JPS6118912A - Focus detecting device - Google Patents

Focus detecting device

Info

Publication number
JPS6118912A
JPS6118912A JP14019684A JP14019684A JPS6118912A JP S6118912 A JPS6118912 A JP S6118912A JP 14019684 A JP14019684 A JP 14019684A JP 14019684 A JP14019684 A JP 14019684A JP S6118912 A JPS6118912 A JP S6118912A
Authority
JP
Japan
Prior art keywords
amount
images
focus
evaluation
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14019684A
Other languages
Japanese (ja)
Other versions
JPH0588445B2 (en
Inventor
Akira Akashi
明石 彰
Akira Ishizaki
明 石崎
Akira Hiramatsu
平松 明
Yasuo Suda
康夫 須田
Keiji Otaka
圭史 大高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14019684A priority Critical patent/JPS6118912A/en
Publication of JPS6118912A publication Critical patent/JPS6118912A/en
Priority to US07/294,920 priority patent/US4914282A/en
Publication of JPH0588445B2 publication Critical patent/JPH0588445B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Automatic Focus Adjustment (AREA)
  • Focusing (AREA)

Abstract

PURPOSE:To decide on the accurate quantity of defocusing of an objective lens to any body by calculating the quantity of evaluation from outputs of sensors which detect two images varying in relative position relation according to a focus state, and detecting a far/close contention with this quantity of evaluation. CONSTITUTION:A field lens 2 is arranged on the same optical axis with a photographic lens 1 for making a focus adjustment, two secondary image forming lenses 3a and 3b are arranged behind the field lens 2, and sensor arrays 4a and 4b for photodetection are arranged further behind it. The sensor arrays 4a and 4b are composed of plural photoelectric converting elements respectively, and when the output of the (i)th photoelectric converting element is denoted as a(i) and b(i) and P is a positive number, the quantity U of evaluation is calculated from an equation. When this quantity U of evaluation is larger than a specific value, a decision on the far/close contention is made.

Description

【発明の詳細な説明】 (技術分e) 不発EIQはカメラ等に用いられる焦点検出装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Section e) Unexploded EIQ relates to focus detection devices used in cameras and the like.

(従来技術) 従来より、撮影レンズの瞳を分割して彰成しく2〕 た2像のずれを検出することにより撮影レンズの焦点状
態を判別するカメラのための焦点検出装置は周知である
。例えば、米国特許第4.185、191号明細書には
、撮影レンズの予定結像面にフライアイレンズ群を配置
することにより上述の焦点判別を可能にする装置が開示
されている。また、撮影レンズの予定結像面の後方に2
つの結像レンズを並設することにより撮影レンズのデフ
ォーカス量に応じて相対的々位置関係が変化する2像を
形成する所謂二次結像方式の装置が、例えば、特開昭5
5−118019号会報、特開昭55−155351号
公報に開示されている。後者の方式は光学系の全長が長
くなるものの、前者の方式の如くフライアイレンズ群の
ような特殊光学系を必要としない利点がある。
(Prior Art) A focus detection device for a camera that divides the pupil of a photographic lens and determines the focal state of the photographic lens by detecting a shift between two images is well known. For example, US Pat. No. 4,185,191 discloses a device that enables the above-mentioned focus determination by arranging a fly-eye lens group on a predetermined imaging plane of a photographing lens. In addition, there are two
A so-called secondary imaging system device that forms two images whose relative positional relationship changes according to the amount of defocus of the photographing lens by arranging two imaging lenses in parallel is known, for example, in Japanese Patent Laid-Open No. 5
It is disclosed in the newsletter No. 5-118019 and Japanese Patent Application Laid-open No. 155351/1983. Although the latter method increases the total length of the optical system, it has the advantage of not requiring a special optical system such as a fly-eye lens group, unlike the former method.

この後者の二次結像方式の焦点検出の原理を第1図を用
いて簡単に説明すると、焦点調整をする撮影レンズ1と
光軸を同じくしてフィールドレンズ2が配置され、これ
らの後方に2個の二次結像レンズ3a、3bが並列され
、更にその後方にそれぞれ受光用センサ列4a、4bが
配置されている。なお、5a、5bは二次結像レンズ5
a、、1の近傍に設けられた数秒である。フィールドレ
ンズ2は撮影レンズ1の射出瞳を2個の二次結像レンズ
51L、3N+の臆面に略々結像している。この結果、
二次結像レンズ5a、3bのそ些ぞれに入射する光線束
は、撮影レンズ1の射出瞳面上において各二次結像レン
ズ5tL、 3bに対応する、互いに重なシ合うことの
ない郷面積の領域から射出されたものとなる。フィール
ドレンズ2の近傍に形成された空中像が二次結像レンズ
Wa、5bによりセンサ列4m、4bの面上に再結像さ
れると、前記空中像が形成された光軸方向の位置の相違
に基づき、再結像された2像はその位置を変え    
□ることになる。
To briefly explain the principle of focus detection in the latter secondary imaging method using Fig. 1, a field lens 2 is placed on the same optical axis as the photographing lens 1 that adjusts the focus, and a field lens 2 is placed behind them. Two secondary imaging lenses 3a and 3b are arranged in parallel, and light receiving sensor rows 4a and 4b are arranged behind them, respectively. Note that 5a and 5b are secondary imaging lenses 5.
It is several seconds provided in the vicinity of a,,1. The field lens 2 forms an image of the exit pupil of the photographic lens 1 approximately on the front surface of the two secondary imaging lenses 51L and 3N+. As a result,
The light beams incident on each of the secondary imaging lenses 5a and 3b correspond to the respective secondary imaging lenses 5tL and 3b on the exit pupil plane of the photographing lens 1, and do not overlap with each other. It will be emitted from an area of Go area. When the aerial image formed near the field lens 2 is re-imaged by the secondary imaging lenses Wa, 5b onto the surfaces of the sensor rows 4m, 4b, the position in the optical axis direction where the aerial image was formed is Based on the difference, the two re-imaged images change their position.
□It will happen.

