JPH08277726A - Gas turbine installation - Google Patents

Gas turbine installation

Info

Publication number
JPH08277726A
JPH08277726A JP8102995A JP8102995A JPH08277726A JP H08277726 A JPH08277726 A JP H08277726A JP 8102995 A JP8102995 A JP 8102995A JP 8102995 A JP8102995 A JP 8102995A JP H08277726 A JPH08277726 A JP H08277726A
Authority
JP
Japan
Prior art keywords
steam
turbine
cooling
pressure
cooling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8102995A
Other languages
Japanese (ja)
Inventor
Masami Noda
雅美 野田
Kazuhiko Kawaike
和彦 川池
Takashi Ikeguchi
隆 池口
Manabu Matsumoto
学 松本
Narihisa Sugita
成久 杉田
Shinya Marushima
信也 圓島
Shinichi Higuchi
眞一 樋口
Isao Takehara
竹原  勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8102995A priority Critical patent/JPH08277726A/en
Publication of JPH08277726A publication Critical patent/JPH08277726A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE: To provide a gas turbine plant having high efficiency in which steam cooling can be achieved in its comparatively simple structure as well as to minimize the consumption of cooling steam so as to improve plant efficiency in a gas turbine installation which cools a turbine stationary and moving blades using steam and recovers the steam. CONSTITUTION: This installation is provided with a first cooling system 12 which supplies steam to a stationary blade 20a so as to cool it and recovers the steam, and a second cooling system 15 which cools moving blades 30a, 30b using the recovered steam and recovers the steam. This installation is constituted by providing cooling means to cool the steam recovered in the first cooling system 12 between the first cooling system 12 and the second cooling system 15. Hereby, the consumption quantity of cooling steam on the turbine stationary blade 20a and the moving blades 30a, 30b can be restricted to the minimum, and also high temperature steam after it cools the moving blades 30a, 30b can be recovered so that plant efficiency is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蒸気を用いてタービン
の静翼及び動翼等を冷却するガスタービンに係り、特に
プラント効率を高めたガスタービン設備に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine for cooling the stationary blades and moving blades of a turbine using steam, and more particularly to a gas turbine facility with improved plant efficiency.

【0002】[0002]

【従来の技術】ガスタービンの高効率化に対しては、要
素性能の向上とともに作動ガスの高温化が有効である。
作動ガスの高温化は、耐熱材料の開発と高温要素部材、
特にタービン静・動翼の冷却技術の上に成り立っている
が、現状、作動ガス温度が翼の耐熱温度を越えているに
も拘らず、材料開発には長期の期間を要すことから、タ
ービン静・動翼の冷却強化が重要となる。従来、ガスタ
ービンでは圧縮機から抽気した空気を冷却媒体として用
い、タービン翼の内部を冷却した後は、大部分の空気を
翼外表面のフィルム冷却用として、或いはそのまま翼か
ら作動ガス中へ排出している。このため、圧縮機で圧縮
した空気の全量がタービンの初段から最終段にわたって
有効に仕事を為さず圧縮動力を消費すること、また比較
的低温の冷却空気の希釈による作動ガスの温度低下や混
入時の作動ガスとの間の混合損失など、タービンの出力
が低下し効果が充分に発揮しきれない欠点があった。更
に、現在進められているレベルの高温になると冷却空気
の消費量が増大し過ぎて、高温化によるサイクル上のメ
リットを損ない、逆にプラント効率を低下させてしまう
所へ達してきている。
2. Description of the Related Art To improve the efficiency of a gas turbine, it is effective to improve the element performance and raise the temperature of the working gas.
The rise in working gas temperature is due to the development of heat resistant materials and high temperature element members,
In particular, it is based on the technology for cooling the turbine static / moving blades, but at present the material development requires a long period of time even though the working gas temperature exceeds the heat-resistant temperature of the blades. It is important to strengthen the cooling of the static and moving blades. Conventionally, in a gas turbine, the air extracted from the compressor is used as a cooling medium, and after cooling the inside of the turbine blade, most of the air is used for film cooling of the outer surface of the blade or is discharged from the blade directly into the working gas. are doing. Therefore, the entire amount of air compressed by the compressor does not work effectively from the first stage to the final stage of the turbine and consumes compression power, and the temperature of the working gas decreases or mixes due to dilution of the cooling air at a relatively low temperature. However, there was a drawback that the output of the turbine was reduced and the effect could not be fully exhibited, such as a mixing loss with the working gas. Further, at the high temperature of the level currently being promoted, the consumption amount of the cooling air is excessively increased, and the merit in the cycle due to the high temperature is impaired, and conversely the plant efficiency is lowered.

【0003】そこで、少量の冷却媒体で効果的にタービ
ン翼を冷却する方法として、粘性係数やプラントル数等
の物理量の違いから空気よりも熱伝達率が大きく、更に
比熱が大きい蒸気を冷却媒体に用いることで冷却性能を
向上させ、更にタービン翼を冷却した後の蒸気を作動ガ
ス中に排出せずに、たとえば蒸気タービンに回収して仕
事をさせる等が提案されている。この種の装置として関
連するものに、例えば特開平5−163960 号公報等が挙げ
られ、ガスタービンからの排熱を利用したコンバインド
サイクル発電プラントにおいて、高温被冷却部を過熱蒸
気で冷却後、その過熱蒸気を蒸気タービンに回収するも
のである。しかし、タービン部での具体的な冷却系統に
ついては示されていない。ところで、空気冷却方式での
回収型ガスタービンでは、タービン部の冷却に用いた冷
却空気を燃焼器等に戻す等の構成が提案されているが、
蒸気を使った方がプラント効率は高い。
Therefore, as a method of effectively cooling a turbine blade with a small amount of cooling medium, steam having a heat transfer coefficient larger than that of air and a larger specific heat than that of air is used as a cooling medium due to differences in physical quantities such as viscosity coefficient and Prandtl number. It has been proposed to improve the cooling performance by using the steam turbine, and to collect the steam after cooling the turbine blades into the working gas without recovering the steam into the working gas to perform the work. As a device related to this type, for example, JP-A-5-163960 can be cited.In a combined cycle power plant utilizing exhaust heat from a gas turbine, after cooling a high temperature cooled part with superheated steam, The superheated steam is collected in a steam turbine. However, the specific cooling system in the turbine section is not shown. By the way, in a recovery-type gas turbine with an air cooling system, a configuration has been proposed in which the cooling air used for cooling the turbine section is returned to a combustor or the like.
Plant efficiency is higher when steam is used.

