JPH08278215A - Automatic tension monitor of overhead wire - Google Patents

Automatic tension monitor of overhead wire

Info

Publication number
JPH08278215A
JPH08278215A JP10042895A JP10042895A JPH08278215A JP H08278215 A JPH08278215 A JP H08278215A JP 10042895 A JP10042895 A JP 10042895A JP 10042895 A JP10042895 A JP 10042895A JP H08278215 A JPH08278215 A JP H08278215A
Authority
JP
Japan
Prior art keywords
signal
tension
output
circuit
overhead wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10042895A
Other languages
Japanese (ja)
Inventor
Hidenori Hasegawa
秀法 長谷川
Koji Nakajima
耕二 中嶋
Mitsuaki Ikeda
満昭 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP10042895A priority Critical patent/JPH08278215A/en
Publication of JPH08278215A publication Critical patent/JPH08278215A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain an automatic tension monitor by which the measuring error of tension is reduced and also the abnormal current of a transmission line and the passage of an electric train are detected, thus specifying the time required for measuring a dynamic characteristic such as tension or the like. CONSTITUTION: An automatic tension monitoring apparatus is provided with a tension sensor 105 which is instaled at the fixation end of an overhead wire or at least in one place near it and with a signal processor for the tension sensor 105. The automatic tension monitoring apparatus is provided with a first-stage signal processing circuit 106 which amplifies and processes the output signal of the tension sensor 105, with a noise compensation circuit 107 which detects a signal change generated by a leakage current flowing to the tension sensor 105 by receiving the output of the first-state signal processing circuit 106 and which outputs a tension signal compensating the signal change, with a signal control circuit 109 which adjusts the output level of the noise compensation circuit 107 and with a monitoring and measuring device 112 which monitors and measures the output signal of the signal control circuit 109. In addition, the automatic tension monitoring apparatus is provided with a transmitter 110 which transmits the output of the signal control circuit 109 to the monitoring and measuring device 112 and with a receiver 111.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁歪式の張力センサを
用いた架空電線の張力監視装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an overhead wire tension monitoring device using a magnetostrictive tension sensor.

【0002】[0002]

