JPH08278125A - Distance measuring equipment - Google Patents

Distance measuring equipment

Info

Publication number
JPH08278125A
JPH08278125A JP7853195A JP7853195A JPH08278125A JP H08278125 A JPH08278125 A JP H08278125A JP 7853195 A JP7853195 A JP 7853195A JP 7853195 A JP7853195 A JP 7853195A JP H08278125 A JPH08278125 A JP H08278125A
Authority
JP
Japan
Prior art keywords
distance
image data
image
measurement
arrays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7853195A
Other languages
Japanese (ja)
Inventor
Takehide Hirabayashi
丈英 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7853195A priority Critical patent/JPH08278125A/en
Publication of JPH08278125A publication Critical patent/JPH08278125A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE: To provide distance measuring equipment capable of measuring a near distance and even a far distance accurately by arraying a plurality of rows of photosensors with the optical axes thereof aligned along the same direction and in such a state as separated from one another and arrayed on the same line. CONSTITUTION: A distance sensor 10 is formed so that photosensor arrays 1Ps to 3Ps having light receiving elements sufficiently smaller than an image size and arrayed at the imaging positions of imaging lenses 1Le to 3Le are arranged with optical axes kept in the same direction and in such a state as separated from one another and laid on the same line. Furthermore, the measurement start and ending operations of the sensor 10 are controlled with a measurement control section 6. Also, an image data memory section 5 saves data imaged on the arrays 1ps to 3Ps, and an image data selector section 8 selects and extracts two image data applicable to the calculation of a distance among the data on a plurality of the photosensor arrays 1ps to 3Ps. Then, a distance computing section 7 calculates a distance to a measurement object on the basis of the two selected image data.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は幾何光学系によって捉え
た物体の像の位置から該物体までの距離を測定する視差
検出型の距離測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a parallax detection type distance measuring device for measuring a distance from an image position of an object captured by a geometrical optical system to the object.

【0002】[0002]

【従来の技術】物体までの距離を光学的に測定する装置
として、特開平6−174845号公報に公開されているよう
な、光軸を一定間隔はなして平行に配置した車両などの
距離測定対象物の姿を結像させる同一焦点距離の2個の
レンズ系の結像位置に、像の大きさに比べ充分小さい寸
法の受光素子を並べたCCDなどのフォトセンサアレイ
を配置し、両光軸の間隔に対応して現れる距離測定対象
物の像の光軸に対する相対位置の差を検出して、物体と
レンズによるその像の間になりたつ光学関係式に基づ
き、レンズと距離測定対象物間の間隔すなわち距離測定
対象物間までの距離を演算によって求める視差検出型の
距離測定装置の実用化が図られている。
2. Description of the Related Art As a device for optically measuring a distance to an object, a distance measuring object such as a vehicle having optical axes arranged in parallel at a constant interval, as disclosed in JP-A-6-174845. A photosensor array such as a CCD in which light-receiving elements of a size sufficiently smaller than the size of the image is arranged at the imaging position of two lens systems with the same focal length to form the image of an object, and both optical axes The difference between the relative position of the image of the distance measurement object that appears corresponding to the distance between the object and the optical axis is detected, and based on the optical relational expression between the image of the object and the lens, the distance between the lens and the distance measurement object is determined. Practical use of a parallax detection type distance measuring device for calculating a distance, that is, a distance to a distance measuring object is performed.

【0003】視差検出型の距離測定装置における距離測
定の光学的原理を説明する説明図を図5に挙げ、先ず距
離測定の原理について説明する。図5においてレンズ1
Leと2Leとは同一焦点距離のレンズであり、間隔bをお
いて光軸を平行にして配置されている。点Eは、距離測
定対象物の着目点であり、レンズ1Leと2Leとによる点
Eの像はそれぞれHとJの位置に結像する。
First, the principle of distance measurement will be described with reference to FIG. 5 which illustrates an optical principle of distance measurement in a parallax detection type distance measuring device. Lens 1 in FIG.
Le and 2Le are lenses having the same focal length, and are arranged with their optical axes parallel to each other with a space b. The point E is the point of interest of the distance measurement target, and the images of the point E formed by the lenses 1Le and 2Le are formed at the positions H and J, respectively.

【0004】レンズと物体の距離Lおよびレンズと像の
距離sの間には幾何光学の原理に基づくレンズの結象に
関する式(1)の関係が成立している。
The relationship between the lens-object distance L and the lens-image distance s is established by the equation (1) regarding the lens formation based on the principle of geometrical optics.

【0005】[0005]

【数1】 1/s−1/L=1/f (1) ここにfはレンズの焦点距離 そして、レンズ2Leの光学系においては、光軸iIと点
Eの間iEを物体と見做したとき、その像はIJに結像
することとなり、物体とその像について成立する相似の
関係によって下記の式(2)が成立する。
1 / s−1 / L = 1 / f (1) where f is the focal length of the lens, and in the optical system of the lens 2Le, iE is regarded as an object between the optical axis iI and the point E. Then, the image is formed on the IJ, and the following equation (2) is established due to the similar relationship established for the object and the image.

【0006】[0006]

【数2】iE/L=IJ/s (2) 同様にレンズ1LeについてはgEを物体と見做したと
き、その像はGHに結像し、相似の関係によって下記の
式(3)が成立する。
## EQU00002 ## iE / L = IJ / s (2) Similarly, regarding the lens 1Le, when gE is regarded as an object, the image is formed on GH, and the following equation (3) is established due to the similarity relationship. To do.

【0007】[0007]

【数3】gE/L=GH/s (3) 式(3)から式(2)を辺〃合い引いてiE−gE=b
なる関係を利用し、また、両光学系における光軸に対す
る像位置の相対偏差であるIJ−GHをΔxとおくなら
ば、式(4)が導かれる。
## EQU3 ## gE / L = GH / s (3) iE-gE = b by subtracting the equation (2) from the equation (3)
Using the above relation, and if IJ-GH, which is the relative deviation of the image position with respect to the optical axis in both optical systems, is set to Δx, formula (4) is derived.