第2図はこの現象が起る様子を示しており、第2図(a
)の合焦状態を中心として、第2図(′b)、(0)の
ように後ピント、前ピントのそれぞれでセンサ列4a、
tbの面上に形成された2像はセンサ列(す 4a、4b面上を逆方向に移動する。この像強度分布を
センサ列4a、4bで光電変換し、電気的処理回路を用
いて前記2像の相対的位置ずれ量を検出することにより
焦点状態の判別を行なっている。
Figure 2 shows how this phenomenon occurs, and Figure 2 (a
), the sensor rows 4a,
The two images formed on the surface of tb move in opposite directions on the sensor rows (4a, 4b).The image intensity distribution is photoelectrically converted by the sensor rows 4a, 4b, and an electrical processing circuit is used to convert the The focus state is determined by detecting the amount of relative positional deviation between the two images.

光電変換された2像の信号処理方法としては、2像のず
れ量(相関量)と撮影レンズ1のデフォーカス量とがt
′!ぼ比例するという関係を用いて、一方を他方の像に
対して相対的に変位させ、その相関を求めることにより
レンズの繰り出し量を計算する方法が知られている。例
えば、米国特許第4.33 !t、 007号明細書で
は、センサー列4a、4bを構成する光電変換素子の数
をそれぞれN1各センサ一列4a、4bの1番目の1番
目の光電変換素子の出力をa (il 、 b (i)
(1=1〜N)とした時、相関量として次式を演算して
いる。
As a signal processing method for the two images that have been photoelectrically converted, the amount of deviation (correlation amount) of the two images and the amount of defocus of the photographing lens 1 are
′! There is a known method of calculating the amount of lens extension by displacing one image relative to the other and finding the correlation using the relationship of approximately proportionality. For example, US Pat. No. 4.33! 007, the number of photoelectric conversion elements constituting the sensor rows 4a, 4b is N1, and the output of the first photoelectric conversion element in each sensor row 4a, 4b is a (il, b (i )
When (1=1 to N), the following equation is calculated as the correlation amount.

V (m)=ぞ(Ha(t)−b(ilt−m)I−l
a(1+1)−b(i−m)I)(す(1)式で求めら
れるV (m)は、次式[r (ml = f I a
(il−b(1−m) +           (2
1で演算されるU (m)の変化量に外ならない。この
U(2))Fi相対変位量がmの時の2像の一致性の尺
度であり、2像のズレ量が最も小さい時、即ち、一致し
たときに最小値をとる。従って、このときU (m)の
変化量であるVCO))は0となるべきである。
V (m)=zo(Ha(t)-b(ilt-m)I-l
a(1+1)-b(i-m)I)(S) V (m) obtained from equation (1) is calculated using the following equation
(il-b(1-m) + (2
This is nothing other than the amount of change in U (m) calculated by 1. This U(2))Fi is a measure of the consistency of the two images when the amount of relative displacement is m, and takes the minimum value when the amount of deviation between the two images is the smallest, that is, when they match. Therefore, at this time, the amount of change in U (m) (VCO)) should be 0.

第3図(a)は2像の光量分布を示す信号a(il。FIG. 3(a) shows a signal a(il) showing the light intensity distribution of the two images.

t+ (i)の−例で、この図ではN=24としている
In the - example of t+ (i), N=24 in this figure.

第3図(b) (Q)は前述の(1)、(2)式におけ
;b tr (tn) 、v(ml(m−−T −w 
、 )をプロットした亀ので、第3図(0)から明らか
な如(、V(mo) = oなるm。によって2像の2
.6画素相当の像ずれ量を検出することができる。この
後、moから撮影レンズ1のデフォーカス量を算出して
、レンズ1を繰松出せば合焦状態となシ、第4図(&)
に示したように2像は一致し、このとき第4図(11)
 、 (01から明らかな如(U(o)= o 、 V
(o)、  = Oになる。
FIG. 3(b) (Q) is in the above equations (1) and (2); b tr (tn), v(ml(m--T-w
, ), it is clear from Fig. 3(0) that (, V(mo) = o, m.
.. It is possible to detect an image shift amount equivalent to 6 pixels. After this, calculate the defocus amount of the photographing lens 1 from mo and move the lens 1 out to get the focus state.
The two images coincide as shown in Figure 4 (11).
, (as is clear from 01 (U(o)=o, V
(o), = O.

このように(1式に基づく信号処理方法は、ずれ量検出
方法として有効なものではあるが、例えば、観測視野中
に距離の異なる積数の抜写体がある場合や、立体的表奥
ゆきを持つ被写体がある場合Itc Id 、前記処理
方法では以下のよう表不都合が生じる。第5図(fL)
は距離の異なる2つの被写体が観測視野中に存在する像
信号a(1)、 b(ilの一例で、この図では領域R
1,R2の被写体の距離が異なるため、領域R1,R2
での2像の信号a(i)、 b(ilのずれ量がそれぞ
れm)、m2で示されるように等しくならない。このよ
うな被写体信号a(i)、 b(i)に対し前述の信号
処理を行えば、第5図(0のようにml (mo< I
n2なるmoでV(mo )=0となってしまう。この
moに基づいて撮影レンズ1を駆動すると、第6図(a
t 、 (b+ 、 (atで示すように、V(o)m
oという合焦判定に吃拘らず、実際には領域R,,R2
内に位置する被写体の中間の距離の位置に焦点が合うこ
とになる。以下、このような被写体状態を「遠近競合」
と称することにする。
In this way, the signal processing method based on Equation 1 is effective as a method for detecting the amount of deviation. When there is a subject with Itc Id, the above processing method causes the following table inconvenience. Fig. 5 (fL)
is an example of image signals a(1) and b(il) where two objects at different distances exist in the observation field, and in this figure, the area R
Since the distances of the objects in areas R1 and R2 are different,
The two image signals a(i) and b (the amount of deviation of il is m, respectively) are not equal as shown by m2. If the above-mentioned signal processing is performed on such object signals a(i) and b(i), ml (mo< I
When mo is n2, V(mo)=0. When the photographing lens 1 is driven based on this mo, the
t, (b+, (as shown by at, V(o)m
Regardless of the focus judgment o, in reality, the areas R,, R2
The focus will be on a position at an intermediate distance of the subject located within. In the following, we will refer to this type of subject condition as "near and perspective competition."
I will call it .