【従来の技術】従来の配電線等の架空電線の張力管理
は、架空電線の支柱側に絶縁碍子を介して設置した張力
センサにより行っていた。また、新幹線等の電車線の張
力調整装置は、図5に示す模式図のようになっている。
すなわち、架空電線はちょう架線501、補助ちょう架
線502およびトロリ線503から構成されている。ト
ロリ線503は約1500m単位でその両端が張力調整
用のワイヤターンバックル504、ヨーク505および
絶縁碍子506を介して重錘507に連結され、トロリ
線503に重錘507の重量だけ張力を加える構成とな
っている。ところで、トロリ線の張力を一定にしておか
ないと、電車のパンタグラフトとトロリ線との接触が悪
くなり、トロリ線からパンタグラフが離れる(離線)と
いった現象が生じる。その結果、アークが生じ、トロリ
線の異常摩耗が生じ、断線に至ることもある。そのた
め、トロリ線の張力を常時監視する必要があるが、トロ
リ線の張力の変化を監視する方法として、各架線にかか
る張力のアンバランスに起因するヨーク505の傾きを
目視で検査したり、ワイヤターンバックル504に張力
センサ508を挿入して架空電線の各部の張力を測定し
ている。
2. Description of the Related Art Conventionally, tension control of overhead wires such as distribution lines has been performed by a tension sensor installed on the support side of the overhead wire via an insulator. A tension adjusting device for an electric train line such as a Shinkansen is as shown in the schematic diagram of FIG.
That is, the overhead wire is composed of a catenary wire 501, an auxiliary catenary wire 502, and a trolley wire 503. The trolley wire 503 is connected to the weight 507 through the wire turnbuckle 504 for adjusting the tension, the yoke 505 and the insulator 506 at both ends in units of about 1500 m, and applies the tension to the trolley wire 503 by the weight of the weight 507. Has become. By the way, unless the tension of the trolley wire is kept constant, the contact between the pantograft of the train and the trolley wire becomes poor, and the pantograph separates from the trolley wire (disconnection). As a result, an arc occurs, abnormal wear of the trolley wire occurs, and the wire may be broken. Therefore, it is necessary to constantly monitor the tension of the trolley wire, but as a method of monitoring the change in the tension of the trolley wire, the inclination of the yoke 505 caused by the imbalance of the tension applied to each overhead wire can be visually inspected, or the wire can be inspected. A tension sensor 508 is inserted into the turnbuckle 504 to measure the tension of each part of the overhead wire.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来の配電
線等の架空電線い用いられている張力センサでは、絶縁
碍子の劣化等により、漏洩電流が張力センサに流れる
と、張力センサの検出信号に信号変動(ノイズ)が生
じ、張力測定に誤差が生じることがあった。また、新幹
線等の電車線においては、ヨークの傾きを目視で検査し
て張力を推定する方法は精度が悪く、また約1500m
間隔で配置されたヨークをチェックするには膨大な人手
がかかるという問題があった。また、張力センサをター
ンバックルに挿入して各架線の張力を測定する方法は、
張力センサに循環電流が流れることがあり、張力センサ
の検出信号に信号変動(ノイズ)が生じ、張力測定値に
誤差を生じることがあった。また、常に同じ測定条件
(測定精度、分解能など)で測定するにはよいが、例え
ば、電車通過時の架線の動特性等を測定しようとした場
合、この張力変化はせいぜい10〜30kg程度と、非
常に小さいため、常時張力監視の際の測定精度では不十
分であるという問題があった。さらに、常時張力監視の
データから、この電車通過時の動特性データを抽出する
には、記録された膨大な張力データの中から必要なデー
タを抽出しなければならず、多くの時間がかかるという
問題や、消費電力が大きいといった問題点があった。本
発明は、張力の測定誤差を低減すると共に、絶縁碍子の
劣化等、各電線の異常を検出することを目的とする。ま
た、張力センサを電車線に用いる場合は、電車通過時を
検出して、張力等の動特性を測定する必要のある時間を
特定できるようにした架空電線の張力自動監視装置を提
供することを目的とするものである。
However, in the conventional tension sensor used for overhead wires such as distribution lines, when a leakage current flows through the tension sensor due to deterioration of the insulator or the like, the tension sensor outputs a detection signal. Signal fluctuations (noise) may occur, causing an error in tension measurement. In addition, for train lines such as bullet trains, the method of visually inspecting the inclination of the yoke and estimating the tension is not accurate, and is about 1500 m.
There is a problem that it takes a lot of manpower to check the yokes arranged at intervals. Also, the method of inserting the tension sensor into the turnbuckle and measuring the tension of each overhead wire is
A circulating current may flow through the tension sensor, causing signal fluctuation (noise) in the detection signal of the tension sensor, which may cause an error in the tension measurement value. Also, it is good to always measure under the same measurement conditions (measurement accuracy, resolution, etc.), but for example, when trying to measure the dynamic characteristics of an overhead line when passing a train, this tension change is at most about 10 to 30 kg, Since it is very small, there is a problem that the measurement accuracy at the time of constant tension monitoring is insufficient. Furthermore, in order to extract the dynamic characteristic data when the train is passing from the data of constant tension monitoring, it is necessary to extract necessary data from the enormous amount of recorded tension data, and it takes a lot of time. There were problems, such as large power consumption. An object of the present invention is to reduce an error in tension measurement and detect an abnormality in each electric wire such as deterioration of an insulator. Further, when the tension sensor is used for an electric train line, it is possible to provide an automatic tension monitoring device for an overhead wire which can detect the time when the electric train is passing and specify the time required to measure the dynamic characteristics such as tension. It is intended.

【0004】[0004]