【0008】[0008]

【数4】b/L=Δx/s (4) ただし、Δx=IJ−GH 一方、式(4)における1/sは式(1)によって求め
られるので、これを式(4)に代入して整理すると式
(5)が導出される。
## EQU00004 ## b / L = .DELTA.x / s (4) However, .DELTA.x = IJ-GH On the other hand, since 1 / s in the equation (4) is obtained by the equation (1), this is substituted into the equation (4). Equation (5) is derived by rearranging.

【0009】[0009]

【数5】 L=f(b/Δx−1) (5) 上記のような光学系においては、光軸の間隔bに比べ光
軸に対する像位置の相対偏差Δxは通常非常に小さくな
り、b/Δx≫1が成り立つので、式(5)を精度よく
式(6)で近似することが出来る。
L = f (b / Δx−1) (5) In the above optical system, the relative deviation Δx of the image position with respect to the optical axis is usually very small compared to the interval b of the optical axis, and b Since / Δx >> 1, the equation (5) can be accurately approximated by the equation (6).

【0010】[0010]

【数6】 L=f・b/Δx (6) 従来技術による視差検出型の距離測定装置では、レンズ
とフォトセンサアレイからなる結象光学系の2個1対を
光軸を離して配置して距離センサを構成し、それぞれの
フォトセンサアレイが捉える距離測定対象物の像の位置
の光軸に対する相対差分を検出し、式(6)にもとづく
演算処理を実行して測定対象物体までの距離を求めてい
る。
L = f · b / Δx (6) In the parallax detection type distance measuring device according to the prior art, two pairs of tying optical systems each including a lens and a photosensor array are arranged with their optical axes separated from each other. The distance sensor is configured to detect the relative difference of the position of the image of the distance measurement target captured by each photosensor array with respect to the optical axis, and the calculation processing based on equation (6) is executed to measure the distance to the measurement target object. Are seeking.

【0011】視差検出型の距離測定装置の距離測定原理
が式(6)に従うので、視差検出型の距離測定装置の測
定範囲と測定精度は、距離センサを構成する結象光学系
の特性とその配置間隔によって以下に説明の制約を受け
ることとなる。先ず測定範囲の制約について説明する。
図5の(a)において、測定対象物Eがレンズ1Leと2
Leとに近づくほどレンズから物体を見込む角度θL ,θ
R は大きくなり、その結果物体Eの結象位置H,Jのい
ずれかがフォトセンサアレイ1Ps,2Psの有感領域を超
え測定は不可能となる。
Since the distance measurement principle of the parallax detection type distance measuring device complies with the equation (6), the measurement range and the measuring accuracy of the parallax detection type distance measuring device are the characteristics of the tying optical system constituting the distance sensor and its measurement. The following explanation will be restricted by the arrangement interval. First, restrictions on the measurement range will be described.
In FIG. 5A, the measuring object E is the lenses 1Le and 2
Angles θL and θ at which the object is seen from the lens as it approaches Le
R becomes large, and as a result, one of the image formation positions H and J of the object E exceeds the sensitive area of the photosensor arrays 1Ps and 2Ps, and measurement becomes impossible.

【0012】レンズから物体を見込む角度θR ,θL の
値は、図5の(b)に例示のように物体が2光学系の光
軸の中間線上にあるとき両者等しい極大値となり、この
とき物体像はそれぞれの光学系の光軸に関し互いに逆方
向の等距離の位置に結象し、従って像位置の相対偏差Δ
xは、光軸物体像間距離の2倍となる。物体が2光学系
の光軸の中間線上にあって像位置の相対偏差Δxの値が
フォトセンサアレイの有感領域幅2Wを超える状態で
は、物体の結象位置はフォトセンサアレイ有感領域外に
あり距離の測定は不可能である。それゆえ、測定しうる
最短の距離Lmiは式(6)における像位置相対偏差Δx
をフォトセンサアレイの有感領域幅2Wで置き換えた下
記の式(7)に従うこととなる。
The values of the angles θR and θL at which the object is seen from the lens are equal maximum values when the object is on the midline of the optical axes of the two optical systems, as illustrated in FIG. The images are formed at equidistant positions in opposite directions with respect to the optical axis of each optical system, and therefore the relative deviation Δ of the image position is
x is twice the distance between the optical axis object images. When the object is on the middle line of the optical axes of the two optical systems and the value of the relative deviation Δx of the image position exceeds the sensitive area width 2W of the photosensor array, the imaged position of the object is outside the sensitive area of the photosensor array. It is impossible to measure distance. Therefore, the shortest measurable distance Lmi is the image position relative deviation Δx in the equation (6).
Is replaced by a sensitive area width of 2 W of the photo sensor array, and the following expression (7) is satisfied.

【0013】[0013]

【数7】 Lmi=f・b/2W (7) 式(7)は、測定可能最短距離Lmiを小さくするには、
有感領域幅2Wが大きいフォトセンサアレイと焦点距離
fが短いレンズを用い、2結象光学系の光軸間隔bを小
さく設定して距離センサを構成すれば良いことを示して
いる。
## EQU00007 ## Lmi = f.b / 2W (7) The formula (7) is to reduce the shortest measurable distance Lmi,
It is shown that a distance sensor may be configured by using a photosensor array having a large sensitive area width 2W and a lens having a short focal length f and setting a small optical axis interval b of the two-connection optical system.

【0014】続いて測定精度の制約について説明する。
式(6)をΔxについて微分し再度式(6)を用いてΔ
xを消去すると式(8)が得られる。
Next, the restriction on the measurement accuracy will be described.
Expression (6) is differentiated with respect to Δx, and again using Expression (6), Δ
Eliminating x gives equation (8).