ところで、前述したr遠近競合」による不都合の解消を
目的とした方法が、特開昭56−75607号公報に開
示されている。斯る公報では前述の(1)(2)式と似
た演算値Yイ、Y口を、Y4  =ΣI a(1) −
11(1) I P(3)y口=Σ(l a(i)−b
 Ct+を月”−1a(t+t)−b(1)IP)  
 (4)に従って各相対変位毎に演算する。そして、第
4図(a)のような被写体信号が得られた場合には、演
算値Yイはその極値が複数個となり、各極値をなす相対
変位量が被写体各領斌の距離に対応することから、r遠
近競合」の際には前述の(3)弐に基づいて任意の被写
体領域に合焦させることが可能である、と記載されてい
る。しかしながら、(3)式による演算値Yイは、「遠
近競合」時に実際には同公報に記載されたような結果は
与えられない。このことは、(4)式で求められる演算
値Y口は演算値Yイの変化量であシ、同公報に示されて
いるような演算値Y、が1点でしかゼロクロスしないr
遠近競合j信号に対しては、演算値ηもその1点でしか
極値をとらないことから明らかである。なお、演算値Y
、が複数点でゼロクロスするのは、r遠近競合」による
ものではなく、被写体輝度分布の周期性によるものであ
る。
By the way, a method aimed at resolving the inconvenience caused by the above-mentioned "far-near competition" is disclosed in Japanese Patent Application Laid-open No. 75607/1983. In such a publication, the calculation values Y, Y, similar to the above-mentioned equations (1) and (2) are expressed as Y4 = ΣI a(1) −
11(1) I P(3) y port=Σ(l a(i)-b
Ct+ as month”-1a(t+t)-b(1)IP)
Calculate each relative displacement according to (4). When a subject signal as shown in Fig. 4(a) is obtained, the calculated value Y has multiple extreme values, and the relative displacement amount of each extreme value is the distance between each area of the subject. Accordingly, it is stated that in the case of ``r perspective conflict'', it is possible to focus on an arbitrary subject area based on the above-mentioned (3) 2. However, the calculated value Yi according to equation (3) does not actually give the result described in the publication in the case of "far-near conflict". This means that the calculated value Y obtained by equation (4) is the amount of change in the calculated value Y, and the calculated value Y, as shown in the same publication, crosses zero at only one point.
It is clear that for the near and far competing j signal, the calculated value η also takes an extreme value only at that one point. In addition, the calculated value Y
The reason why , crosses zero at a plurality of points is not due to ``perspective competition'' but due to the periodicity of the subject brightness distribution.

従って、同公報による信号処理方法をもってしても、r
遠近競合Jに対処することは実際には不可能であった。
Therefore, even with the signal processing method according to the same publication, r
It was practically impossible to deal with near-far conflict J.

(目的) 本発明はこのような事情に鑑みなされたもので、その目
的は、r遠近競合」時にはこれを確実に検出することに
より、どのような物体に対しても対物レンズの正確なデ
フォーカス量を判別することが可能な焦点検出装置を提
供することkある。
(Purpose) The present invention was made in view of the above circumstances, and its purpose is to accurately defocus the objective lens for any object by reliably detecting near and far conflicts. It is an object of the present invention to provide a focus detection device capable of determining the amount of focus.

(実施例) 不発明を図示の実施例に基づいて詳細に説明する。(Example) The invention will be explained in detail based on illustrated embodiments.

不発明の基不的な考え方は、第6図(a)に示すよう表
r遠近競合jの場合には、観測視野全体でみれば、通常
の場合に対して、撮影レンズ1(第1図参照)の焦点状
態に応じて相対的な位置関係が変化する2像の一致性が
低く々るので、この一致性を評価すれば、観測視野内で
1遠近競合jが生じているか否かを判別できるという点
にある。そして、不発明の特徴は、この一致性は前述の
(2)式においてm = oとした時の演算値、即ち、 U(0) =  (Ia(1)−1)(1)+    
     (3)によって評価することができるという
点に着目したことにある。
The basic concept of non-invention is that in the case of table r distance competition j as shown in Fig. 6 (a), when looking at the entire observation field, compared to the normal case, the photographing lens 1 (Fig. 1 Since the coincidence of the two images, whose relative positional relationship changes depending on the focal state of the image (reference), is often low, by evaluating this coincidence, it is possible to determine whether a near-far conflict j is occurring within the observation field. The point is that it can be distinguished. The inventive feature is that this consistency is the calculated value when m = o in the above equation (2), that is, U(0) = (Ia(1)-1)(1)+
This is because we focused on the point that evaluation can be performed using (3).

例えば、1f14図(IL)のような像信号a(1)、
 b(i)が得られる通常の場合には、84図(’l)
) 、 (Q)から明らかな如く、前述の(り式で定義
されるような演算値V (m)において、V(no) 
:moとなるInoが0となればU(0)〜0となるの
に対し、第6図(a)の「遠近競合」の場合には、V(
me) = 0となるm。
For example, image signal a(1) as shown in Figure 1f14 (IL),
In the normal case where b(i) is obtained, Figure 84('l)
), (Q), in the calculation value V (m) as defined by the above formula (), V(no)
If Ino, which is
me) = 0.

