is movable. Meter.
【請求項12】 受光部は空気圧にて駆動されるアクチ
ュエータ上に設けられて移動自在となっていることを特
徴とする請求項1〜9のいずれかの項に記載のマイクロ
スペクトロメータ。
12. The microspectrometer according to claim 1, wherein the light receiving section is provided on an actuator driven by air pressure and is movable.
【請求項13】 受光部はばね圧にて駆動されるアクチ
ュエータ上に設けられて移動自在となっていることを特
徴とする請求項1〜9のいずれかの項に記載のマイクロ
スペクトロメータ。
13. The microspectrometer according to claim 1, wherein the light receiving section is provided on an actuator driven by a spring pressure and is movable.
【請求項14】 受光部は回転駆動されるカムとの係合
で往復運動を行うカムフォロア上に設けられて移動自在
となっていることを特徴とする請求項1〜9のいずれか
の項に記載のマイクロスペクトロメータ。
14. A light receiving unit according to claim 1, wherein said light receiving unit is provided on a cam follower which reciprocates by engaging with a rotationally driven cam and is movable. The described microspectrometer.
【請求項15】 受光部はバイメタルとこれを加熱する
ヒータとを駆動源として移動自在となっていることを特
徴とする請求項1〜9のいずれかの項に記載のマイクロ
スペクトロメータ。
15. The microspectrometer according to claim 1, wherein the light receiving section is movable using a bimetal and a heater for heating the bimetal as a driving source.
【請求項16】 受光部は形状記憶合金とこれを加熱す
るヒータとを駆動源として移動自在となっていることを
特徴とする請求項1〜9のいずれかの項に記載のマイク
ロスペクトロメータ。
16. The microspectrometer according to claim 1, wherein the light receiving section is movable using a shape memory alloy and a heater for heating the shape memory alloy as a drive source.
【請求項17】 受光部は電磁駆動手段により移動自在
となっていることを特徴とする請求項1〜9のいずれか
の項に記載のマイクロスペクトロメータ。
17. The microspectrometer according to claim 1, wherein the light receiving section is movable by electromagnetic driving means.
【請求項18】 受光部は入光部と回折格子部とを一体
に形成している基台に一体に設けた支持部材により移動
自在となっていることを特徴とする請求項1または2記
載のマイクロスペクトロメータ。
18. The light receiving section according to claim 1, wherein the light receiving section is movable by a support member integrally provided on a base on which the light input section and the diffraction grating section are integrally formed. Micro spectrometer.
JP2000048075A 2000-02-24 2000-02-24 Micro spectrometer Pending JP2001235368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000048075A JP2001235368A (en) 2000-02-24 2000-02-24 Micro spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000048075A JP2001235368A (en) 2000-02-24 2000-02-24 Micro spectrometer

Publications (1)

Publication Number Publication Date
JP2001235368A true JP2001235368A (en) 2001-08-31

Family

ID=18570215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000048075A Pending JP2001235368A (en) 2000-02-24 2000-02-24 Micro spectrometer

Country Status (1)