【0004】[0004]

【発明が解決しようとする課題】タービン翼を蒸気冷却
するガスタービン設備を目的に沿って効果的に実現する
ためには、静止体であり比較的構成の容易な静翼の蒸気
冷却だけでなく、冷却空気の消費量の増大を防止するた
め、回転体である動翼の冷却にも蒸気冷却は不可欠であ
る。そのためには、冷却媒体に空気を用いる場合と同様
にプラント全体の効率を高める上から、極力、蒸気の消
費量を少なくするとともに、その蒸気を回収して有効に
仕事に寄与させる必要がある。また、回転体である動翼
までの蒸気の供給或いは回収に対して、シール部等での
洩れを低減する等、冷却媒体に蒸気を用いたガスタービ
ン設備の総合的なプラント効率の向上が大きな課題とな
る。本発明の目的は、上記の事情に鑑みて為されたもの
であり、従来の空気冷却方式に比較して効率向上を狙う
とともに、蒸気冷却方式によるガスタービンの最適なガ
スタービン設備を提供することにある。
SUMMARY OF THE INVENTION In order to effectively realize a gas turbine facility for steam-cooling turbine blades according to the purpose, not only steam cooling of stationary vanes, which is a stationary body and relatively easy to construct, is required. In order to prevent the consumption of cooling air from increasing, steam cooling is also essential for cooling the rotor blades that are rotating bodies. For that purpose, in order to improve the efficiency of the entire plant as in the case of using air as the cooling medium, it is necessary to reduce the consumption of steam as much as possible and to recover the steam to contribute effectively to the work. In addition, for the supply or recovery of steam to the rotor blades that are rotating bodies, there is a great improvement in overall plant efficiency of gas turbine equipment that uses steam as the cooling medium, such as reducing leakage at the seals. It becomes an issue. The object of the present invention is made in view of the above circumstances, and aims to improve efficiency as compared with the conventional air cooling system, and to provide an optimum gas turbine facility for a gas turbine by a steam cooling system. It is in.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明のガスタービン設備においては、蒸気発生設
備で発生させた過熱蒸気を供給配管によりタービンの静
翼に導き、静翼内部に設けた冷却通路を過熱蒸気が通過
するとき熱交換して静翼を冷却し、その過熱蒸気を回収
配管によって回収する第一冷却系と、第一冷却系で回収
した過熱蒸気を、ガスタービンの軸端に導く配管及びタ
ービン内部に形成した蒸気供給経路を経て回転体である
タービンの動翼に供給し、動翼内部に設けた冷却通路を
過熱蒸気が通過するとき熱交換して動翼を冷却した後、
その蒸気をタービン内部に形成した蒸気回収経路を通り
ガスタービンの軸端から蒸気配管によって回収する第二
冷却系を有する冷却系統で構成させたものである。
In order to achieve the above object, in the gas turbine equipment of the present invention, the superheated steam generated in the steam generating equipment is led to the stationary blades of the turbine by the supply pipe, and is introduced into the stationary blades. When the superheated steam passes through the provided cooling passage, heat is exchanged to cool the vanes, and the first cooling system that recovers the superheated steam by the recovery pipe and the superheated steam that is recovered by the first cooling system It is supplied to the moving blades of the turbine, which is a rotating body, through the piping leading to the shaft end and the steam supply path formed inside the turbine, and when superheated steam passes through the cooling passage provided inside the moving blade, heat is exchanged to the moving blades. After cooling
It is configured by a cooling system having a second cooling system that collects the steam from a shaft end of the gas turbine by a steam pipe through a steam recovery path formed inside the turbine.

【0006】更に、第一冷却系と第二冷却系との間に第
一冷却系から回収された過熱蒸気を冷却する冷却手段を
備えたものである。この冷却手段として蒸気配管中に水
スプレー装置を備えれば、直接、過熱蒸気と水が熱交換
するので、比較的少ない給水量で過熱蒸気を冷却でき
る。また、この冷却手段として水冷型の熱交換器を備
え、これに第一冷却系で回収した過熱蒸気を通過させ、
間接的に熱交換を行えば蒸気中にミストの発生を防止で
きる。
Further, a cooling means for cooling the superheated steam recovered from the first cooling system is provided between the first cooling system and the second cooling system. If a water spray device is provided in the steam pipe as the cooling means, the superheated steam and the water directly exchange heat, so that the superheated steam can be cooled with a relatively small amount of water supply. Further, a water-cooled heat exchanger is provided as the cooling means, and the superheated steam recovered in the first cooling system is passed through the heat exchanger.
Indirect heat exchange can prevent the generation of mist in the steam.

【0007】[0007]

【作用】上記のように構成されたガスタービン設備にお
いて、ガスタービンを運転すると、空気に比べて熱伝達
率及び比熱等の大きい過熱蒸気は、第一冷却系及び第二
冷却系で、それぞれタービンの静翼及び動翼の内部で熱
交換し温度上昇する。この加熱された過熱蒸気を作動ガ
ス中に排出せずに、プラント内の蒸気タービン等に回収
するようにしたので、プラント効率を向上できる。
In the gas turbine equipment constructed as described above, when the gas turbine is operated, superheated steam having a larger heat transfer coefficient and specific heat than that of air is generated in the first cooling system and the second cooling system, respectively. The temperature rises due to heat exchange inside the stationary blades and moving blades. Since the heated superheated steam is not discharged into the working gas but is recovered by the steam turbine or the like in the plant, the plant efficiency can be improved.

【0008】一方、過熱蒸気は第一冷却系内で生じる圧
力損失のため、第一冷却系へ供給された時に比べて低い
圧力で回収され、第二冷却系に供給されるが、回転体側
である第二冷却系内のシール部等での洩れの発生要因に
対して、圧力差を小さくするように働く。
On the other hand, the superheated steam is recovered at a lower pressure than when it is supplied to the first cooling system and supplied to the second cooling system because of the pressure loss generated in the first cooling system. It acts to reduce the pressure difference with respect to the cause of leakage at a seal portion or the like in a certain second cooling system.