がOでもU (ol > 0となっている。従って、V
(o)=0、即ち、撮影レンズ1が合焦と判別された時
のり(0)の大きさを所定の閾値と比較することによっ
て、観測視野内の現在の物体が「遠近競合」状態にある
か否かを判別することができることになる。
Even if O, U (ol > 0. Therefore, V
(o) = 0, that is, by comparing the magnitude of the gap (0) when it is determined that the photographing lens 1 is in focus with a predetermined threshold, the current object in the observation field is in a "near and far conflict" state. This means that it is possible to determine whether or not there is.

観測視野内の物体がr遠近競合」状態であると判定され
た場合には、警告を発しても良いが、(1の 不発明では、M’図(alに示す如く、像信号a(1)
If it is determined that the object within the observation field is in a state of ``near and far conflict'', a warning may be issued. )
.

b(1)の領域をI、n、IIIに部分的に重複するよ
う分割し、各領域でV(m)を例えば(1)式を用いて
演算する。なお、第7図(a)の場合では、各領域1、
II、IHのデータ数(光電変換素子数)をV2(=t
 2 )としている。また、この場合のV (m)演算
をデータ数がN (=24 )の場合と区別するために
Vi(m) tVu(m)+7m(m)と記す。
The region b(1) is divided into regions I, n, and III so as to partially overlap, and V(m) is calculated in each region using, for example, equation (1). In the case of FIG. 7(a), each area 1,
The number of data (number of photoelectric conversion elements) of II and IH is V2 (=t
2). Further, in order to distinguish the V (m) calculation in this case from the case where the number of data is N (=24), it is written as Vi (m) tVu (m) + 7m (m).

第7図(bl 、 (0) 、 ((11けそれぞれv
[(m)Ivll(m)IVl(m)のプロットで、演
算 領域Iには第7図(−3の領域R1のみの像信号が
含まれているから、第7図(b)でvI(m!り = 
0なるm5は領域R1における2像のずれ量を、演算領
域111Kt:j領域R2のみの像信号が含まれている
から、第7図(li)でVm(m4)−〇なるm4は領
域R2における2像のずれ量を示している。また、演算
領域■にはR,、R2ともに部分的に含まれており、そ
のため第7図(Q)のVB(m)は局所的な「遠近競合
」の影響を受けたずれ量を示している。相対変位量町、
m4は現在の撮影レンズ位置から被写体領域R1,R2
に合焦するためのレンズ繰り出し量(デフォーカスi)
K対応しているから、例えば、至近側の被写体領域R1
内の物体に撮影レンズ1を合焦させたいのならば町を、
無限遠側の被写体領域R2内の物体に撮影レンズ1を合
焦させたいのならばm4を選択して、レンズの駆動制御
を行えば良い。この選択はあらかじめ設定しておくのも
可能であるし、外部操作によることも可能である。また
、第7図(a)ではN個の離散的な像信号をヲ個の演算
領域に部分重複の3分割としたが、不発明けこの分割方
法に制限されるものではなく、他の分割方法も可能であ
ることは言うまでもない。
Figure 7 (bl, (0), ((11 digits each v
In the plot of [(m)Ivll(m)IVl(m), the calculation region I contains the image signal of only the region R1 of FIG. 7(-3), so in FIG. 7(b), vI( m!ri =
m5, which is 0, is the amount of deviation between the two images in area R1, and since the image signal of only area R2 is included in the calculation area 111Kt:j, m4, which is Vm(m4) - ○ in FIG. The amount of deviation between the two images is shown. In addition, both R and R2 are partially included in the calculation area (■), so VB(m) in Figure 7 (Q) indicates the amount of deviation affected by local "far-near conflict". There is. Relative displacement town,
m4 is the subject area R1, R2 from the current shooting lens position.
Lens extension amount to focus on (defocus i)
Since it is compatible with K, for example, the closest subject area R1
If you want to focus the photographic lens 1 on an object within the town,
If you want to focus the photographing lens 1 on an object within the object region R2 on the infinity side, select m4 and control the lens drive. This selection can be set in advance or can be made by external operation. In addition, in FIG. 7(a), N discrete image signals are divided into three calculation areas with partial overlap, but the division method is not limited to this method, and other division methods may be used. Needless to say, it is also possible.

さらに、不発明による信号処理方法の演算時間を考えて
みると、データ数が1個のV (mlの演算で、3回加
えて4.倍にすぎず、「遠近競合」を判定するためのU
(0)の演算を含めても、データ数がN個の通常演算の
場合の演算時間を上回るものではない。
Furthermore, when considering the calculation time of the uninvented signal processing method, the number of data is 1 V (ml calculation), which is only 3 times and 4. U
Even if the calculation (0) is included, the calculation time will not exceed the calculation time in the case of a normal calculation with N data.

次に、前述の焦点判別を行なうための不発明の実施例と
動作フローを第8図、第9図を用いて説明する。
Next, an uninvented embodiment and operation flow for performing the above-mentioned focus determination will be described with reference to FIGS. 8 and 9.

第8図は不発明の焦点検出装置の一実施例を示す本ので
、撮影レンズの焦点状態に応じて相対的な位置関係が変
化する2像を形成する友めの光学系は、例えば、第1図
に示したものと同様なもので良いので、図示を省略して
いる。この図において、8は像信号処理装置で、例えば
、OPU (中央処理装置)、メモリ、入出力端子等を
持つ1チツプ・マイクロコンピュータである。
FIG. 8 is a book showing an example of an uninvented focus detection device, so the companion optical system that forms two images whose relative positional relationship changes depending on the focus state of the photographic lens is, for example, Since it may be the same as that shown in FIG. 1, illustration is omitted. In this figure, 8 is an image signal processing device, for example, a 1-chip microcomputer having an OPU (central processing unit), memory, input/output terminals, etc.