【課題を解決するための手段】上記問題を解決するた
め、本発明は、架空電線の固定端もしくはその近傍の少
なくとも1か所に設けた張力センサと、前記張力センサ
の信号処理装置とを備えた架空電線の張力自動監視装置
において、前記張力センサの出力信号を増幅処理する初
段信号処理回路と、前記初段信号処理回路の出力を受け
て前記張力センサに流れる漏洩電流もしくは異常電流に
よって生じる信号変動を検出して前記信号変動を補償し
た張力信号を出力するノイズ補償回路と、前記ノイズ補
償回路の出力レベルを調整する信号制御回路と、前記信
号制御回路の出力信号をモニタ・計測するモニタ・計測
装置と、前記信号制御回路の出力を前記モニタ・計測装
置に伝送する送信機および受信機とを備えたもおであ
る。また、前記信号変動の立ち上がりと立ち下がりを検
出して、その検出信号を前記信号制御回路へ出力するト
リガ信号発生回路を備えたものである。また、前記架空
電線が電車線であり、前記信号変動の立ち上がりから前
記電車線から給電されて走行する電車の接近を検出し、
前記信号変動の立ち下がりから前記電車の通過終了を検
出するものである。
In order to solve the above-mentioned problems, the present invention comprises a tension sensor provided at least at a fixed end of an overhead wire or in the vicinity thereof, and a signal processing device for the tension sensor. In an automatic tension monitoring device for overhead wires, a first stage signal processing circuit that amplifies the output signal of the tension sensor, and a signal fluctuation caused by a leakage current or an abnormal current flowing in the tension sensor upon receiving the output of the first stage signal processing circuit. A noise compensating circuit that detects a signal and outputs a tension signal that compensates for the signal fluctuation, a signal control circuit that adjusts the output level of the noise compensating circuit, and a monitor / measurement that monitors / measures the output signal of the signal control circuit. It is also provided with a device and a transmitter and a receiver for transmitting the output of the signal control circuit to the monitor / measurement device. Further, it is provided with a trigger signal generation circuit which detects the rising and falling of the signal fluctuation and outputs the detection signal to the signal control circuit. Further, the overhead electric wire is an electric line, and detects an approaching electric train that is powered by the electric line from the rise of the signal fluctuation,
The end of passage of the train is detected from the trailing edge of the signal fluctuation.

【0005】[0005]

【作用】上記手段により、張力センサの出力信号を処理
する初段信号処理回路の出力信号をノイズ補償回路に入
力することによって、送配電線の張力センサにおいて
は、絶縁碍子の劣化等による漏洩電流もしくは異常電流
による信号変動を検出できる。また、新幹線等の電車線
の張力センサにおいては、電車通過時に発生する張力セ
ンサに流れる循環電流による信号変動を検出すると共
に、信号変動を消去した信号を出力するので、循環電流
の影響のない張力信号を得ることができる。また、ノイ
ズ補償回路で検出した循環電流による信号変動の立ち上
がりをトリガ信号発生回路によって検出して、電車の接
近を検出し、信号変動の立ち下がりによって電車の通過
を検出するようにしてあるので、電車の通過時のみの張
力測定等の動特性測定ができる。
With the above means, the output signal of the first-stage signal processing circuit for processing the output signal of the tension sensor is input to the noise compensating circuit, so that in the tension sensor of the transmission and distribution line, leakage current or Signal fluctuations due to abnormal current can be detected. In addition, in a tension sensor for a train line such as a Shinkansen, a signal fluctuation due to a circulating current flowing through the tension sensor when a train is passing is detected and a signal with the signal fluctuation eliminated is output. You can get a signal. In addition, the trigger signal generation circuit detects the rise of the signal fluctuation due to the circulating current detected by the noise compensation circuit, the approach of the train is detected, and the passage of the train is detected by the fall of the signal fluctuation. It is possible to measure dynamic characteristics such as tension measurement only when passing a train.

【0006】[0006]