【0009】[0009]

【実施例】以下、本発明の実施例を図1により説明す
る。図1は本実施例のガスタービン設備の構成図とター
ビン部の部分断面図である。本発明を理解し易くするた
め、二段のタービンに適用した場合について示した。ガ
スタービン5は主として、タービン1と、このタービン
1に連結され、燃焼用の圧縮空気を得る圧縮機3と、高
温高圧ガスを発生する燃焼器2より構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a configuration diagram of a gas turbine facility of this embodiment and a partial cross-sectional view of a turbine portion. In order to make the present invention easier to understand, the case where it is applied to a two-stage turbine is shown. The gas turbine 5 mainly includes a turbine 1, a compressor 3 that is connected to the turbine 1 to obtain compressed air for combustion, and a combustor 2 that generates high-temperature high-pressure gas.

【0010】タービン1の静翼20aの半径方向外側端
部には、過熱蒸気の供給口21と排出口22を有し、供
給口21と排出口22は、静翼20aの内部に中空状に
設けられた冷却通路23によって連通している。その供
給口21に過熱蒸気を供給する蒸気配管10と排出口2
2から過熱蒸気を回収するための蒸気配管11が設置さ
れ、第一冷却系12が構成されている。
At the radially outer end of the stationary blade 20a of the turbine 1, there are a superheated steam supply port 21 and a discharge port 22. The supply port 21 and the discharge port 22 are hollow inside the stationary blade 20a. The cooling passages 23 provided are in communication with each other. A steam pipe 10 for supplying superheated steam to the supply port 21 and a discharge port 2
A steam pipe 11 for recovering superheated steam from 2 is installed, and a first cooling system 12 is configured.

【0011】一方、動翼30a,30bの内部にも、そ
れぞれ中空状に形成された冷却通路33a,33bが設
けられ、それらの半径方向内側端部には、過熱蒸気の供
給口31aと排出口32a、或いは供給口31bと排出
口32bを備え、それぞれ冷却通路によって供給口と排
出口が連通している。そして、動翼30a,30bの供
給口31a,31bに過熱蒸気を供給するため、タービ
ン1の外部からタービン1の軸端まで延びる蒸気配管と
タービンのロータ内部に設けた供給経路より成る蒸気流
路13と、動翼の排出口32a,32bから過熱蒸気を
回収するための、ロータ内部に設けたタービン1の軸端
まで延びる回収経路及び軸端からタービン1の外部に延
びる蒸気配管で成る蒸気流路(回収配管)14が形成さ
れ第二冷却系15が構成されている。そして、第一冷却
系12の蒸気配管11は、第二冷却系15の蒸気流路1
3に連通しており、この第一冷却系12と第二冷却系1
5の間に水冷式の熱交換器16を備えている。
On the other hand, inside the moving blades 30a and 30b, hollow cooling passages 33a and 33b are provided, respectively, and superheated steam supply ports 31a and discharge ports are provided at their radially inner ends. 32a or a supply port 31b and a discharge port 32b are provided, and the supply port and the discharge port communicate with each other through cooling passages. Then, in order to supply the superheated steam to the supply ports 31a and 31b of the moving blades 30a and 30b, a steam flow path including a steam pipe extending from the outside of the turbine 1 to the shaft end of the turbine 1 and a supply path provided inside the rotor of the turbine 13, and a steam flow composed of a recovery path for recovering the superheated steam from the exhaust ports 32a, 32b of the moving blades and extending to the shaft end of the turbine 1 provided inside the rotor and a steam pipe extending from the shaft end to the outside of the turbine 1. A passage (recovery pipe) 14 is formed and a second cooling system 15 is configured. The steam pipe 11 of the first cooling system 12 is connected to the steam passage 1 of the second cooling system 15.
3 communicating with the first cooling system 12 and the second cooling system 1
5 is equipped with a water-cooled heat exchanger 16.

【0012】このように構成された本実施例において、
ガスタービンの運転とともに圧縮機3より吐出された圧
縮空気は、燃焼器2に導かれ燃料とともに燃焼し、この
燃焼した高温高圧の作動ガスは、タービン部の初段の静
翼20a,動翼30a,第二段の静翼20b,動翼30
bを通過する際に、図示しないタービンの回転軸を回転
させる。そしてタービンの回転軸に結合されている発電
機4を駆動し発電するようになっている。この際、作動
ガスは、圧力が約20ata 、平均温度として1400か
ら1500℃程度で静翼20aに流入するが、この温度
はタービン翼の信頼性を確保するための材料の許容温度
を越えており、翼を冷却する必要がある。そこで、図示
しない蒸気発生設備によって発生させた、圧力が30at
a 、温度が250℃程度の過熱蒸気を第一冷却系12の
蒸気配管10に供給する。供給された過熱蒸気は、蒸気
配管10を経て静翼20aの供給口21に達する。この
過熱蒸気は、連通した供給口21と排出口22を端部に
もつ冷却通路23を通過する時に、静翼20aの内壁面
を強制対流冷却することによって静翼20aの熱を奪い
温度上昇する。また、蒸気配管10の通過時及び静翼2
0aの冷却時に生じる圧力損失によって、蒸気配管10
に供給された時より低い圧力で、排出口22から蒸気配
管11に回収される。この蒸気配管11に回収された過
熱蒸気は、第一冷却系12と第二冷却系15の間に設け
られた水冷式の熱交換器16で、熱交換器16に供給さ
れる水と間接的に熱交換して250℃程度に温度を戻す
とともに、この間に圧力損失によって更に圧力を低下さ
せる。この熱交換器16を通過した過熱蒸気は、連通し
た第二冷却系15の蒸気配管とロータ内の供給経路より
成る蒸気流路13に導かれ、分岐して構成された供給経
路を動翼30aと30bの供給口31a,31bに向か
って流れる。供給経路で分岐された過熱蒸気は、連通し
た供給口31aと排出口32a,供給口31bと排出口
32bを端部にもつ冷却通路33aと33bを通過する
時に、動翼30aと30bの内壁面を強制対流冷却し熱
交換して400℃程度に温度上昇するとともに、排出口
32a,32bを経て、ロータ内部に設けたタービン1の軸
端まで延びる回収経路上で合流して、軸端からタービン
1の外部に延びる蒸気配管を通る回収のための蒸気流路
14を経て、図示しない蒸気タービンに回収される。
In the present embodiment thus constructed,
The compressed air discharged from the compressor 3 along with the operation of the gas turbine is guided to the combustor 2 and burned with the fuel, and the burned high-temperature and high-pressure working gas is used for the first stage stationary blades 20a, moving blades 30a, Second stage stationary blade 20b, moving blade 30
When passing through b, the rotating shaft of the turbine (not shown) is rotated. The generator 4 connected to the rotating shaft of the turbine is driven to generate electric power. At this time, the working gas flows into the stationary blade 20a at a pressure of about 20ata and an average temperature of about 1400 to 1500 ° C, but this temperature exceeds the allowable temperature of the material for ensuring the reliability of the turbine blade. , Need to cool the wings. Therefore, the pressure generated by the steam generator (not shown) is 30at.
a. Superheated steam having a temperature of about 250 ° C. is supplied to the steam pipe 10 of the first cooling system 12. The supplied superheated steam reaches the supply port 21 of the stationary blade 20a through the steam pipe 10. When the superheated steam passes through the cooling passage 23 having the supply port 21 and the discharge port 22 communicating with each other, the inner wall surface of the stationary blade 20a is forcibly convectively cooled to remove the heat of the stationary blade 20a and rise in temperature. . In addition, when passing through the steam pipe 10 and the stationary blade 2
Due to the pressure loss that occurs when cooling 0a, the steam pipe 10
It is recovered from the discharge port 22 to the steam pipe 11 at a pressure lower than that when supplied to the steam pipe 11. The superheated steam recovered in the steam pipe 11 is indirectly cooled with the water supplied to the heat exchanger 16 by a water-cooled heat exchanger 16 provided between the first cooling system 12 and the second cooling system 15. And the temperature is returned to about 250 ° C., and the pressure is further reduced by pressure loss during this period. The superheated steam that has passed through the heat exchanger 16 is guided to the steam flow path 13 that is composed of the steam piping of the second cooling system 15 and the supply path inside the rotor that are in communication with each other, and the supply path that is configured by branching the moving path 30a. And 30b toward the supply ports 31a and 31b. When the superheated steam branched in the supply path passes through the cooling passages 33a and 33b having the supply port 31a and the discharge port 32a, and the supply port 31b and the discharge port 32b at the ends, the inner wall surfaces of the moving blades 30a and 30b. Is cooled by forced convection and heat exchange to raise the temperature to about 400 ° C, and the outlet
After passing through 32a, 32b, on a recovery path extending to the shaft end of the turbine 1 provided inside the rotor, and passing through a steam flow path 14 for recovery through a steam pipe extending from the shaft end to the outside of the turbine 1, It is recovered by a steam turbine (not shown).