【0015】[0015]

【数8】 dL=−L2 ・dΔx/b・f (8) 式(8)によれば、距離測定における分解能dLは測定
距離Lの2乗に比例するので、視差検出型距離測定装置
で距離を測定したときの相対誤差dL/Lは測定距離L
に比例して劣化することが読み取れる。そうして、測定
精度を向上させるには、結象位置の差の変化分dΔxの
僅かな変化の検出が可能な微小寸法の受光素子を構成要
素とするフォトセンサアレイと焦点距離fが大きいレン
ズを用いて2結象光学系の光軸間隔bを大きく設定して
距離センサを構成すれば良いことを示している。
[Equation 8] dL = −L 2 · dΔx / b · f (8) According to the equation (8), the resolution dL in the distance measurement is proportional to the square of the measurement distance L. The relative error dL / L when measuring the distance is the measurement distance L
It can be read that it deteriorates in proportion to. Thus, in order to improve the measurement accuracy, a photosensor array having a light receiving element of a minute size capable of detecting a slight change in the difference dΔx in the difference between the imaged positions and a lens having a large focal length f. It is shown that the distance sensor may be configured by setting the optical axis interval b of the two-conjunction optical system to be large by using.

【0016】上記のように測定可能最短距離を小さくす
る要件と、測定精度を向上する要件とは互いに相反して
いるので、従来の視差検出型距離測定装置では妥当な価
格で入手可能な寸法・分解能のフォトセンサアレイを用
い、測定距離範囲を使用目的によって区分し、それぞれ
の測定距離範囲区分において相応の精度で測定値が得ら
れるようにレンズの焦点距離fと結象光学系配置間隔b
を選定して2個一対の結象レンズとフォトセンサアレイ
とを一体に形成して距離センサモジュールとしている。
As described above, the requirement to reduce the shortest measurable distance and the requirement to improve the measurement accuracy are contradictory to each other. Therefore, the conventional parallax-detecting distance measuring device has a size / size which is available at a reasonable price. By using a photosensor array with high resolution, the measurement distance range is divided according to the purpose of use, and the focal length f of the lens and the arrangement interval b of the tying optical system are arranged so that the measurement value can be obtained with appropriate accuracy in each measurement distance range division.
Is selected to integrally form a pair of two tying lenses and a photo sensor array to form a distance sensor module.

【0017】[0017]

【発明が解決しようとする課題】従来技術にもとづく視
差検出型距離測定装置では測定距離範囲を区分し、それ
ぞれの測定距離範囲区分において相応の精度で測定値が
得られるように設計構成されているので、一台の距離測
定装置で広い距離範囲を精度よく測定することは困難で
あり、特に近距離の測定が可能な装置で遠距離を測定す
ると著しく精度が低下するという問題があった。
DISCLOSURE OF THE INVENTION A parallax detection type distance measuring device based on the prior art is designed and configured to divide a measurement distance range and obtain a measured value with a corresponding accuracy in each measurement distance range division. Therefore, it is difficult to accurately measure a wide distance range with a single distance measuring device, and there is a problem that accuracy is remarkably reduced when measuring a long distance with a device capable of measuring a short distance.

【0018】本発明は、近距離の測定が可能で、かつ、
良い精度で遠距離の測定も可能な視差検出型距離測定装
置を提供することを目的とする。
The present invention is capable of measuring short distances, and
An object of the present invention is to provide a parallax detection type distance measuring device capable of measuring a long distance with good accuracy.

【0019】[0019]

【課題を解決するための手段】上記の目的達成のため、
本発明においては、視差検出型の距離測定装置を結像レ
ンズと結像レンズの結象位置に配置した像の大きさに比
べ充分小さい寸法の受光素子が配列されてなるフォトセ
ンサアレイの3対以上の複数対を光軸の方向を一致させ
間隔を離し、かつ、フォトセンサアレイが同一直線上に
並ぶように配置してなる距離センサと、この距離センサ
の測定開始・終了の動作を制御する制御回路部と、距離
センサのフォトセンサアレイ上に結像された像データを
記憶する像データ記憶部と、複数のフォトセンサアレイ
の像データから距離の算出に適用する2つの像データを
選択抽出する像データ選択部と、選択された2つの像デ
ータから測定対象物までの距離を算出する演算を実行す
る距離演算部とによって構成する。
In order to achieve the above object,
According to the present invention, three pairs of photosensor arrays are provided in which a parallax detection type distance measuring device is arranged at an image forming lens and a light receiving element having a size sufficiently smaller than the size of an image arranged at the image forming position of the image forming lens. A distance sensor in which the above plural pairs are aligned in the direction of the optical axis and spaced apart from each other, and the photosensor arrays are arranged on the same straight line, and the operation of starting and ending the measurement of this distance sensor is controlled. A control circuit unit, an image data storage unit that stores image data formed on a photo sensor array of a distance sensor, and two image data that are applied to distance calculation from image data of a plurality of photo sensor arrays. And an image data selecting unit for executing the calculation for calculating the distance from the two selected image data to the measurement object.