【実施例】以下、本発明を図に示す実施例について説明
する。図1は本発明の張力センサを電車線に用いた場合
の実施例を示すブロック図である。図において、101
は第1のヨークで、支柱11に絶縁碍子12を介して連
結され、重錘13によって張力を加えられるようにして
ある。101’は第1のヨークに連結された第2のヨー
ク、102は第1のヨーク101に連結されたちょう架
線、103は第2のヨーク101’に連結された補助ち
ょう架線、104はトロリ線で、磁歪式の張力センサ1
05はトロリ線104、補助ちょう架線103、ちょう
架線102のいずれかの固定端部に設置される。106
は張力センサ105の出力を増幅する初段信号処理回
路、107はノイズ補償回路、108はトリガ信号発生
回路、109は信号の選択や信号ゲインの調整やトリガ
信号の発生を行う信号制御回路、110は送信機、11
1受信機、112は各種モニタ・計測装置である。図2
は張力センサ105のヘッド部および初段信号処理回路
106、ノイズ補償回路107、トリガ信号発生回路1
08のブロック図である。51は張力センサ105の励
磁コイル、52はトロリ線104、ちょう架線102、
補助ちょう架線103のいずれかの固定端部に設置され
たセンサシャフト、53はセンサシャフト52上に設け
た磁歪膜、54、55は検出コイル、56はパワーアン
プ、57は発振器である。61、62は初段アンプ、6
3、64は全波整流回路、65は差動アンプで、これら
により、初段増幅・信号処理回路106を構成してい
る。71はノイズ補償回路107のノッチフィルタ、7
2は差動アンプ、73はローパスフィルタ、74はバン
ドパスフィルタ(またはACカップリング装置)、75
は全波整流回路、76は零点調整回路、77はゲイン調
整回路である。81はトリガ信号発生回路108のコン
パレータ、82はコンパレータ81のレベルを調整する
可変抵抗である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment in which the tension sensor of the present invention is used in a train line. In the figure, 101
Is a first yoke, which is connected to the column 11 via the insulator 12 and can be tensioned by the weight 13. Reference numeral 101 'is a second yoke connected to the first yoke, 102 is an overhead wire connected to the first yoke 101, 103 is an auxiliary overhead wire connected to the second yoke 101', and 104 is a trolley wire. Then, the magnetostrictive tension sensor 1
05 is installed at a fixed end of any of the trolley wire 104, the auxiliary catenary wire 103, and the catenary wire 102. 106
Is a first-stage signal processing circuit that amplifies the output of the tension sensor 105, 107 is a noise compensation circuit, 108 is a trigger signal generation circuit, 109 is a signal control circuit that performs signal selection, signal gain adjustment, and trigger signal generation, and 110 is Transmitter, 11
One receiver and 112 are various monitor / measurement devices. Figure 2
Is the head portion of the tension sensor 105 and the first stage signal processing circuit 106, the noise compensation circuit 107, the trigger signal generation circuit 1
It is a block diagram of 08. 51 is an exciting coil of the tension sensor 105, 52 is a trolley wire 104, a catenary wire 102,
A sensor shaft is provided at any fixed end of the auxiliary catenary 103, 53 is a magnetostrictive film provided on the sensor shaft 52, 54 and 55 are detection coils, 56 is a power amplifier, and 57 is an oscillator. 61 and 62 are first-stage amplifiers, 6
Reference numerals 3 and 64 are full-wave rectification circuits, and 65 is a differential amplifier, which form the first-stage amplification / signal processing circuit 106. 71 is a notch filter of the noise compensation circuit 107, 7
2 is a differential amplifier, 73 is a low pass filter, 74 is a band pass filter (or AC coupling device), 75
Is a full-wave rectification circuit, 76 is a zero adjustment circuit, and 77 is a gain adjustment circuit. Reference numeral 81 is a comparator of the trigger signal generation circuit 108, and 82 is a variable resistor for adjusting the level of the comparator 81.

【0007】第1の実施例として、トロリ線104の張
力を常時監視する場合について説明する。張力センサ1
05からの信号は、初段信号処理回路106により、図
3(a)に示すように、張力の変化に比例した電圧の張
力信号VT に変換される。通常は、トロリ線104に連
結した張力センサ105のセンサシャフト52には電流
は流れない。しかし、電車が近接し、張力センサ105
を取り付けたトロリ線104を通過し終るまで、センサ
シャフト52に循環電流と呼ばれる電流が流れる。セン
サシャフト52に電流が流れると、図3(b)に示すよ
うに、電流周波数の2倍の周波数の信号変動分VN が生
じ、検出信号に誤差を生じさせる。この信号変動分VN
は、ノイズ補償回路107によって除去される。すなわ
ち、センサシャフト52に電流が流れると、差動アンプ
65の出力には、図3(b)に示すように、張力信号V
T に電流周波数(60Hz)の2倍の周波数(120H
z)の信号変動分VN が重畳して現れる。この信号をノ
ッチフィルタ71に通し、図3(c)の信号(VT +V
N /2)を得る。同時に、差動アンプ65の出力をバン
ドパスフィルタ(またはACカップリング装置)74を
通すことにより、図3(d)に示すような信号変動分V
N を得る。この信号を全波整流回路75で全波整流する
ことにより、図3(e)の信号(VN /π)を得る。こ
の信号をゲイン調整回路76でゲイン調整(ゲインπ/
2)し、信号(VN /2)を得る。ゲイン調整回路76
の出力とノッチフィルタ71の出力を差動アンプ72に
入力し、信号(VT +VN /2)から信号(VN /2)
を減算することにより、図3(f)に示すような循環電
流による信号変動のない張力信号VT を得る。この信号
を図1に示した送信機110により、特別高圧側から地
上側の受信機111に光もしくは光ファイバ等で伝送
し、モニタ・計測装置112で記録・測定する。
As a first embodiment, a case where the tension of the trolley wire 104 is constantly monitored will be described. Tension sensor 1
The signal from 05 is converted into a tension signal V T having a voltage proportional to the change in tension by the first-stage signal processing circuit 106, as shown in FIG. Normally, no current flows in the sensor shaft 52 of the tension sensor 105 connected to the trolley wire 104. However, the train approaches and the tension sensor 105
A current called a circulating current flows through the sensor shaft 52 until it finishes passing through the trolley wire 104 attached with. When a current flows through the sensor shaft 52, as shown in FIG. 3B, a signal fluctuation component V N having a frequency twice the current frequency is generated, which causes an error in the detection signal. This signal fluctuation component V N
Are removed by the noise compensation circuit 107. That is, when a current flows through the sensor shaft 52, the tension signal V is output to the output of the differential amplifier 65 as shown in FIG.
T is twice the frequency (120H) of the current frequency (60Hz)
The signal fluctuation component V N of z) appears in superposition. This signal is passed through a notch filter 71, and the signal (V T + V
N / 2) is obtained. At the same time, the output of the differential amplifier 65 is passed through a bandpass filter (or an AC coupling device) 74, so that the signal fluctuation V as shown in FIG.
Get N. By full-wave rectifying this signal by the full-wave rectifying circuit 75, the signal (V N / π) of FIG. 3E is obtained. This signal is gain adjusted by the gain adjustment circuit 76 (gain π /
2) and obtain the signal (V N / 2). Gain adjustment circuit 76
And the output of the notch filter 71 are input to the differential amplifier 72, and the signal (V T + V N / 2) to the signal (V N / 2)
Is subtracted, a tension signal V T having no signal fluctuation due to the circulating current as shown in FIG. 3 (f) is obtained. This signal is transmitted from the extra high voltage side to the receiver 111 on the ground side by light or an optical fiber by the transmitter 110 shown in FIG. 1, and recorded / measured by the monitor / measurement device 112.