【0013】以上に説明したタービンの静翼及び動翼へ
の蒸気の供給,回収過程において、冷却系がシリーズに
構成されていることから蒸気配管の本数が少なく、比較
的単純な構成でタービンの静翼及び動翼の蒸気冷却が達
成されるとともに、過熱蒸気を蒸気タービンに回収する
ことによりプラント効率を向上することができる。ま
た、回転体である動翼への過熱蒸気の供給と回収を担う
第二冷却系でのシール部等での蒸気の洩れの発生に対し
て、たとえば従来の空気冷却による冷却媒体の供給形式
と同じように、冷却系をパラレルに構成して静翼と動翼
に同等の圧力を供給する場合に比較して、第一冷却系で
生じる圧力損失による供給圧力の低下分だけ洩れ箇所で
の差圧が小さくなり洩れ量を低減できる。従って、蒸気
発生設備での過熱蒸気の生成量を低減できプラント効率
を向上することができるとともに、蒸気を生成するため
の補給水量の増加を防止できる。更に、冷却系をパラレ
ルに構成して静翼と動翼に同程度の温度条件で冷却媒体
を供給する場合、作動ガス温度の高い静翼20aの方
が、動翼30a,30bを冷却するよりも蒸気流量を多
く必要とする。この場合、蒸気の総消費量が静翼と動翼
への供給量の加算であるのに対して、本実施例では、静
翼20aを冷却するのに必要な蒸気流量を第一冷却系1
2に供給すれば、必然的に静翼よりも少ない流量で済む
動翼30a,30bには十分な流量が得られることにな
り、総じて少ない蒸気流量で静翼20a,動翼30a及
び動翼30bを冷却できるので、過熱蒸気の生成量を削
減可能としてプラント効率を向上することができる。
In the process of supplying and recovering steam to the stationary blades and moving blades of the turbine described above, since the cooling system is configured in series, the number of steam pipes is small and the turbine has a relatively simple structure. The steam cooling of the stationary blades and the moving blades is achieved, and the plant efficiency can be improved by collecting the superheated steam in the steam turbine. In addition, against the occurrence of steam leakage at the seal part of the second cooling system that is responsible for supplying and recovering superheated steam to the rotor blades that are rotating bodies, for example, the conventional cooling medium supply method by air cooling is used. Similarly, compared to the case where the cooling system is configured in parallel and the same pressure is supplied to the stationary blades and the moving blades, the difference at the leakage point is equal to the decrease in the supply pressure due to the pressure loss generated in the first cooling system. The pressure is reduced and the amount of leakage can be reduced. Therefore, it is possible to reduce the amount of superheated steam generated in the steam generation facility, improve plant efficiency, and prevent an increase in the amount of makeup water for generating steam. Furthermore, when the cooling system is configured in parallel and the cooling medium is supplied to the stationary blade and the moving blade under the same temperature condition, the stationary blade 20a having a higher working gas temperature cools the moving blades 30a and 30b. Also requires a large amount of steam flow. In this case, the total amount of steam consumed is the sum of the amounts supplied to the stationary blades and the moving blades, whereas in the present embodiment, the steam flow rate required to cool the stationary blades 20a is set to the first cooling system 1.
If it is supplied to 2, the moving blades 30a, 30b, which inevitably require a smaller flow rate than the stationary blades, will be able to obtain a sufficient flow rate. Since it can be cooled, the production amount of superheated steam can be reduced and the plant efficiency can be improved.

【0014】尚、本実施例では、第一冷却系12に回収
した蒸気を水冷式の熱交換器16を用いて冷却したが、
他の手段をもって冷却しても構わないのは勿論であり、
例えば他の手段として、水スプレーを用いれば、直接、
過熱蒸気と熱交換して冷却できるので冷却水量を低減で
きる。
In this embodiment, the steam recovered in the first cooling system 12 is cooled using the water-cooling type heat exchanger 16.
Of course, other means may be used for cooling,
For example, as another means, if you use a water spray,
Since it can be cooled by exchanging heat with superheated steam, the amount of cooling water can be reduced.