【0020】[0020]

【作用】フォトセンサアレイ上に結像された物体像の位
置情報が像データ記憶部のフォトセンサアレイに対応の
メモリセルの配列順位として、また、物体像の輝度情報
がメモリセルの格納値として保持され、像データ選択部
が像データ記憶部の各フォトセンサアレイに対応のメモ
リセルの格納値である輝度情報の配列状況を調べて同等
の輝度分布が得られる場合これを同一物体の像と解釈
し、輝度分布に対応のメモリセル配列順位をそれぞれの
フォトセンサアレイ上における像位置として認識し、認
識した像位置情報の中から像位置の相対差の値が最大と
なるフォトセンサアレイの対を選択抽出し、選択したフ
ォトセンサアレイ対が捉えた像位置情報をもとに距離演
算部が測定対象物までの距離を演算によって求める。
The position information of the object image formed on the photosensor array is used as the arrangement order of the memory cells corresponding to the photosensor array in the image data storage unit, and the brightness information of the object image is used as the stored value of the memory cell. If the image data selection unit holds the same luminance distribution by checking the arrangement state of the luminance information, which is the stored value of the memory cell corresponding to each photosensor array of the image data storage unit, and obtains the same luminance distribution, Interpret and recognize the memory cell array order corresponding to the brightness distribution as the image position on each photosensor array, and from the recognized image position information, the pair of photosensor arrays that has the largest relative difference in image position. Is selected and extracted, and the distance calculation unit calculates the distance to the measurement object based on the image position information captured by the selected photosensor array pair.

【0021】[0021]

【実施例】本発明にもとづいて3対の結像レンズとフォ
トセンサアレイとによって距離センサを構成する1実施
例のブロック構成を図1に、また、光学原理を説明する
図を図2に示し、これらの図によって本発明を説明す
る。図1の実施例では、結像レンズLeと、結像レンズの
結象位置に配置した像の大きさに比べ充分小さい寸法の
受光素子が配列されてなるフォトセンサアレイPsの3対
を、それぞれの光軸間の距離にb1 とb2 を置いてフォ
トセンサアレイPsが同一直線上に並ぶように配置して距
離センサ10を構成している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a block configuration of an embodiment in which a distance sensor is constituted by three pairs of imaging lenses and a photosensor array according to the present invention, and FIG. 2 is a diagram explaining an optical principle. The present invention will be described with reference to these drawings. In the embodiment shown in FIG. 1, three pairs of an imaging lens Le and a photosensor array Ps in which light-receiving elements having a size sufficiently smaller than the size of an image arranged at a concatenation position of the imaging lens are arranged are respectively provided. The distance sensor 10 is constructed by arranging the photosensor arrays Ps on the same straight line with b1 and b2 at the distance between the optical axes.

【0022】そして、距離センサ10の測定開始・終了の
動作を制御する測定制御部6と、測定制御部6が測定終
了信号を発信したとき距離センサ10の各フォトセンサア
レイ1Ps〜3Ps上に結像された像データを記憶する像デ
ータ記憶部5と、像データ記憶部5に格納の像データか
ら距離を算出に適用する2つの像データを選択抽出する
像データを選択部8と、与えられた2つの像データ情報
をもとに距離を算出する演算を実行して結果を出力する
距離演算部7とによって距離測定装置20を構成してい
る。
Then, the measurement control unit 6 for controlling the measurement start / end operation of the distance sensor 10 is connected to each of the photosensor arrays 1Ps to 3Ps of the distance sensor 10 when the measurement control unit 6 sends a measurement end signal. An image data storage unit 5 for storing imaged image data, and an image data selection unit 8 for selectively extracting two image data items to be used for calculating a distance from the image data stored in the image data storage unit 5 are provided. The distance measuring device 20 is configured by the distance calculating unit 7 that executes the calculation for calculating the distance based on the two pieces of image data information and outputs the result.

【0023】上記図1の距離測定装置20では、測定制御
部6が一定周期で距離センサ10に対し測定開始と終了の
指令を発信し、測定終了の指令を発信したときフォトセ
ンサアレイ1Psないし3Psの各受光素子が保持する測定
開始から終了までの間の受光量によって定まる電気量の
値を読み出し、像データ記憶部5を構成する各フォトセ
ンサアレイの受光素子に対応のメモリセルに転送する。
この結果、フォトセンサアレイPs上に結像された物体像
の位置情報が像データ記憶部5のフォトセンサアレイに
対応のメモリセルの配列順位として、また、物体像の輝
度情報がメモリセルの格納値として保持されることとな
る。
In the distance measuring device 20 shown in FIG. 1, the measurement control unit 6 sends a command to start and end the measurement to the distance sensor 10 at a constant cycle, and when the command to end the measurement is issued, the photosensor arrays 1Ps to 3Ps. The value of the electric quantity determined by the amount of received light from the start to the end of the measurement held by each light receiving element is read out and transferred to the memory cell corresponding to the light receiving element of each photosensor array forming the image data storage unit 5.
As a result, the position information of the object image formed on the photosensor array Ps is stored as the arrangement order of the memory cells corresponding to the photosensor array of the image data storage unit 5, and the brightness information of the object image is stored in the memory cell. It will be retained as a value.

【0024】上記の測定制御部6によるフォトセンサア
レイPsが検出した像データの像データ記憶部5への転送
処理が終了すると、像データ選択部8が像データ記憶部
5の各フォトセンサアレイに対応のメモリセルの格納値
である輝度情報の配列状況を調べて同等の輝度分布が得
られる場合これを同一物体の像と解釈し、輝度分布に対
応のメモリセル配列順位をそれぞれのフォトセンサアレ
イ上における像位置として認識し、認識した像位置情報
の中から以下に説明の光学原理にもとづいて距離を求め
る演算においてより高精度の結果を与える一対の像位置
情報を選択抽出して距離演算部7に引き渡す。そして、
距離演算部7は像データ選択部8から引き渡された一対
の像位置情報をもとに測定対象物体までの距離を演算に
よって求めて出力する。
When the transfer processing of the image data detected by the photosensor array Ps by the measurement control section 6 to the image data storage section 5 is completed, the image data selection section 8 is set in each photosensor array of the image data storage section 5. When the array status of the brightness information, which is the stored value of the corresponding memory cell, is checked and an equivalent brightness distribution is obtained, it is interpreted as an image of the same object, and the memory cell array order corresponding to the brightness distribution is assigned to each photo sensor array. The image position is recognized as an image position on the upper side, and a pair of image position information that gives a more accurate result in the calculation of the distance based on the optical principle described below is selectively extracted from the recognized image position information to calculate the distance. Deliver to 7. And
The distance calculator 7 calculates and outputs the distance to the object to be measured based on the pair of image position information delivered from the image data selector 8.