【0008】第2の実施例として、電車通過時のみ架線
の動特性(過渡張力変動等)を測定する方法について説
明する。電車通過時のみ測定するには、電車の接近を知
る必要がある。電車の接近を知る方法として、上記循環
電流による信号変動を利用する。すなわち、電車が接近
すると、センサシャフト52に循環電流が流れ、張力信
号VT に120Hzの信号変動分VN が重畳されて、作
動アンプ65から図4(a)に示すような波形の信号が
出力される。この信号変動分VN のみをバンドパスフィ
ルタ(またはACカップリング装置)74により抽出
し、図4(b)に示すような波形を得る。この信号を全
波整流回路75により全波整流して図4(c)に示すよ
うな信号を得る。この信号をコンパレータ81により、
基準電圧Vre f と比較して図4(d)に示すようなハイ
レベル(またはローレベル)のトリガ信号Vk を得る。
電車が通過し終ると、循環電流がなくなるので、電車近
接トリガ信号Vk はローレベル(またはハイレベル)に
なる。
As a second embodiment, a method of measuring the dynamic characteristics (transient tension fluctuation, etc.) of an overhead line only when passing a train will be described. To measure only when passing a train, you need to know the approach of the train. The signal fluctuation due to the circulating current is used as a method of knowing the approach of a train. That is, when a train approaches, a circulating current flows through the sensor shaft 52, a signal fluctuation component V N of 120 Hz is superimposed on the tension signal V T, and a signal having a waveform as shown in FIG. Is output. Only the signal fluctuation component V N is extracted by the bandpass filter (or AC coupling device) 74 to obtain a waveform as shown in FIG. This signal is full-wave rectified by the full-wave rectifier circuit 75 to obtain a signal as shown in FIG. This signal is output by the comparator 81
Obtaining a trigger signal V k in the high level (or low level), as shown in FIG. 4 (d) is compared with a reference voltage V re f.
When the train finishes passing, the circulating current disappears, so that the train proximity trigger signal V k becomes low level (or high level).