【0015】また、本実施例では、二段のタービンに適
用した場合について説明しており、静止側は初段の静翼
20aのみを過熱蒸気によって冷却したが、初段の静翼
20aを冷却後、蒸気配管によって過熱蒸気を回収し、そ
の過熱蒸気を、更に第二段の静翼20bへの蒸気配管を
経由して静翼20bに導入して翼を冷却し、その後、静
翼20bに設けた蒸気配管で回収する第一冷却系12と
して構成しても構わないのは勿論であり、第二段の静翼
も冷却する場合、過熱蒸気の消費量の低減となる。
Further, in the present embodiment, the case where the invention is applied to a two-stage turbine is explained. Although only the stationary vanes 20a of the first stage on the stationary side are cooled by superheated steam, the stationary vanes of the first stage are
After cooling 20a, the superheated steam is recovered by the steam pipe, and the superheated steam is further introduced into the stationary blade 20b via the steam piping to the second stage stationary blade 20b to cool the blade, and then the stationary blade is cooled. Needless to say, the first cooling system 12 may be configured to recover the steam with the steam pipe provided on the blade 20b. When the second-stage stationary blade is also cooled, the consumption amount of superheated steam is reduced.

【0016】本発明の他の実施例を、図2を用いて説明
する。図2において、図1と同一記号であれば、構成,
動作等は第1の実施例に同じである。図2には、本発明
を備えたガスタービン5を、蒸気タービンプラント6と
組合せ、ガスタビーン5からの排熱を利用して蒸気ター
ビン駆動用蒸気を発生させる排熱回収ボイラ7と発電機
4aを備えたコンバインドサイクル発電プラントが示さ
れている。
Another embodiment of the present invention will be described with reference to FIG. In FIG. 2, if the same symbols as in FIG.
The operation and the like are the same as those in the first embodiment. In FIG. 2, a gas turbine 5 equipped with the present invention is combined with a steam turbine plant 6, and an exhaust heat recovery boiler 7 and a generator 4a that generate steam for driving the steam turbine by utilizing exhaust heat from the gas tabine 5 are shown. A combined cycle power plant equipped is shown.

【0017】ガスタービン5から排気される燃焼ガス
は、図示しない配管によって排熱回収ボイラ7に導か
れ、ここで蒸気タービンプラント6からの給水と熱交換
して外部に排気される。排熱回収ボイラ7は、3圧力式
であり低圧ドラム8a,中圧ドラム8b,高圧ドラム8
cが設置されており、それぞれ低圧蒸気ライン9a,中
圧蒸気ライン9b,高圧蒸気ライン9cが接続されてい
る。この3圧力式の低圧,中圧及び高圧の定義は、それ
ぞれ低圧蒸気タービン6a,中圧蒸気タービン6b及び
高圧蒸気タービン6cを作動させる蒸気圧力で決まり、
低圧,中圧,高圧の順で蒸気圧力が高い。低圧蒸気ライ
ン9aは、低圧過熱器7dを経て低圧蒸気タービン6a
に接続される。低圧蒸気タービン6aに供給された過熱
蒸気は、膨張してタービンを駆動した後、復水器40で
復水となり、給水ライン9fを経て排熱回収ボイラ7に
供給される。中圧蒸気ライン9bは、中圧過熱器7c,
再熱器7bを経て中圧蒸気タービン6bに接続される。
そして、中圧蒸気タービン6bから排出される蒸気は、
回収蒸気ライン9eを通り接続された低圧蒸気ライン9
aに合流する。高圧蒸気ライン9cは、高圧過熱器7a
を経て高圧蒸気タービン6cに過熱蒸気を供給する。一
方、高圧蒸気ライン9cは高圧過熱器7aの上流位置で
分岐されて、ガスタービン5の蒸気配管10に接続され
る。この過熱蒸気はタービンの静翼並びに動翼への冷却
蒸気として、第一冷却系12,熱交換器16を経て、第
二冷却系15の蒸気流路14から、高圧過熱器7aに導
かれ、分岐した他方の高圧蒸気ライン9cと合流して回
収される。高圧蒸気タービン6cから排出される蒸気
は、再熱蒸気ライン9dを通り、接続された中圧蒸気ラ
イン9bに再熱器7bの上流位置で合流する。
The combustion gas exhausted from the gas turbine 5 is guided to an exhaust heat recovery boiler 7 by a pipe (not shown), where it exchanges heat with the feed water from the steam turbine plant 6 and is exhausted to the outside. The exhaust heat recovery boiler 7 is of a three-pressure type and includes a low-pressure drum 8a, an intermediate-pressure drum 8b, and a high-pressure drum 8.
c is installed, and the low-pressure steam line 9a, the medium-pressure steam line 9b, and the high-pressure steam line 9c are connected to each other. The definitions of low pressure, medium pressure, and high pressure in the three-pressure formula are determined by the steam pressures that operate the low-pressure steam turbine 6a, the medium-pressure steam turbine 6b, and the high-pressure steam turbine 6c, respectively.
The vapor pressure increases in the order of low pressure, medium pressure, and high pressure. The low-pressure steam line 9a passes through the low-pressure superheater 7d and then the low-pressure steam turbine 6a.
Connected to. The superheated steam supplied to the low-pressure steam turbine 6a expands and drives the turbine, then becomes condensed water in the condenser 40, and is supplied to the exhaust heat recovery boiler 7 via the water supply line 9f. The medium pressure steam line 9b is connected to the medium pressure superheater 7c,
It is connected to the medium pressure steam turbine 6b via the reheater 7b.
Then, the steam discharged from the intermediate pressure steam turbine 6b is
Low-pressure steam line 9 connected through recovery steam line 9e
Join a. The high pressure steam line 9c is connected to the high pressure superheater 7a.
Then, superheated steam is supplied to the high-pressure steam turbine 6c. On the other hand, the high pressure steam line 9c is branched at a position upstream of the high pressure superheater 7a and is connected to the steam pipe 10 of the gas turbine 5. This superheated steam is introduced into the high pressure superheater 7a from the steam passage 14 of the second cooling system 15 as the cooling steam to the stationary blades and moving blades of the turbine, through the first cooling system 12 and the heat exchanger 16. It is collected by joining with the other branched high-pressure steam line 9c. The steam discharged from the high-pressure steam turbine 6c passes through the reheat steam line 9d and joins the connected intermediate pressure steam line 9b at a position upstream of the reheater 7b.