【0025】つづいて、光学原理の説明図である図2を
もとに、また、視差検出型距離測定装置の測定原理を説
明する図5も援用して上記図1の実施例の距離測定装置
の光学原理について説明する。なお、図2においては、
距離センサの構成要素それぞれに接頭符号1ないし3を
付し、図4におけると同等の機能の構成要素には図4と
同一の符号を付してあるので、その詳細説明は省略す
る。
Next, based on FIG. 2 which is an explanatory view of the optical principle, and also with reference to FIG. 5 which illustrates the measurement principle of the parallax detection type distance measuring device, the distance measuring device of the embodiment shown in FIG. The optical principle of is explained. In addition, in FIG.
The components of the distance sensor are given the prefixes 1 to 3, and the components having the same functions as those in FIG. 4 are denoted by the same symbols as those in FIG. 4, so detailed description thereof will be omitted.

【0026】測定対象物体が距離測定装置20から十分に
遠方の例えば図2の位置Ef にあるときは、距離センサ
10の1Psないし3Psの3個のフォトセンサアレイのいず
れにも測定対象物体Ef の像が結象され、3個のフォト
センサアレイからいずれの2個を選択してもフォトセン
サアレイ上の像位置の相対位置の差Δxの値が検出で
き、この像の相対位置の差Δxの値を式(6)に適用し
て測定対象物体までの距離Lが得られる。
When the object to be measured is at a sufficient distance from the distance measuring device 20, for example, at the position Ef in FIG.
An image of the object Ef to be measured is formed on any of the three photosensor arrays of 1 Ps to 3 Ps, and even if any two of the three photosensor arrays are selected, the image position on the photosensor array is selected. The value of the relative position difference Δx can be detected, and the value of the relative position difference Δx of this image is applied to the equation (6) to obtain the distance L to the object to be measured.

【0027】しかしながら、距離測定における分解能d
Lは式(8)に示されているように他の光学要素諸元の
値が一定の場合、2結象光学系の光軸間隔bに逆比例し
て向上するので、図2の例では両端のフォトセンサアレ
イ1Psと3Psとを選択して両フォトセンサアレイの光軸
間距離b1 +b2 の値と、両フォトセンサアレイ上の像
位置Hf とJf の相対位置の差の値Δxとを、式(6)
のそれぞれbとΔxに適用して得られる結果がこの測定
系によって得られる最も分解能の高い測定値となる。
However, the resolution d in the distance measurement
As shown in the equation (8), L is improved in inverse proportion to the optical axis interval b of the two-concatenation optical system when the values of other optical element specifications are constant, so that in the example of FIG. By selecting the photosensor arrays 1Ps and 3Ps at both ends, the value of the distance b1 + b2 between the optical axes of both photosensor arrays and the value Δx of the difference between the relative positions of the image positions Hf and Jf on both photosensor arrays are expressed as Formula (6)
The results obtained by applying the values to b and Δx, respectively, are the highest resolution measurement values obtained by this measurement system.

【0028】一方、測定対象物体が距離測定装置20から
近い位置例えば図2の位置En にあるときは、結象レン
ズ3Leとフォトセンサアレイ3Psからなる像検出系に対
しては物体は視野外となり、接頭符号1と2を付した像
検出系にのみ像が得られるのでフォトセンサアレイ1Ps
と2Psとを選択して両フォトセンサアレイの光軸間距離
b1 の値と、両フォトセンサアレイ上の像位置Hn とJ
n の相対位置の差の値Δxとを、式(6)のそれぞれb
とΔxに適用して近距離に位置する物体En までの距離
を求める。
On the other hand, when the object to be measured is located at a position close to the distance measuring device 20, for example, position En in FIG. 2, the object is out of the field of view for the image detection system including the tie lens 3Le and the photosensor array 3Ps. , The image can be obtained only in the image detection system with the prefixes 1 and 2, so the photo sensor array 1Ps
And 2Ps are selected to determine the value of the distance b1 between the optical axes of both photosensor arrays, and the image positions Hn and J on both photosensor arrays.
The value Δx of the difference between the relative positions of n and b in equation (6)
And Δx are applied to obtain the distance to the object En located at a short distance.

【0029】上記のように遠距離の高精度測定あるいは
近距離測定のいずれの場合においても、フォトセンサア
レイが捉えた像位置の相対差Δxの値が最大となるフォ
トセンサアレイの対が選ばれている。即ち、像データ選
択部8は各フォトセンサアレイが捉えた像位置情報を調
べて像位置の相対差Δxの値が最大となるフォトセンサ
アレイの対を選択抽出し、選択したフォトセンサアレイ
対が捉えた像位置情報を距離演算部7に引き渡すように
すればよい。
As described above, a pair of photosensor arrays that maximizes the relative difference Δx between the image positions captured by the photosensor array is selected in both high-precision and long-distance measurement. ing. That is, the image data selection unit 8 examines the image position information captured by each photosensor array, selects and extracts the pair of photosensor arrays having the maximum value of the relative difference Δx of the image positions, and the selected photosensor array pair is The captured image position information may be passed to the distance calculation unit 7.