センサ装置4はセンサ列4a、4bとCOD (電荷結
合素子)から々す、センサ列4a、4bの受光面上にそ
れぞれ撮影レンズ1の異なる瞳領域を通過した光束によ
る2像が形成され、センサ駆動装置5からの制御信号φ
c、8H,工OGによね像の光量分布に応じた電荷の蓄
積および転送を行う。像信号処理装置8がセンサー駆動
装置5へ開始信号EITARTを与えると、センサ駆動
装置5#iクロック発生器6の信号OLKにより生成し
たクロッパルスφCと共に、蓄積開始信号工OGをセン
サ装置4へ送出する。センサ装置4はこの時点より2像
の蓄積を開始し、所定の蓄積レベルに達すると、蓄積完
了信号10工をセンサ駆動装置5へ送る。センサ駆動装
置5は光電変換出力転送信号BHをセンサ装置4へ送っ
て、蓄積された電荷をセンサ部からCOD部へ転送させ
、同時に処理装置8に終了信号ENDを送る。この後、
センサ駆動装置5からのクロックφoK同期してセンサ
装置4は時系列的に蓄積され九電荷に基づいた2像のア
ナログ光電変換信号OS t−A/D変換器7へ出力し
、A/D変換器7はセンサ駆動装置5からの変換信号ム
DOに同期して8ビツトのム/D変換を行い、処理装置
8はそのディジタル時系列信号DO〜D7をDBO〜D
B7端子から入力し、メモリに順次記憶する。処理装置
81d2乞 像のずれ量(相対変位量)Aム/D変換された光電変換
信号、即ち、像信号&(1)、 b(i) (i :1
〜N)を用いて後述のフローにより検出する。ここで、
a (i) 、 b (1)の定義は前述した如くであ
る。
The sensor device 4 includes sensor rows 4a and 4b and a COD (charge-coupled device).Two images are formed on the light receiving surfaces of the sensor rows 4a and 4b by the light beams that have passed through different pupil areas of the photographing lens 1, and the sensor Control signal φ from drive device 5
c, 8H, and OG perform charge accumulation and transfer according to the light intensity distribution of the image. When the image signal processing device 8 gives the start signal EITART to the sensor drive device 5, it sends out the accumulation start signal OG to the sensor device 4 along with the clock pulse φC generated by the signal OLK of the sensor drive device 5#i clock generator 6. . The sensor device 4 starts accumulating two images from this point, and when a predetermined accumulation level is reached, sends an accumulation completion signal to the sensor drive device 5. The sensor driving device 5 sends a photoelectric conversion output transfer signal BH to the sensor device 4 to transfer the accumulated charge from the sensor section to the COD section, and at the same time sends an end signal END to the processing device 8. After this,
In synchronization with the clock φoK from the sensor drive device 5, the sensor device 4 outputs two images of analog photoelectric conversion signals OSt based on the nine charges stored in time series to the A/D converter 7, which performs A/D conversion. The converter 7 performs 8-bit M/D conversion in synchronization with the conversion signal MDO from the sensor drive device 5, and the processing device 8 converts the digital time series signals DO~D7 into DBO~D.
It is input from the B7 terminal and stored in memory sequentially. Processing device 81d2 image shift amount (relative displacement amount) A/D converted photoelectric conversion signal, that is, image signal &(1), b(i) (i:1
~N) according to the flow described below. here,
The definitions of a (i) and b (1) are as described above.

処理装置8の端子RM、FM#′i撮影レンズ1をその
光軸方向に移動させるためのモータ12を駆動するため
の出力端子で、RM、IJ’Mがと本に高電位(以下″
″H”と略記)のときは、ゲー) 1Oa。
Terminals RM and FM#'i of the processing device 8 are output terminals for driving the motor 12 for moving the photographing lens 1 in the direction of its optical axis.
(abbreviated as "H") means game) 1Oa.

10′bを介してトランジスタIIIL、110はオフ
、11b。
Transistor IIIL, 110 is off, 11b via 10'b.

11aはオンとなり、1 lb、 11dとダイオード
13a。
11a is turned on, 1 lb, 11d and diode 13a.

t3bによってモータ12には電気的表ブレーキがかけ
られる。 RM、FMがともに低電位(以下@L“と略
記)のときには、トランジスタlla〜11dは全てオ
フし、モータ12は電気的に開放となる。RMが1■”
、IFMがrのときには11a。
An electric front brake is applied to the motor 12 at t3b. When both RM and FM are at a low potential (hereinafter abbreviated as @L"), all transistors lla to 11d are turned off, and the motor 12 is electrically open. RM is 1".
, 11a when IFM is r.

1111はオフ、l1m)、11Gはオンとなり、モー
タ12には図中右から左へと通電される。また、RMが
”L”1’FMが1H0では111)、110はオフ、
11a。
1111 is off, l1m), 11G is on, and the motor 12 is energized from right to left in the figure. Also, RM is "L"1'FM is 1H0 (111), 110 is off,
11a.

11(Lはオンとなり、モータ121Cは図中左から右
へと通電され、モータ12はRMが”n”、FMがIL
″のときと逆方向へ駆動することになる。
11 (L is turned on, motor 121C is energized from left to right in the figure, RM is "n", FM is IL
It will be driven in the opposite direction from when ``.

また、端子NIF 、JIF 、?IFは焦点状態を表
示するためのID9の駆動端子である。
Also, terminals NIF, JIF,? IF is a drive terminal of ID9 for displaying the focus state.

次に、不実施例の動作フローを第9図に基づいて順に説
明する。なお、このフローでは1遠近競合」時に至近側
の被写体を選択するように設定している。
Next, the operation flow of the non-embodiment will be explained in order based on FIG. 9. Note that in this flow, the setting is made so that the closest subject is selected in the event of 1-near and far conflict.