【0018】このように構成された本実施例において、
ガスタービン5の圧縮機3で昇圧された空気は、燃焼器
2で高温高圧の燃焼ガスとなって、タービン1を駆動し
仕事をする。一方、タービン1から排気される燃焼ガス
は、排熱回収ボイラ7に送られ蒸気タービンプラント6
からの給水と熱交換して排出される。排熱回収ボイラ7
では、熱交換した給水が低圧,中圧及び高圧の過熱蒸気
となり、低圧ドラム8a,中圧ドラム8b,高圧ドラム
8cに回収される。各ドラムの温度,圧力等の蒸気条件
は、蒸気タービンプラント6を駆動する最適サイクル条
件から決定される。ここでは、タービン静翼並びに動翼
に供給する高圧系に着目すると、一般的にタービン1か
ら排気される燃焼ガス温度は約600℃程度であり、高
圧蒸気タービン6cに供給される蒸気条件は温度が約5
38℃、温度と圧力を関数としたh−s線図(図示せ
ず)から圧力が約103ata に設定される。したがっ
て、高圧ドラム8cでは、高圧蒸気ライン9cで発生す
る圧力損失、また高圧過熱器7aで得られる供給熱量か
ら、温度が約330℃、圧力が140ata 程度の蒸気条
件となる。この高圧ドラム8cで発生する過熱蒸気を、
タービン入口流量に対する割合で3〜5%、第一冷却系
12に供給する。このタービン静翼並びに動翼に供給さ
れた過熱蒸気は、第一冷却系12,第二冷却系15での
圧力損失、他方、動翼30a,30bでの冷却効率に依
存するが、約30ata の圧力低下、100℃程度の温度上
昇で第二冷却系15に回収されることになる。この回収
された過熱蒸気を、比較的、圧力条件の近い高圧蒸気ラ
イン9cと合流させ、合流時の混合損失を最小にすると
ともに、高圧蒸気タービン6c,中圧蒸気タービン6
b、及び低圧蒸気タービン6aの仕事に寄与させること
ができる。
In the present embodiment thus constructed,
The air pressurized by the compressor 3 of the gas turbine 5 becomes high temperature and high pressure combustion gas in the combustor 2 and drives the turbine 1 to perform work. On the other hand, the combustion gas exhausted from the turbine 1 is sent to the exhaust heat recovery boiler 7 and the steam turbine plant 6
It is exchanged with water from the water supply and discharged. Exhaust heat recovery boiler 7
Then, the heat-exchanged feed water becomes low-pressure, medium-pressure and high-pressure superheated steam, and is collected in the low-pressure drum 8a, the medium-pressure drum 8b, and the high-pressure drum 8c. Steam conditions such as temperature and pressure of each drum are determined from optimum cycle conditions for driving the steam turbine plant 6. Here, focusing on the high pressure system that supplies the turbine stationary blades and the moving blades, the temperature of the combustion gas exhausted from the turbine 1 is generally about 600 ° C., and the steam condition supplied to the high pressure steam turbine 6c is the temperature. Is about 5
At 38 ° C, the pressure is set to about 103ata from the hs diagram (not shown) as a function of temperature and pressure. Therefore, in the high-pressure drum 8c, a steam condition of a temperature of about 330 ° C. and a pressure of about 140 ata is obtained from the pressure loss generated in the high-pressure steam line 9c and the supplied heat amount obtained by the high-pressure superheater 7a. The superheated steam generated in the high pressure drum 8c is
It is supplied to the first cooling system 12 at a rate of 3 to 5% with respect to the turbine inlet flow rate. The superheated steam supplied to the turbine stationary blades and the moving blades depends on the pressure loss in the first cooling system 12 and the second cooling system 15 and the cooling efficiency in the moving blades 30a and 30b. It is recovered in the second cooling system 15 when the pressure drops and the temperature rises by about 100 ° C. The recovered superheated steam is merged with the high pressure steam line 9c under relatively close pressure conditions to minimize the mixing loss at the time of merging, and the high pressure steam turbine 6c and the intermediate pressure steam turbine 6 are also combined.
b, and can contribute to the work of the low-pressure steam turbine 6a.

【0019】以上に説明したタービン静翼及び動翼への
過熱蒸気の供給,回収系統を、3圧力式のコンバインド
サイクル発電プラントに組み込むことにより、容易にタ
ービン翼の蒸気冷却を達成,実現可能とできるととも
に、高圧蒸気を使用する場合の最大のコンバインドサイ
クル効率を発揮することができる。
By incorporating the above-described system for supplying and recovering superheated steam to the turbine stationary blades and moving blades into a three-pressure type combined cycle power plant, it is possible to easily achieve and realize steam cooling of turbine blades. In addition, the maximum combined cycle efficiency when using high-pressure steam can be exhibited.

【0020】本発明の第3の実施例を、図3を用いて説
明する。図3において、図1,図2と同一記号であれ
ば、構成,動作等は第1,第2の実施例に同じである。
但し、高圧,中圧,低圧の各蒸気ライン9a,9b,9
cについては、除外する。本実施例では、中圧ドラム8
bからの蒸気をタービン静翼及び動翼の冷却を用いてい
る。
A third embodiment of the present invention will be described with reference to FIG. In FIG. 3, if the same symbols as in FIGS. 1 and 2 are used, the configuration, operation, etc. are the same as those in the first and second embodiments.
However, high pressure, medium pressure, and low pressure steam lines 9a, 9b, 9
Exclude c. In this embodiment, the medium pressure drum 8
The steam from b is used for cooling the turbine stationary blades and moving blades.