【0030】ところで、従来技術の項で説明のように、
使用目的にかなう測定距離範囲区分において相応の精度
で測定値が得られるように結象レンズの焦点距離fとフ
ォトセンサアレイの分解能および寸法ならびに結象光学
系配置間隔bを選定して2個一対の結象レンズとフォト
センサアレイとを一体に形成した距離センサモジュール
が用意されているが、この距離センサモジュール2個を
用いて距離センサを構成する1実施例のブロック構成を
図3に示してこの発明を説明する。
By the way, as described in the section of the prior art,
Select the focal length f of the tie lens, the resolution and size of the photosensor array, and the tie arrangement b of the tie optical system so that the measured values can be obtained with appropriate accuracy in the measurement distance range classification that suits the purpose of use. A distance sensor module in which the image forming lens and the photo sensor array are integrally formed is prepared. FIG. 3 shows a block configuration of an embodiment in which a distance sensor is constructed by using two distance sensor modules. The present invention will be described.

【0031】図3の実施例では、光軸を一定間隔bはな
して配置した一対の結像レンズとフォトセンサアレイか
ら成る距離センサモジュール11と12の2個を、両距離セ
ンサモジュールの光軸間距離Dを置いて配置している。
なお、通常2つの距離センサモジュール内のフォトセン
サアレイが一直線に並ぶように配置する。そして、両距
離センサモジュール11と12に対し測定開始と終了の指令
を一定周期で発信する測定制御部6と、両距離センサモ
ジュールが検出した像データを一時記憶しておく像デー
タ記憶部5と、像データ記憶部5に格納の像データの中
から距離の測定に最も適した像データを選別抽出する像
データ選択部8および像データ選択部8が選択した像デ
ータをもとに測定対象物体までの距離を演算によって求
める距離演算部7とによって距離測定装置20を構成す
る。
In the embodiment shown in FIG. 3, two distance sensor modules 11 and 12 each consisting of a pair of imaging lenses and photosensor arrays whose optical axes are arranged at a constant interval b are arranged between the optical axes of both distance sensor modules. The distance D is arranged.
The photosensor arrays in the two distance sensor modules are usually arranged so as to be aligned. Then, a measurement control unit 6 that sends a command to start and end the measurement to both distance sensor modules 11 and 12 in a constant cycle, and an image data storage unit 5 that temporarily stores the image data detected by both distance sensor modules. An image data selection unit 8 for selecting and extracting image data most suitable for distance measurement from the image data stored in the image data storage unit 5 and an object to be measured based on the image data selected by the image data selection unit 8. The distance measuring unit 20 is configured by the distance calculating unit 7 which calculates the distance to the distance.

【0032】上記図3の距離測定装置20では、測定制御
部6が一定周期で距離センサモジュール11と12に対し測
定開始と終了の指令を発信し、測定終了の指令を発信し
たとき距離センサモジュール内のフォトセンサアレイPs
の各受光素子が保持する測定開始から終了までの間の受
光量によって定まる電気量の値を読み出して像データ記
憶部5を構成する各フォトセンサアレイの受光素子に対
応のメモリセルに転送する。この結果、距離センサモジ
ュールのフォトセンサアレイPs上に結像された物体像の
位置情報が像データ記憶部5のフォトセンサアレイに対
応のメモリセルの配列順位として、また、物体像の輝度
情報がメモリセルの格納値として保持されることとな
る。
In the distance measuring device 20 shown in FIG. 3, the measurement control unit 6 sends a command to start and end measurement to the distance sensor modules 11 and 12 at a constant cycle, and when the command to end measurement is sent. Photo sensor array Ps in
The value of the electric quantity determined by the amount of received light from the start to the end of the measurement held by each light receiving element is read and transferred to the memory cell corresponding to the light receiving element of each photo sensor array forming the image data storage unit 5. As a result, the position information of the object image formed on the photo sensor array Ps of the distance sensor module is used as the arrangement order of the memory cells corresponding to the photo sensor array of the image data storage unit 5, and the brightness information of the object image is It will be held as the stored value of the memory cell.

【0033】上記の測定制御部6によるフォトセンサア
レイPsが検出した像データの像データ記憶部5への転送
処理が終了すると、図1にもとづく説明におけると同等
に像データ選択部8と距離演算部7とが作用し、距離演
算部7が像データ選択部8から引き渡された一対の像位
置情報をもとに測定対象物体までの距離を演算によって
求めて出力する。
When the transfer processing of the image data detected by the photosensor array Ps by the measurement control unit 6 to the image data storage unit 5 is completed, the image data selection unit 8 and the distance calculation are performed in the same manner as in the description based on FIG. The distance calculator 7 calculates the distance to the object to be measured based on the pair of image position information delivered from the image data selector 8 and outputs the calculated distance.

【0034】図4は、2個の距離センサモジュールを用
いた図3の構成の距離測定装置の測定原理の説明図であ
るが、図4に見られるように、測定対象物体が距離測定
装置20から十分に遠方の位置Ef にあるときは、距離セ
ンサモジュール11,12内の4個のフォトセンサアレイ1
Ps〜4Psのいずれにも測定対象物体Ef の像が結象さ
れ、4個のフォトセンサアレイからいずれの2個を選択
してもフォトセンサアレイ上の像位置の相対位置の差Δ
xの値が検出でき、この像の相対位置の差Δxの値を式
(6)に適用して測定対象物体までの距離Lが得られる
が、距離測定における分解能dLは式(8)に示されて
いるように他の光学要素諸元の値が一定の場合、2結象
光学系の光軸間隔bに逆比例して向上するので、図4の
例では両端のフォトセンサアレイ1Psと4Psとを選択し
て両距離センサモジュールの光軸間距離(D+b)の値
と、両フォトセンサアレイ上の像位置Hf1とJf2の相対
位置の差の値Δxとを、式(6)のそれぞれbとΔxに
適用して得られる結果がこの測定系によって得られる最
も分解能の高い測定値となる。
FIG. 4 is an explanatory diagram of the measurement principle of the distance measuring device having the configuration of FIG. 3 using two distance sensor modules. As shown in FIG. 4, the object to be measured is the distance measuring device 20. When it is at a position Ef sufficiently far from the photo sensor array 1 in the distance sensor modules 11 and 12.
An image of the object Ef to be measured is formed in any of Ps to 4Ps, and even if any two of the four photosensor arrays are selected, the difference Δ in the relative position of the image positions on the photosensor array is Δ.
The value of x can be detected, and the value of the difference Δx in the relative position of this image is applied to equation (6) to obtain the distance L to the object to be measured. The resolution dL in the distance measurement is shown in equation (8). As described above, when the values of other optical element specifications are constant, the values are improved in inverse proportion to the optical axis distance b of the two-piece optical system. Therefore, in the example of FIG. 4, the photosensor arrays 1Ps and 4Ps at both ends are improved. And the optical axis distance (D + b) of both distance sensor modules and the value Δx of the difference between the relative positions of the image positions Hf1 and Jf2 on both photosensor arrays are respectively expressed by b in equation (6). The result obtained by applying .DELTA.x to .DELTA.x is the highest resolution measurement value obtained by this measurement system.