【0009】信号制御回路109では、トリガ信号VK
を入力とし、この信号の立ち上がりをとらえ、自由に時
間設定できるタイマにより、この信号の立ち上がり後、
所定の時間後にトリガ信号を発生させる。このトリガ信
号により、送信機110の電源をオンとすると同時に、
測定開始信号、および張力信号を送信機110により地
上側の受信機111に送り、モニタ・計測装置112を
スタートさせ、張力信号をモニタ、記録、測定する。ま
た、この時の信号変動は、1日や年間を通しての張力変
動値(100kgf以上)に比べて非常に小さい(20
kgf以下)のため、信号制御回路109により信号ゲ
インを上げ、出力感度を上げて張力信号を出力させる。
信号制御回路109がトリガ信号VK の立ち下がりを検
出すると、同様に、タイマにより電車通過後、所定時間
でモニタ・計測装置112に測定終了信号を送り、測定
を終了させ、送信機電源をオフする。
In the signal control circuit 109, the trigger signal V K
Is input, the rising edge of this signal is detected, and a timer that can freely set the time
A trigger signal is generated after a predetermined time. This trigger signal turns on the power of the transmitter 110, and at the same time,
The transmitter 110 sends the measurement start signal and the tension signal to the receiver 111 on the ground side, starts the monitor / measurement device 112, and monitors, records, and measures the tension signal. In addition, the signal fluctuation at this time is very small (20 kg or more) compared to the tension fluctuation value (100 kgf or more) throughout the day or year.
Since it is less than or equal to kgf), the signal control circuit 109 increases the signal gain to increase the output sensitivity and output the tension signal.
When the signal control circuit 109 detects the fall of the trigger signal V K , similarly, after the train has passed through the timer, a measurement end signal is sent to the monitor / measurement device 112 at a predetermined time to end the measurement and the transmitter power is turned off. To do.

【0010】第3の実施例として、常時張力監視と電車
通過時の動特性測定を同時に行う場合について説明す
る。電車が走っていない状態、すなわちトリガ信号がロ
ーレベルの時は、第1の実施例の場合と同様に、張力デ
ータをモニタ・計測装置112により記録・測定する。
電車が接近し、トリガ信号がハイレベルになった時は、
第2の実施例の場合のように測定開始、終了トリガを発
生させ、出力感度を上げて張力信号を出力し、測定、記
録する。この時、信号制御回路109により、常時監視
張力信号を、動特性張力信号に切り替えて、モニタ・計
測装置112の1台の測定器または1チャンネルで測定
・記録してもよいし、常時監視張力信号と動特性張力信
号を並行して、複数台の測定器または多チャンネルによ
って測定・記録してもよい。
As a third embodiment, a case will be described in which constant tension monitoring and dynamic characteristic measurement at the time of passing a train are simultaneously performed. When the train is not running, that is, when the trigger signal is at the low level, the tension data is recorded / measured by the monitor / measurement device 112 as in the case of the first embodiment.
When a train approaches and the trigger signal goes high,
As in the case of the second embodiment, the measurement start and end triggers are generated, the output sensitivity is increased, the tension signal is output, and the measurement and recording are performed. At this time, the signal control circuit 109 may switch the constantly monitored tension signal to the dynamic characteristic tension signal and measure / record with one measuring device or one channel of the monitor / measurement device 112. The signal and the dynamic characteristic tension signal may be measured and recorded in parallel by a plurality of measuring devices or multiple channels.

【0011】[0011]

【発明の効果】以上述べたように、本発明によれば、人
手をかけることなく、架空電線の張力を自動監視・測定
できる。また、循環電流による信号変動(ノイズ)を補
償できると同時に、電車の接近を他のセンサを用いずに
検出でき、その信号により、データの測定時間や測定レ
ンジを任意に変えて、高精度、高感度に測定できる。さ
らに、電車通過時の動特性のみを測定したい場合には、
電車通過時のみを測定することで、低消費電力化や、記
録メモりやチャート紙等の節約、低減を図ることができ
る効果がある。また、送電線等の架空電線の張力関し・
測定においても同様の効果がある。
As described above, according to the present invention, the tension of the overhead wire can be automatically monitored and measured without manpower. In addition, the signal fluctuation (noise) due to the circulating current can be compensated for, and at the same time, the approach of the train can be detected without using other sensors, and the signal can be used to arbitrarily change the data measurement time or the measurement range to achieve high accuracy, Can measure with high sensitivity. Furthermore, if you want to measure only the dynamic characteristics when passing a train,
By measuring only when passing a train, there are effects that power consumption can be reduced and recording memos, chart paper, etc. can be saved and reduced. Also, regarding tension of overhead lines such as power lines,
The same effect is obtained in measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】 本発明の実施例の張力センサ、初段信号処理
回路、ノイズ補償回路、トリガ信号発生回路を示すブロ
ック図である。
FIG. 2 is a block diagram showing a tension sensor, a first stage signal processing circuit, a noise compensation circuit, and a trigger signal generation circuit according to an embodiment of the present invention.