【0021】低圧蒸気ライン9aは、低圧過熱器7dを
経て低圧蒸気タービン6aに接続される。低圧蒸気ター
ビン6aに供給された過熱蒸気は、膨張してタービンを
駆動した後、復水器40で復水となり、給水ライン9f
を経て排熱回収ボイラ7に供給される。中圧蒸気ライン
9bは、中圧過熱器7cを通過後、ガスタービン5の蒸
気配管10に接続される。この過熱蒸気はタービンの静
翼及び動翼への冷却蒸気として、第一冷却系12,熱交
換器16を経て、第二冷却系15の回収配管14から、
再熱器7bを経て中圧蒸気タービン6bに供給される。
ここでは、中圧蒸気ライン9bの一部が、第一冷却系1
2の蒸気配管10と、また第二冷却系15の回収配管1
4を兼ねる構成となる。そして、中圧蒸気タービン6b
から排出される蒸気は、回収蒸気ライン9eを通り接続
された低圧蒸気ライン9aに合流する。高圧蒸気ライン
9cは、高圧過熱器7aを経て高圧蒸気タービン6cに
過熱蒸気を供給する。高圧蒸気タービン6cから排出さ
れる蒸気は、再熱蒸気ライン9dを通り接続された中圧
蒸気ライン9bに合流する。
The low pressure steam line 9a is connected to the low pressure steam turbine 6a via a low pressure superheater 7d. The superheated steam supplied to the low-pressure steam turbine 6a expands and drives the turbine, then becomes condensed water in the condenser 40, and the water supply line 9f
And is supplied to the exhaust heat recovery boiler 7. The intermediate pressure steam line 9b is connected to the steam pipe 10 of the gas turbine 5 after passing through the intermediate pressure superheater 7c. This superheated steam is used as cooling steam for the stationary blades and moving blades of the turbine through the first cooling system 12 and the heat exchanger 16, and then from the recovery pipe 14 of the second cooling system 15.
It is supplied to the intermediate pressure steam turbine 6b via the reheater 7b.
Here, a part of the intermediate pressure steam line 9b is connected to the first cooling system 1
2 steam piping 10 and second cooling system 15 recovery piping 1
It becomes the composition which also serves as 4. And the medium pressure steam turbine 6b
The steam discharged from the fuel cell joins the low pressure steam line 9a connected through the recovery steam line 9e. The high pressure steam line 9c supplies superheated steam to the high pressure steam turbine 6c via the high pressure superheater 7a. The steam discharged from the high-pressure steam turbine 6c joins the medium-pressure steam line 9b connected through the reheat steam line 9d.

【0022】このように構成された本実施例において、
タービン静翼及び動翼に過熱蒸気を供給する中圧系に着
目する。中圧ドラム8bの温度,圧力等の蒸気条件は、
蒸気タービンプラント6を駆動する最適サイクル条件か
ら決定される。高圧蒸気タービン6cに供給された過熱
蒸気は、仕事をすることによって温度が約350℃、圧
力が25ata 程度になる。この高圧蒸気タービン6cか
ら排気される蒸気は、次に再熱蒸気ライン9dを通り接
続された中圧蒸気ライン9bに合流して、中圧蒸気ター
ビン9bを駆動することになる。従って、中圧ドラム8
bの蒸気圧力は、高圧蒸気タービン6cからの排気蒸気
と同等にする必要がある。但し、中圧ドラム8bからの
過熱蒸気は、一旦、タービン静翼及び動翼を冷却するた
め、第一冷却系12,第二冷却系15での圧力損失を考
慮して35ata 程度、温度を約240℃に設定される。
この中圧ドラム8bで発生する過熱蒸気を、中圧過熱器
7cで約270℃に過熱した後、タービン入口流量に対
する割合で3〜5%、第一冷却系12に供給する。この
タービン静翼及び動翼に供給された過熱蒸気は、第一冷
却系12,第二冷却系15での圧力損失、他方、動翼3
0a,30bでの冷却効率に依存するが、約10ata の
圧力低下、180℃程度の温度上昇で第二冷却系15に
回収されることになる。この回収された過熱蒸気は、圧
力条件の等しい再熱蒸気ライン9dの蒸気に合流させ、
合流時の混合損失を最小にするととにもに、中圧蒸気タ
ービン6bと低圧蒸気タービン6aの仕事に寄与させる
ことができる。
In the present embodiment thus constructed,
Focus on the medium pressure system that supplies superheated steam to turbine vanes and rotor blades. Steam conditions such as temperature and pressure of the medium pressure drum 8b are
It is determined from the optimum cycle conditions for driving the steam turbine plant 6. The superheated steam supplied to the high-pressure steam turbine 6c has a temperature of about 350 ° C. and a pressure of about 25 ata by performing work. The steam exhausted from the high-pressure steam turbine 6c then joins the intermediate-pressure steam line 9b connected through the reheat steam line 9d to drive the intermediate-pressure steam turbine 9b. Therefore, the medium pressure drum 8
The steam pressure of b must be the same as the exhaust steam from the high pressure steam turbine 6c. However, since the superheated steam from the intermediate pressure drum 8b once cools the turbine stationary blades and the moving blades, the pressure loss in the first cooling system 12 and the second cooling system 15 is about 35 ata and the temperature is about 35 ata. It is set to 240 ° C.
The superheated steam generated in the intermediate pressure drum 8b is superheated to about 270 ° C. in the intermediate pressure superheater 7c, and then supplied to the first cooling system 12 at a rate of 3 to 5% with respect to the turbine inlet flow rate. The superheated steam supplied to the turbine stationary blades and the moving blades causes pressure loss in the first cooling system 12 and the second cooling system 15, while the moving blades 3
Depending on the cooling efficiency at 0a and 30b, it will be recovered by the second cooling system 15 with a pressure drop of about 10 ata and a temperature rise of about 180 ° C. The recovered superheated steam is combined with the steam in the reheated steam line 9d under the same pressure condition,
In addition to minimizing the mixing loss at the time of merging, it is possible to contribute to the work of the intermediate pressure steam turbine 6b and the low pressure steam turbine 6a.

【0023】以上に説明したタービン静翼及び動翼への
過熱蒸気の供給,回収系統を、3圧力式のコンバインド
サイクル発電プラントに組み込むことにより、容易にタ
ービン翼の蒸気冷却を達成,実現可能とできるととも
に、中圧蒸気を使用する場合の最大のコンバインドサイ
クル効率を発揮することができる。
By incorporating the above-described system for supplying and recovering superheated steam to the turbine stationary blades and moving blades into a three-pressure type combined cycle power generation plant, steam cooling of the turbine blades can be easily achieved and realized. In addition, the maximum combined cycle efficiency when using medium pressure steam can be exhibited.

【0024】[0024]

【発明の効果】本発明では、最少の蒸気流量でタービン
の静翼及び動翼を冷却することができるので、最大のプ
ラント効率を発揮するという優れた実用的効果をもたら
す。
According to the present invention, the stationary blades and the moving blades of the turbine can be cooled with the minimum steam flow rate, so that the excellent practical effect of maximizing the plant efficiency is brought about.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるタービン翼の蒸気冷却経路の構成
を示す図。
FIG. 1 is a diagram showing a configuration of a steam cooling path of a turbine blade according to the present invention.