(B1)・・・先ず制御モードを0に設定する。モード
0は通常の信号処理を意味し、後述 するように、モード1けr遠近競合」 状態、モード2はr遠近競合」状態で 合焦となった仁とを意味する。
(B1)...First, the control mode is set to 0. Mode 0 means normal signal processing, and as will be described later, mode 1 means "near and far conflict" state, and mode 2 means in focus in "near and far conflict" state.

(S2)・・・撮影レンズの瞳分割による2像の光電変
換信号a(i) 、 b(i) (i = 1〜N )
をセンサから入力する。
(S2)...Photoelectric conversion signals of two images a(i), b(i) (i = 1 to N) by pupil division of the photographing lens
is input from the sensor.

(83)・・・モードを確かめる。(83)...Check the mode.

(84)・・・モード0表らば通常の信号処理でV (
m)を演算する。
(84)...If mode 0 is displayed, normal signal processing is performed to V (
m) is calculated.

(83)・・・V(no) x= 0になるずれ量回を
検出する。
(83)...V(no) Detects the number of deviations where x=0.

(86)・・・ずれ量回の絶対値と合焦の閾値e1を比
較する。
(86)... Compare the absolute value of the deviation amount and the focusing threshold e1.

(S7)・・・1mol)81表らに非合焦であるとし
て、相対変位量mQK対応するレンズ繰抄出し量(デフ
ォーカス量)で撮影レンズ 1を駆動し、(82)へ戻る。
(S7)...1 mol) 81 Assuming that the lens is out of focus, the photographing lens 1 is driven by the lens extension amount (defocus amount) corresponding to the relative displacement amount mQK, and the process returns to (82).

(B8)・・・1m01≦01  ならば通常信号処理
で合焦範囲であるとし、「遠近競合」のチェ ックを行うためU(0)を演算する。
(B8) If 1m01≦01, it is determined that the focus range is within the normal signal processing, and U(0) is calculated in order to check for “far-near conflict.”

(89)・・・U (o)と「遠近競合」の閾値e2を
比較して、 (Blo)・・・tr (o) > a2ならば「遠近
競合」であるとし、制御モードを1に設定する。
(89)...U (o) is compared with the threshold value e2 for "near and far conflict", and if (Blo)...tr (o) > a2, it is determined to be "near and far conflict" and the control mode is set to 1. Set.

(818)・・・U(0)S02の場合は「遠近競合」
で麦いとし、合焦表示を行ない、(82)へ戻る。
(818)...In the case of U(0)S02, "near and far conflict"
Press to set the focus, display focus, and return to (82).

(811)・・・「遠近競合」と判定されたので、前述
の第7図(a)の如く像信号の領域を分割し、データ数
を 4として相関量T I(m’)1vn(mj、Vg
(mりを演算スル。
(811)...Since it was determined that there was a "far-near conflict", the image signal area was divided as shown in FIG. 7(a), the number of data was set to 4, and the correlation amount T ,Vg
(Calculate m.

元の像信号を部分重複5分割した各領 域でのずれ量を表わす。Each region obtained by dividing the original image signal into 5 parts with partial overlap represents the amount of deviation in the area.

(81!l) ・・・m’1 、m’2 、m−の内最
小なる値をm′o  とする。
(81!l)...Let m'o be the minimum value among m'1, m'2, and m-.

これはr遠近競合1M時に至近側の物体に撮影レンズ1
を合焦させるためであ (1乃 る。
This means that when the distance conflict is 1M, the photographing lens 1
This is to focus on (1).

(1314)・・・ずれ量m′oと1遠近競合」時の合
焦閾値135を比較する。
(1314) . . . The amount of deviation m'o is compared with the focusing threshold 135 at the time of 1 far/near conflict.

(813)・・・I”of>83ならば合焦ではないの
で、レンズを駆動させるわけだが、ここで 再びモードをチェックして、モード1 ならば「遠近競合」による焦点合わせ の途中であると考え、そのまま(87)で撮影レンズ1
を駆動する。
(813)...If I"of>83, it is not in focus, so the lens is driven, but check the mode again, and if it is mode 1, it is in the middle of focusing due to "far and near competition". Thinking of this, I just moved (87) to the camera lens 1.
to drive.

(816)・・・モード2ならば「遠近競合」で一旦合
焦し、その後に非合焦になったわけだ から、これは被写体が変わったものと 考えて通常信号処理のモード0に戻し て(S乃のレンズ駆動を行う。
(816)...In mode 2, it was focused once due to "far and near competition" and then became out of focus, so I assumed that the subject had changed and returned to normal signal processing mode 0 ( Drives Sino's lens.

(81υ・・・ IID’ol≦e5ならば「遠近競合
」の信号処理で合焦していると判定して、モー ド2を設定し、(131B)で合焦表示を行う。
(81υ... If IID'ol≦e5, it is determined that the camera is in focus by the "near and far conflict" signal processing, mode 2 is set, and the focus is displayed in (131B).

なお、このフローにおいて、e1*e2gestJ任意
Kt14節可能としても良く、また、(81B)におけ
るm’1.m’2 、 m’5の選択は、最大のものも
しくは中間のものをm6としても良い。
In addition, in this flow, e1*e2gestJ arbitrary Kt14 clauses may be possible, and m'1. When selecting m'2 and m'5, the maximum value or the intermediate value may be selected as m6.