【図3】 本発明の実施例のノイズ補償回路の動作波形
を示す説明図である。
FIG. 3 is an explanatory diagram showing operation waveforms of the noise compensation circuit according to the embodiment of the present invention.

【図4】 本発明の実施例のトリガ信号発生回路の動作
波形を示す説明図である。
FIG. 4 is an explanatory diagram showing operation waveforms of the trigger signal generation circuit according to the embodiment of the present invention.

【図5】 トロリ線の模式図である。FIG. 5 is a schematic diagram of a trolley wire.

【符号の説明】[Explanation of symbols]

104 トロリ線、105 張力センサ、106 初段
信号処理回路、107ノイズ補償回路、108 トリガ
信号発生回路、109 信号制御回路、110 送信
機、111 受信機、112 モニタ・計測装置
104 trolley wire, 105 tension sensor, 106 first stage signal processing circuit, 107 noise compensation circuit, 108 trigger signal generation circuit, 109 signal control circuit, 110 transmitter, 111 receiver, 112 monitor / measurement device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 架空電線の固定端もしくはその近傍の少
なくとも1か所に設けた張力センサと、前記張力センサ
の信号処理装置とを備えた架空電線の張力自動監視装置
において、前記張力センサの出力信号を増幅処理する初
段信号処理回路と、前記初段信号処理回路の出力を受け
て前記張力センサに流れる漏洩電流もしくは異常電流に
よって生じる信号変動を検出して前記信号変動を補償し
た張力信号を出力するノイズ補償回路と、前記ノイズ補
償回路の出力レベルを調整する信号制御回路と、前記信
号制御回路の出力信号をモニタ・計測するモニタ・計測
装置と、前記信号制御回路の出力を前記モニタ・計測装
置に伝送する送信機および受信機とを備えたことを特徴
とする架空電線の張力自動監視装置。
1. An automatic tension monitoring device for an overhead wire, comprising: a tension sensor provided at at least one position at or near the fixed end of the overhead wire; and a signal processing device for the tension sensor. A first-stage signal processing circuit that amplifies a signal, and a signal fluctuation that is generated by a leakage current or an abnormal current flowing through the tension sensor in response to the output of the first-stage signal processing circuit is detected and a tension signal that compensates the signal fluctuation is output. A noise compensation circuit, a signal control circuit for adjusting the output level of the noise compensation circuit, a monitor / measuring device for monitoring / measuring the output signal of the signal control circuit, and an output of the signal control circuit for the monitor / measuring device. An apparatus for automatically monitoring the tension of an overhead wire, comprising:
【請求項2】 前記信号変動の立ち上がりと立ち下がり
を検出して、その検出信号を前記信号制御回路へ出力す
るトリガ信号発生回路を備えた請求項1記載の架空電線
の張力自動監視装置。
2. The automatic tension monitoring device for an overhead wire according to claim 1, further comprising a trigger signal generation circuit that detects a rising edge and a falling edge of the signal fluctuation and outputs the detection signal to the signal control circuit.
【請求項3】 前記架空電線が電車線であり、前記信号
変動の立ち上がりから前記電車線から給電されて走行す
る電車の接近を検出し、前記信号変動の立ち下がりから
前記電車の通過終了を検出する請求項1または2記載の
架空電線の張力自動監視装置。
3. The overhead wire is a train line, the approach of a train that is powered by the train line is detected from the rise of the signal fluctuation, and the passage end of the train is detected from the fall of the signal fluctuation. The automatic tension monitoring device for an overhead wire according to claim 1 or 2.
JP10042895A 1995-03-31 1995-03-31 Automatic tension monitor of overhead wire Pending JPH08278215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10042895A JPH08278215A (en) 1995-03-31 1995-03-31 Automatic tension monitor of overhead wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10042895A JPH08278215A (en) 1995-03-31 1995-03-31 Automatic tension monitor of overhead wire

Publications (1)

Publication Number Publication Date
JPH08278215A true JPH08278215A (en) 1996-10-22

Family

ID=14273694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10042895A Pending JPH08278215A (en) 1995-03-31 1995-03-31 Automatic tension monitor of overhead wire

Country Status (1)