【図2】本発明によるコンバインドサイクル発電プラン
トに適用した蒸気冷却経路の構成を示す図。
FIG. 2 is a diagram showing a configuration of a steam cooling path applied to a combined cycle power plant according to the present invention.

【図3】本発明によるコンバインドサイクル発電プラン
トに適用した蒸気冷却経路を示す他の実施例を示す図。
FIG. 3 is a diagram showing another embodiment showing a steam cooling path applied to a combined cycle power plant according to the present invention.

【符号の説明】[Explanation of symbols]

1…タービン、5…ガスタービン、6…蒸気タービンプ
ラント、7…排熱回収ボイラ、12…第一冷却系、15
…第二冷却系、16…熱交換器、20a,20b…静翼、
30a,30b…動翼。
1 ... Turbine, 5 ... Gas turbine, 6 ... Steam turbine plant, 7 ... Exhaust heat recovery boiler, 12 ... First cooling system, 15
... second cooling system, 16 ... heat exchanger, 20a, 20b ... stator blade,
30a, 30b ... moving blades.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F01K 23/10 F01K 23/10 C F02C 3/30 F02C 3/30 Z (72)発明者 松本 学 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 杉田 成久 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 圓島 信也 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 樋口 眞一 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 竹原 勲 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location F01K 23/10 F01K 23/10 C F02C 3/30 F02C 3/30 Z (72) Inventor Manabu Matsumoto 502 Jinritsucho, Tsuchiura-shi, Ibaraki Machinery Research Institute, Hiritsu Seisakusho Co., Ltd. (72) Naruhisa Sugita 502, Kintatecho, Tsuchiura-shi, Ibaraki Hiratsugi Seisakusho Co., Ltd. (72) Inventor Shinya Enshima Shinya Ibaraki 502 Kintatecho, Tsuchiura-shi, inside the Mechanical Research Laboratory, Hiritsu Seisakusho Co., Ltd. (72) Inventor, Shinichi Higuchi, 502, Shintachi-cho, Tsuchiura City, inside the Mechanical Research Laboratory, Hitachi, Ltd. (72) Inventor Isamu Takehara, Saiwaicho, Hitachi-shi, Ibaraki Prefecture 3-1, 1-1 Hitachi Ltd. Hitachi factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】静翼と動翼とを有するガスタービン並びに
前記静翼及び動翼を冷却する冷却系を有するガスタービ
ン設備において、蒸気を用いて前記静翼を冷却し、その
蒸気を回収する第一冷却系と前記回収された蒸気を用い
て前記動翼を冷却し、その蒸気を回収する第二冷却系と
を有することを特徴とするガスタービン設備。
1. In a gas turbine equipment having a gas turbine having a stationary blade and a moving blade and a cooling system for cooling the stationary blade and the moving blade, the stationary blade is cooled with steam and the steam is recovered. A gas turbine facility comprising a first cooling system and a second cooling system for cooling the moving blade using the recovered steam and recovering the steam.
【請求項2】請求項1に記載したガスタービン設備にお
いて、前記第一冷却系と前記第二冷却系との間に前記第
一冷却系からの蒸気を冷却する冷却手段を有することを
特徴とするガスタービン設備。
2. The gas turbine facility according to claim 1, further comprising a cooling means for cooling the steam from the first cooling system between the first cooling system and the second cooling system. Gas turbine equipment to do.
JP8102995A 1995-04-06 1995-04-06 Gas turbine installation Pending JPH08277726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8102995A JPH08277726A (en) 1995-04-06 1995-04-06 Gas turbine installation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8102995A JPH08277726A (en) 1995-04-06 1995-04-06 Gas turbine installation

Publications (1)

Publication Number Publication Date
JPH08277726A true JPH08277726A (en) 1996-10-22

Family

ID=13735050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8102995A Pending JPH08277726A (en) 1995-04-06 1995-04-06 Gas turbine installation

Country Status (1)

Country Link
JP (1) JPH08277726A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0764767A2 (en) * 1995-09-22 1997-03-26 Kabushiki Kaisha Toshiba Combined cycle power plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0764767A2 (en) * 1995-09-22 1997-03-26 Kabushiki Kaisha Toshiba Combined cycle power plant
EP0764767A3 (en) * 1995-09-22 1998-05-27 Kabushiki Kaisha Toshiba Combined cycle power plant
US6000213A (en) * 1995-09-22 1999-12-14 Kabushiki Kaisha Toshiba Combined cycle power plant

Similar Documents

Publication Publication Date Title
US6178734B1 (en) Combined cycle power generation plant and operating method thereof
US6499302B1 (en) Method and apparatus for fuel gas heating in combined cycle power plants
CA2324162C (en) Gas turbine combined cycle system
US8418467B2 (en) System including feedwater heater for extracting heat from low pressure steam turbine
JP7059347B2 (en) Waste heat recovery plant and combined cycle plant
GB2307277A (en) Combined cycle powerplant with gas turbine cooling
JP2699808B2 (en) Steam-cooled gas turbine combined plant
US6301874B1 (en) Combined cycle power plant with steam-cooled gas turbine
CN212296518U (en) Complementary flow type organic Rankine cycle system and two-stage expansion machine
JP4028070B2 (en) Combined cycle power plant
JPH1061457A (en) Gas turbine for combined cycle power plant
JPH08277726A (en) Gas turbine installation
JP4488787B2 (en) Steam turbine plant and method for cooling intermediate pressure turbine thereof
JP2986426B2 (en) Hydrogen combustion turbine plant
JP3389019B2 (en) Steam cooled gas turbine
JPH09189236A (en) Combined power generating plant and operation method thereof
JP3117424B2 (en) Gas turbine combined plant
JPH0988518A (en) Composite power generating plant
JP3095680B2 (en) Hydrogen-oxygen combustion turbine plant
JP2001214758A (en) Gas turbine combined power generation plant facility
WO1999040305A1 (en) Gas turbine for combined cycle power plant
JPH11148315A (en) Combined cycle power plant
JPH08270408A (en) Gas turbine equipment
JP2960371B2 (en) Hydrogen combustion turbine plant
JP2003148166A (en) Combined power plant, and closed air cooling gas turbine system