また、不発明における評価t U (0)は(3)式に
限定されるものではなく例えば、Pを正の数として、 U(ol = ぞ1−1)−真1llP(6)を用いて
も良い。更に、相関量V(mlは、V(ml= f(1
a(il−b(1+1−m) 1P−la(i+1)−
’b(1−m月”)     (71や、m1n(x、
y) 、maw(c、y)を2実数X、7のうちの小な
るものもしくけ大なるものを示すと定義して、 V(m)=ぞ(min(a(1)、b(1+1−m))
−min(a(i+1)、b(1−m)))   (a
)V(m)=((max(a(1)、b(1+1−m)
)−max(a(1十〇、b(1−m))1   (9
)を用いても良い。
In addition, the evaluation t U (0) in non-inventiveness is not limited to formula (3), but for example, by setting P as a positive number and using U (ol = zo 1-1) - true 1llP (6). Also good. Furthermore, the correlation amount V(ml is V(ml= f(1
a(il-b(1+1-m) 1P-la(i+1)-
'b(1-m month') (71, m1n(x,
y), maw(c, y) to indicate the smaller or larger of 2 real numbers -m))
-min(a(i+1), b(1-m))) (a
)V(m)=((max(a(1),b(1+1-m)
)-max(a(100, b(1-m))1 (9
) may be used.

(効果) 以上詳述した如く、不発明によれば、r遠近競合」状態
を確実に判定することができるので、どのような状態で
も高精度な焦点判別を行なうことが可能となる。
(Effects) As described in detail above, according to the invention, it is possible to reliably determine the "r-far-near conflict" state, and therefore it is possible to perform highly accurate focus determination in any state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は二次結像方式の焦点検出光学系の一例を示す平
面図、第2図(IL) * (1)) 、 (0)は2
g1図の光学系における焦点検出原理を説明するための
平面図、第3図(a) I (b) I (QIFi非
合魚時の二次元的袋物体に対する像信号、この像信号に
基づいた評価量U(m)、相関量V (m)のそれぞれ
を示す図、第4図(al 、 (1)) l (0)は
合焦時の二次元的な物体に対する像信号、この像信号に
基づいた評価量■(m)、相関量V (mlのそれぞれ
を示す図、第5図(&)。 (b) j ((1)は非合焦時の三次元的な物体に対
する像信号、この像信号に基づいた評価量U(m)、相
関i V (m)のそれぞれを示す図、! 6 図(a
l 、 (t)l 、 (0)は合焦時の三次元的な物
体に対する像信号、この像信号に基づいた評価1に賃m
)、相関量V (m)のそれぞれを示す図、!7図(a
) * (b) a (’l * (d)は不発明にお
ける像信号の分割方法と各分割領域における相関量をそ
れぞれ示す図、第8図は本発明の焦点検出装置の一実施
例を示す回路図、第9図は不実施例の信号処理方法を示
すフローチャートである。 1・・・撮影レンズ 4a 4b・・・センサ列 8・・・像信号処理装置 12・−−モータ C 区 誓 賃 [有]
Figure 1 is a plan view showing an example of a secondary imaging type focus detection optical system, Figure 2 (IL) * (1)), (0) is 2
g A plan view for explaining the focus detection principle in the optical system in Figure 1, Figure 3 (a) I (b) I (Image signal for a two-dimensional bag object when QIFi is not aligned, based on this image signal Figure 4 shows the evaluation amount U (m) and the correlation amount V (m), respectively. Fig. 5 shows the evaluation quantity (m) and the correlation quantity V (ml) based on (&). (b) j ((1) is the image signal for a three-dimensional object when out of focus , a diagram showing each of the evaluation quantity U(m) and correlation i V (m) based on this image signal,!6 Figure (a
l, (t)l, (0) is an image signal for a three-dimensional object at the time of focusing, and the evaluation 1 based on this image signal is
), a diagram showing each of the correlation amount V (m), ! Figure 7 (a
) * (b) a ('l * (d) is a diagram showing the image signal division method in the invention and the amount of correlation in each division area, and FIG. 8 shows an embodiment of the focus detection device of the invention. The circuit diagram and FIG. 9 are flowcharts showing the signal processing method of the non-embodiment. 1...Photographing lens 4a 4b...Sensor array 8...Image signal processing device 12...Motor C [Yes]

Claims (4)

【特許請求の範囲】[Claims] (1)対物レンズの焦点状態に応じて相対的な位置関係
が変化する第1並びに第2の像を形成する光学系と、上
記第1並びに第2の像のそれぞれを複数の光電変換素子
で検出するセンサーを有し、このセンサーの出力に基づ
いて上記第1並びに第2の像の相対変位量を求めること
により対物レンズの焦点状態を検出する焦点検出装置に
おいて、上記第1並びに第2の像を検出する1番目の光
電変換素子の出力をそれぞれa(i)、b(i)、Pを
正の数とするとき、 U=Σ_i|a(i)−b(i)|^P で評価量Uを求めると共に、上記相対変位量が所定値以
下となつた際には上記評価量に基づいて上記相対変位量
の信頼度を判定することを特徴とする焦点検出装置。
(1) An optical system that forms first and second images whose relative positional relationship changes depending on the focal state of the objective lens, and a plurality of photoelectric conversion elements that form each of the first and second images. A focus detection device that detects the focus state of an objective lens by determining the relative displacement amount of the first and second images based on the output of the sensor. When the output of the first photoelectric conversion element that detects an image is a(i), b(i), and P are positive numbers, U=Σ_i|a(i)−b(i)|^P A focus detection device characterized by determining an evaluation amount U and determining the reliability of the relative displacement amount based on the evaluation amount when the relative displacement amount becomes less than or equal to a predetermined value.
(2)上記評価量が所定値以上の際には上記センサーの
出力を上記第1並びに第2の像ごとに複数領域に分割し
、各領域ごとに上記第1並びに第2の像の相対変位量を
求めることを特徴とする特許請求の範囲第(1)項記載
の焦点検出装置。
(2) When the evaluation amount is greater than or equal to a predetermined value, the output of the sensor is divided into multiple regions for each of the first and second images, and the relative displacement of the first and second images is calculated for each region. The focus detection device according to claim 1, wherein the focus detection device calculates the amount.
(3)上記センサーの出力を上記第1並びに第2の像ご
とに複数領域に分割する際、各領域の一部が重複するよ
うに分割することを特徴とする特許請求の範囲第(2)
項記載の焦点検出装置。
(3) Claim (2) characterized in that when the output of the sensor is divided into a plurality of regions for each of the first and second images, the division is performed so that a portion of each region overlaps.
The focus detection device described in .
(4)上記評価量を判定するための閾値は調節可能であ
ることを特徴とする特許請求の範囲第(3)項記載の焦
点検出装置。
(4) The focus detection device according to claim (3), wherein the threshold value for determining the evaluation amount is adjustable.
JP14019684A 1984-07-06 1984-07-06 Focus detecting device Granted JPS6118912A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14019684A JPS6118912A (en) 1984-07-06 1984-07-06 Focus detecting device
US07/294,920 US4914282A (en) 1984-07-06 1989-01-09 Focus detection system employing multiple area light distribution sensors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14019684A JPS6118912A (en) 1984-07-06 1984-07-06 Focus detecting device