Country Link
JP (1) JPH08278215A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100933500B1 (en) * 2009-09-30 2009-12-31 이호기술단(주) Fixing type insulation for an over head line
KR100933936B1 (en) * 2009-10-22 2010-01-06 이윤정 Isolation type distribution body for overhead electric line
KR100933937B1 (en) * 2009-10-22 2010-01-06 이윤정 Plate of fixing for highvoltage overhead electric line
CN102494829A (en) * 2011-11-24 2012-06-13 中国矿业大学 Longitudinal inductive tension detecting method for steel wire rope and longitudinal inductive tension detecting device for same
CN103245451A (en) * 2013-04-25 2013-08-14 上海卫星工程研究所 On-track monitoring device for tension of spacecraft rope
CN104776950A (en) * 2015-04-20 2015-07-15 中国农业大学 Device for on-line monitoring tension of different positions of binding rope for square binder
CN105222830A (en) * 2015-10-16 2016-01-06 中国电力科学研究院 A kind of attitude can self-adjusting lead wire and earth wire Condition Monitoring Data harvester
CN105333986A (en) * 2015-10-15 2016-02-17 大连理工大学 Single-stage coil cable tension sensor based on self-inductance principle and test method thereof
JP2019121223A (en) * 2018-01-09 2019-07-22 日本信号株式会社 Sensor system
JP2021160501A (en) * 2020-03-31 2021-10-11 日本発條株式会社 Balancer and balancer system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100933500B1 (en) * 2009-09-30 2009-12-31 이호기술단(주) Fixing type insulation for an over head line
KR100933936B1 (en) * 2009-10-22 2010-01-06 이윤정 Isolation type distribution body for overhead electric line
KR100933937B1 (en) * 2009-10-22 2010-01-06 이윤정 Plate of fixing for highvoltage overhead electric line
CN102494829A (en) * 2011-11-24 2012-06-13 中国矿业大学 Longitudinal inductive tension detecting method for steel wire rope and longitudinal inductive tension detecting device for same
CN103245451A (en) * 2013-04-25 2013-08-14 上海卫星工程研究所 On-track monitoring device for tension of spacecraft rope
CN104776950A (en) * 2015-04-20 2015-07-15 中国农业大学 Device for on-line monitoring tension of different positions of binding rope for square binder
CN104776950B (en) * 2015-04-20 2017-03-22 中国农业大学 Device for on-line monitoring tension of different positions of binding rope for square binder
CN105333986A (en) * 2015-10-15 2016-02-17 大连理工大学 Single-stage coil cable tension sensor based on self-inductance principle and test method thereof
CN105222830A (en) * 2015-10-16 2016-01-06 中国电力科学研究院 A kind of attitude can self-adjusting lead wire and earth wire Condition Monitoring Data harvester
JP2019121223A (en) * 2018-01-09 2019-07-22 日本信号株式会社 Sensor system
JP2021160501A (en) * 2020-03-31 2021-10-11 日本発條株式会社 Balancer and balancer system

Similar Documents

Publication Publication Date Title
JPH08278215A (en) Automatic tension monitor of overhead wire
US5883337A (en) Methods and systems employing strain gauge signals to determine the dynamics of moving railcars
US5125738A (en) Apparatus and system for locating a point or a faulty point in a transmission line
GB2408570A (en) Current collector for electricl vehicle
WO1993011015A1 (en) Displacement in transfer apparatus and driving controller of transfer member
US4109520A (en) Method and means for measuring web tension in paper or foils
US5045787A (en) Apparatus and method for measuring insulated track joint resistances
JPH033164B2 (en)
JP4398198B2 (en) Insulation degradation region diagnosis system and method for electric wire or cable
US6534976B2 (en) Device having active and reference coils for performing non-destructive inspection by eddy current
US5397983A (en) Vibration based deenergized cable detector and method
KR20050022537A (en) Apparatus for measuring current of track circuit
JPH04249778A (en) Electric cable monitor
US6496011B2 (en) Monitoring method and monitoring device for a filter
Boffi et al. Fiber sensor for collector strain monitoring in the pantograph-catenary interaction
JPH02103478A (en) Fault locator
JP3104711B2 (en) Method and apparatus for detecting defective insulator
JP2987864B2 (en) Method and apparatus for detecting abnormal locations in overhead transmission lines and their equipment
Wurst Engine torque measurement using telemetry
JP2840064B2 (en) ATC device transmitter failure detection device
JPS6227885Y2 (en)
JPH09222370A (en) Device and method for monitoring tension of overhead electric wire
JP2969727B2 (en) Abnormal location detector for overhead transmission lines and their equipment
JPH0543259B2 (en)
SU1079946A2 (en) Device for locating leaks in underground pipe-lines