Country Link
JP (1) JP2001235368A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309146A (en) * 2003-04-02 2004-11-04 Olympus Corp Spectrophotometer
JP2005121574A (en) * 2003-10-20 2005-05-12 Nippon Telegr & Teleph Corp <Ntt> Near-infrared spectral instrument
JP2012093293A (en) * 2010-10-28 2012-05-17 Canon Inc Spectrophotometric unit and image forming device including the same
CN102540804A (en) * 2010-10-28 2012-07-04 佳能株式会社 Spectral colorimetric apparatus and image forming apparatus including the same
JP2013140188A (en) * 2013-04-24 2013-07-18 Canon Inc Spectral colorimeter and image forming device including the same
US20140029963A1 (en) * 2012-07-30 2014-01-30 Canon Kabushiki Kaisha Colorimetry apparatus and image forming apparatus
CN103900688A (en) * 2014-03-28 2014-07-02 中国科学院上海技术物理研究所 Imaging spectrometer beam splitting system based on free-form surface
JP2015111130A (en) * 2015-01-05 2015-06-18 キヤノン株式会社 Spectral colorimetric device and image forming apparatus including the same
JP2021063828A (en) * 2016-01-15 2021-04-22 ケーエルエー コーポレイション Extension infrared spectroscopic ellipsometry system and method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309146A (en) * 2003-04-02 2004-11-04 Olympus Corp Spectrophotometer
JP2005121574A (en) * 2003-10-20 2005-05-12 Nippon Telegr & Teleph Corp <Ntt> Near-infrared spectral instrument
CN102540804B (en) * 2010-10-28 2014-12-31 佳能株式会社 Spectral colorimetric apparatus and image forming apparatus including the same
JP2012093293A (en) * 2010-10-28 2012-05-17 Canon Inc Spectrophotometric unit and image forming device including the same
US8462342B2 (en) 2010-10-28 2013-06-11 Canon Kabushiki Kaisha Spectral colorimetric apparatus and image forming apparatus including the same
CN104483820A (en) * 2010-10-28 2015-04-01 佳能株式会社 Spectral colorimetric apparatus and image forming apparatus including the same
CN102540804A (en) * 2010-10-28 2012-07-04 佳能株式会社 Spectral colorimetric apparatus and image forming apparatus including the same
US8958069B2 (en) 2010-10-28 2015-02-17 Canon Kabushiki Kaisha Spectral colorimetric apparatus and image forming apparatus including the same
US20140029963A1 (en) * 2012-07-30 2014-01-30 Canon Kabushiki Kaisha Colorimetry apparatus and image forming apparatus
US20170184454A1 (en) * 2012-07-30 2017-06-29 Canon Kabushiki Kaisha Colorimetry apparatus and image forming apparatus
US10359315B2 (en) 2012-07-30 2019-07-23 Canon Kabushiki Kaisha Colorimetry apparatus and image forming apparatus
US10837835B2 (en) 2012-07-30 2020-11-17 Canon Kabushiki Kaisha Colorimetry apparatus and image forming apparatus
JP2013140188A (en) * 2013-04-24 2013-07-18 Canon Inc Spectral colorimeter and image forming device including the same
CN103900688A (en) * 2014-03-28 2014-07-02 中国科学院上海技术物理研究所 Imaging spectrometer beam splitting system based on free-form surface
JP2015111130A (en) * 2015-01-05 2015-06-18 キヤノン株式会社 Spectral colorimetric device and image forming apparatus including the same
JP2021063828A (en) * 2016-01-15 2021-04-22 ケーエルエー コーポレイション Extension infrared spectroscopic ellipsometry system and method
JP7093429B2 (en) 2016-01-15 2022-06-29 ケーエルエー コーポレイション Extended infrared spectroscopic ellipsometry system

Similar Documents

Publication Publication Date Title
JP2703680B2 (en) Spectrophotometer with simultaneous light source modulation, switching and wavelength selection means
US20170184453A1 (en) Compact spectrometer
US8411340B2 (en) Ultra-wide angle MEMS scanner architecture
US7233394B2 (en) Compact spectrometer
EP1804100B1 (en) Device and method for focusing a laser light beam
JP2002013948A (en) Speckle image correlated position transducer
JP6113730B2 (en) Emission and transmission optical spectrometers
WO2000040935A1 (en) Spectrometer
JP2001235368A (en) Micro spectrometer
US6118530A (en) Optical scanning spectrometer
US5305077A (en) High-resolution spectroscopy system
CN103439294A (en) Angle modulation and wavelength modulation surface plasmon resonance (SPR) sharing system
US20050280819A1 (en) Hand-held spectra-reflectometer
US10119862B2 (en) Spectrum measuring device, spectroscopic device, and spectroscopic system
US9395245B2 (en) Data knitting tandem dispersive range monochromator
TWI260427B (en) Grating spectrograph
US9551612B2 (en) Tandem dispersive range monochromator
JP4151271B2 (en) Spectrometer
CN114072642A (en) Spectrometer and method for detecting Electromagnetic (EM) spectrum
HU183954B (en) Grid-type monochromator for generating monochromatic radiation with linearly changing wave-lenght in the case of displacement or angular displacement
TW201135196A (en) Micro spectrometer with stray light filtering structure
JP7422413B2 (en) Spectrometer
Chau et al. A micromachined stationary lamellar grating interferometer for Fourier transform spectroscopy
JP3142817B2 (en) Wavelength selection receiver and optical spectrum analyzer
WO2023127269A1 (en) Spectroscopic device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060207