Publications (2)

Publication Number Publication Date
JPS6118912A true JPS6118912A (en) 1986-01-27
JPH0588445B2 JPH0588445B2 (en) 1993-12-22

Family

ID=15263143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14019684A Granted JPS6118912A (en) 1984-07-06 1984-07-06 Focus detecting device

Country Status (1)

Country Link
JP (1) JPS6118912A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4768054A (en) * 1986-02-14 1988-08-30 Minolta Camera Kabushiki Kaisha Focus condition detecting device
US4882601A (en) * 1986-05-16 1989-11-21 Minolta Camera Kabushiki Kaisha Camera with an automatic focusing device
US4942418A (en) * 1986-02-14 1990-07-17 Minolta Camera Kabushiki Kaisha Focus condition detecting device
WO2012073729A1 (en) * 2010-11-30 2012-06-07 富士フイルム株式会社 Imaging device and focal position detection method
WO2012073728A1 (en) * 2010-11-30 2012-06-07 富士フイルム株式会社 Imaging device and focal position detection method
JP2015102735A (en) * 2013-11-26 2015-06-04 株式会社ニコン Focus detection device and imaging device
JP2019164384A (en) * 2013-11-26 2019-09-26 株式会社ニコン Focus adjustment device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4768054A (en) * 1986-02-14 1988-08-30 Minolta Camera Kabushiki Kaisha Focus condition detecting device
US4942418A (en) * 1986-02-14 1990-07-17 Minolta Camera Kabushiki Kaisha Focus condition detecting device
US4882601A (en) * 1986-05-16 1989-11-21 Minolta Camera Kabushiki Kaisha Camera with an automatic focusing device
JPWO2012073729A1 (en) * 2010-11-30 2014-05-19 富士フイルム株式会社 Imaging apparatus and focus position detection method thereof
US8780259B2 (en) 2010-11-30 2014-07-15 Fujifilm Corporation Image capturing apparatus and in-focus position detection method thereof
CN103238098A (en) * 2010-11-30 2013-08-07 富士胶片株式会社 Imaging device and focal position detection method
JP5493010B2 (en) * 2010-11-30 2014-05-14 富士フイルム株式会社 Imaging apparatus and focus position detection method thereof
JP5493011B2 (en) * 2010-11-30 2014-05-14 富士フイルム株式会社 Imaging apparatus and focus position detection method thereof
WO2012073729A1 (en) * 2010-11-30 2012-06-07 富士フイルム株式会社 Imaging device and focal position detection method
JPWO2012073728A1 (en) * 2010-11-30 2014-05-19 富士フイルム株式会社 Imaging apparatus and focus position detection method thereof
WO2012073728A1 (en) * 2010-11-30 2012-06-07 富士フイルム株式会社 Imaging device and focal position detection method
CN103238098B (en) * 2010-11-30 2015-04-15 富士胶片株式会社 Imaging device and focal position detection method
US9357120B2 (en) 2010-11-30 2016-05-31 Fujifilm Corporation Image capturing apparatus and in-focus position detection method thereof
JP2015102735A (en) * 2013-11-26 2015-06-04 株式会社ニコン Focus detection device and imaging device
CN106415349A (en) * 2013-11-26 2017-02-15 株式会社尼康 Focal point detection device, and imaging device
US10122910B2 (en) 2013-11-26 2018-11-06 Nikon Corporation Focus detection device and image-capturing apparatus
US10291840B2 (en) 2013-11-26 2019-05-14 Nikon Corporation Focus detection device and image-capturing apparatus
JP2019164384A (en) * 2013-11-26 2019-09-26 株式会社ニコン Focus adjustment device

Also Published As

Publication number Publication date
JPH0588445B2 (en) 1993-12-22

Similar Documents

Publication Publication Date Title
US4180309A (en) Focal point detecting device for SLR camera
US4859842A (en) Multi-directional focus state detection apparatus
CN102105830B (en) Focus detection apparatus
US5051767A (en) Distance measuring device
US4914282A (en) Focus detection system employing multiple area light distribution sensors
JPH10142490A (en) Environment recognition device and camera
JPH0311443B2 (en)
US5278602A (en) Distance measuring device
JPS6118912A (en) Focus detecting device
JPH0456915A (en) Object detection system of optical instrument
US4523828A (en) Focus detecting device
JPH0534659B2 (en)
JP4642547B2 (en) Focus detection device
JPH0754370B2 (en) Focus detection device
JPS6122316A (en) Focus detecting device
EP0140972B1 (en) Three-dimensional distance-measuring device
JP3230759B2 (en) Distance measuring device
JP2768459B2 (en) Focus detection device
JP3703153B2 (en) Focus detection device
JP2995773B2 (en) Camera exposure calculation device
JPH1183474A (en) Distance measuring device
JPH0823623B2 (en) Focus detection device adjustment method
JP3076054B2 (en) Photoelectric conversion device
JP3344191B2 (en) Camera ranging device
JPH0255306A (en) Focus detecting device for camera

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term