【0035】一方、測定対象物体が距離測定装置20から
近い位置例えばEn にあるときは、距離センサモジュー
ル11に対しては物体En は視野外となって距離センサモ
ジュール12内のフォトセンサアレイ3Psと4Psのみに測
定対象物体En の像が結象されるので、像データ選択部
8は距離センサモジュール12が捉えた像データを距離演
算部7に引き渡して測定対象物体までの距離を求めるよ
うにする。
On the other hand, when the object to be measured is at a position close to the distance measuring device 20, for example, En, the object En is out of the field of view with respect to the distance sensor module 11 and the photosensor array 3Ps in the distance sensor module 12. Since the image of the measurement target object En is imaged only on 4Ps, the image data selection unit 8 passes the image data captured by the distance sensor module 12 to the distance calculation unit 7 to obtain the distance to the measurement target object. .

【0036】[0036]

【発明の効果】本発明にもとづき3対以上の複数の結像
レンズとフォトセンサアレイを配置して距離センサとな
し、フォトセンサアレイの像データから距離の算出に適
用する2つの像データを選択抽出して測定対象物までの
距離を算出するようにした視差検出型の距離測定装置で
は、遠距離の測定対象物を測定するときには配置間隔が
離れたフォトセンサアレイ対が捉えた画像データが選択
され、近距離の測定対象物を測定する場合には短配置間
隔のフォトセンサアレイ対が捉えた画像データが選択さ
れて距離演算部で距離を演算しているので、遠距離の測
定においても測定精度を保つことが可能となり、近距離
の測定対象物に対しても距離測定装置の視野を外れるこ
とがなくなり近距離から遠距離までの広い範囲を高精度
で測定することができるという効果が得られる。そうし
て、2個のレンズとフォトセンサアレイとを一体に形成
してなる距離センサモジュールの2個以上の複数を距離
センサモジュールの光軸を離して配置して距離センサと
した距離測定装置では、距離センサモジュールの配置間
隔によってフォトセンサアレイ対間の間隔の選択しうる
範囲が大幅に広くなるので近距離から遠距離までの広い
範囲を高精度で測定することができる視差検出型の距離
測定装置を大幅なコスト上昇を伴わずに実現しうるとい
う効果が得られる。
According to the present invention, three or more pairs of imaging lenses and photosensor arrays are arranged to form a distance sensor, and two image data to be applied to distance calculation are selected from image data of the photosensor array. In the parallax detection type distance measuring device that extracts and calculates the distance to the measurement object, when measuring the measurement object at a long distance, the image data captured by the pair of photosensor arrays with a disposition interval is selected. When measuring an object to be measured at a short distance, the image data captured by the pair of photosensor arrays with a short arrangement interval is selected and the distance is calculated by the distance calculation unit. It is possible to maintain accuracy, and it is possible to measure a wide range from short distance to long distance with high accuracy without leaving the visual field of the distance measuring device even for measuring objects at short distance. The effect of wear can be obtained. Then, in a distance measuring device in which two or more distance sensor modules each formed by integrally forming two lenses and a photosensor array are arranged with their optical axes separated from each other, and which are distance sensors. , The parallax detection type distance measurement that can measure a wide range from a short distance to a long distance with high accuracy because the selectable range of the distance between the photo sensor array pairs is significantly widened depending on the arrangement distance of the distance sensor module. The effect that the device can be realized without a large increase in cost is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のブロック構成図FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】本発明における距離測定方法の原理を説明する
FIG. 2 is a diagram for explaining the principle of the distance measuring method according to the present invention.

【図3】本発明の他の実施例のブロック構成図FIG. 3 is a block diagram of another embodiment of the present invention.

【図4】図3の実施例の原理を説明する図FIG. 4 is a diagram for explaining the principle of the embodiment of FIG.

【図5】視差検出型距離測定装置の原理を説明する図FIG. 5 is a diagram illustrating the principle of a parallax detection type distance measuring device.

【符号の説明】[Explanation of symbols]

1Le,2Le,3Le,4Le 結象レンズ 1Ps,2Ps,3Ps,4Ps フォトセンサアレイ 5 像データ記憶部 6 測定制御部 7 距離演算部 8 像データ選択部 1Le, 2Le, 3Le, 4Le Imager lens 1Ps, 2Ps, 3Ps, 4Ps Photo sensor array 5 Image data storage unit 6 Measurement control unit 7 Distance calculation unit 8 Image data selection unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】結像レンズと、結像レンズの結象位置に配
置した像の大きさに比べ充分小さい寸法の受光素子を配
列してなるフォトセンサアレイの3対以上の複数対を、
光軸を離し各光軸の方向は一致させ、かつ、フォトセン
サアレイが同一直線上に並ぶように配置してなる距離セ
ンサと、 前記距離センサの測定開始・終了の動作を制御する制御
回路部と、 距離センサのフォトセンサアレイ上に結像された像デー
タを記憶する像データ記憶部と、 複数のフォトセンサアレイの像データから距離の算出に
用いる2データ1対の像データを選択抽出する像データ
選択部と、 選択された1対の像データから測定対象物までの距離を
算出する演算を実行する距離演算部と、 を備えたことを特徴とする距離測定装置。
1. A plurality of pairs of photosensor arrays, each of which is formed by arranging an image forming lens and a light receiving element having a size sufficiently smaller than the size of an image arranged at a concatenation position of the image forming lens,
A distance sensor in which the optical axes are separated from each other so that the directions of the optical axes coincide with each other, and the photosensor arrays are arranged on the same straight line; and a control circuit unit that controls the operation of starting and ending the measurement of the distance sensor. And an image data storage unit for storing image data formed on the photo sensor array of the distance sensor, and a pair of image data of two data used for distance calculation is selectively extracted from the image data of the plurality of photo sensor arrays. A distance measuring device comprising: an image data selection unit; and a distance calculation unit that executes a calculation for calculating a distance from a selected pair of image data to a measurement target.
【請求項2】距離センサが、光軸を一定間隔はなして平
行に配置された同一焦点距離の2個のレンズと、それぞ
れのレンズの結像位置に配置され像の大きさに比べ充分
小さい寸法の受光素子が配列してなる受光センサアレイ
とが一体に形成された距離センサモジュールの2個以上
の複数を、距離センサモジュールの光軸を離し各光軸の
方向は一致させ、かつ、フォトセンサアレイが同一直線
上に並ぶように配置してなるものであることを特徴とす
る請求項1に記載の距離測定装置。
2. A distance sensor comprising two lenses having the same focal length and arranged in parallel with each other with an optical axis at a fixed interval, and a size sufficiently small as compared with the size of an image arranged at the image forming position of each lens. And a plurality of distance sensor modules integrally formed with a light-receiving sensor array in which the light-receiving elements are arranged so that the optical axes of the distance sensor modules are separated from each other and the directions of the respective optical axes coincide with each other. The distance measuring device according to claim 1, wherein the arrays are arranged so as to be aligned on the same straight line.
JP7853195A 1995-04-04 1995-04-04 Distance measuring equipment Pending JPH08278125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7853195A JPH08278125A (en) 1995-04-04 1995-04-04 Distance measuring equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7853195A JPH08278125A (en) 1995-04-04 1995-04-04 Distance measuring equipment

Publications (1)

Publication Number Publication Date
JPH08278125A true JPH08278125A (en) 1996-10-22

Family

ID=13664504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7853195A Pending JPH08278125A (en) 1995-04-04 1995-04-04 Distance measuring equipment

Country Status (1)

Country Link
JP (1) JPH08278125A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3039623U (en) * 1997-01-17 1997-07-31 オプテックス株式会社 Distance measuring device
JP2007198841A (en) * 2006-01-25 2007-08-09 Soatec Inc Optical measuring method and apparatus
WO2012063376A1 (en) * 2010-11-10 2012-05-18 パナソニック株式会社 Device for processing stereo images, method for processing stereo images, and program

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3039623U (en) * 1997-01-17 1997-07-31 オプテックス株式会社 Distance measuring device
JP2007198841A (en) * 2006-01-25 2007-08-09 Soatec Inc Optical measuring method and apparatus
WO2012063376A1 (en) * 2010-11-10 2012-05-18 パナソニック株式会社 Device for processing stereo images, method for processing stereo images, and program
JP2012103109A (en) * 2010-11-10 2012-05-31 Panasonic Corp Stereo image processing device, stereo image processing method and program
EP2474809A1 (en) * 2010-11-10 2012-07-11 Panasonic Corporation Device for processing stereo images, method for processing stereo images, and program
CN102625904A (en) * 2010-11-10 2012-08-01 松下电器产业株式会社 Device for processing stereo images, method for processing stereo images, and program
US8488872B2 (en) 2010-11-10 2013-07-16 Panasonic Corporation Stereo image processing apparatus, stereo image processing method and program
EP2474809A4 (en) * 2010-11-10 2014-06-25 Panasonic Corp Device for processing stereo images, method for processing stereo images, and program
CN102625904B (en) * 2010-11-10 2015-07-08 松下电器产业株式会社 Device for processing stereo images, method for processing stereo images, and program

Similar Documents

Publication Publication Date Title
US20220239890A1 (en) System and Methods for Calibration of an Array Camera
CA2297611C (en) Virtual multiple aperture 3-d range sensor
JPH10253351A (en) Range finder
CN101769717B (en) Extended range focus detection apparatus
US4947202A (en) Distance measuring apparatus of a camera
JP3205477B2 (en) Inter-vehicle distance detection device
CN103782232B (en) Projector and control method thereof
CN103712604B (en) A kind of Optical Multi-Objects three-dimensional fix method and system
JPH08278125A (en) Distance measuring equipment
CN114371471A (en) Photosensitive chip capable of realizing laser radar point cloud and image fusion
US20020048011A1 (en) Rangefinder device and camera
US6242727B1 (en) Distance detector having pairs of sensors arranged as a mirror image with respect to a virtual line
JP3640515B2 (en) Distance detector
JPS6118912A (en) Focus detecting device
JPH0798429A (en) Range finder
JPH11223516A (en) Three dimensional image pickup device
JP2001004367A (en) Distance measurement computing device
JP3054011B2 (en) Camera ranging device
EP4328858A1 (en) Image processing device, imaging device, image processing method, and storage medium
JP2005147959A (en) Distance-measuring method and distance-measuring device
JP3923181B2 (en) Vehicle distance measuring device
JPH09145360A (en) Vehicle identification system
JP2831388B2 (en) Distance measurement mechanism of passive autofocus system
JPS60236013A (en) Three-dimensional distance measuring device for vehicle
JP3039623U (en) Distance measuring device