JPH08277442A - High strength and high toughness 9% nickel shape steel and its production - Google Patents

High strength and high toughness 9% nickel shape steel and its production

Info

Publication number
JPH08277442A
JPH08277442A JP7917995A JP7917995A JPH08277442A JP H08277442 A JPH08277442 A JP H08277442A JP 7917995 A JP7917995 A JP 7917995A JP 7917995 A JP7917995 A JP 7917995A JP H08277442 A JPH08277442 A JP H08277442A
Authority
JP
Japan
Prior art keywords
normalizing
cooling rate
cooling
tempering
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7917995A
Other languages
Japanese (ja)
Inventor
Shigeru Mizoguchi
茂 溝口
Akira Sawai
章 沢井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7917995A priority Critical patent/JPH08277442A/en
Publication of JPH08277442A publication Critical patent/JPH08277442A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: To produce a 9% Ni shape steel excellent in strength and toughness. CONSTITUTION: A shape steel having a compsn. contg., by weight, 0.04 to 0.12% C, 0.05 to 0.40% Si, 0.40 to 0.90% Mn, 8.50 to 9.50% Ni, 0.05 to 0.15% Cr, and the balance iron with inevitable impurities and satisfying C(%)+1/6Mn(%)+1/5Cr(%) >=0.185 is normalized at the Ac3 or above, is furthermore normalized at the Ac3 or above once more and is then subjected to tempering treatment of heating to the temp. range of 550 to 600 deg.C and thereafter executing air-blast cooling to an ordinary temp. so as to regulate the cooling rate to 400 deg.C to 0.5 to 5 deg.C/S.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液体窒素、液化天然ガ
ス等の極低温温度の製品を製造、運搬、貯蔵する設備や
圧力容器を構成する強度と靭性に優れた9%Ni形鋼及
びその製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a 9% Ni shaped steel excellent in strength and toughness which constitutes equipment and pressure vessel for manufacturing, transporting and storing products at extremely low temperature such as liquid nitrogen and liquefied natural gas, and The present invention relates to a manufacturing method thereof.

【0002】[0002]

【従来の技術】極低温度(例えば液体窒素は−196
℃、液化天然ガスは−162℃)の製品を扱う設備や圧
力容器を構成する鋼材としては、極低温で優れた靭性を
有しかつ強度の高い含Ni鋼特に9%Ni鋼が開発さ
れ、実用化されている。この9%Ni鋼の強度と靭性が
成分組成と熱処理によって決まることはよく知られてお
り、9%Ni鋼板については規格化されている。しかし
9%Ni形鋼については成分組成および熱処理法につい
ての規格化はされていない。
2. Description of the Related Art Extremely low temperature (for example, -196 for liquid nitrogen)
℃, liquefied natural gas is -162 ℃) As a steel material that constitutes equipment and pressure vessels that handle products, Ni-containing steel having excellent toughness and high strength at extremely low temperatures, especially 9% Ni steel, has been developed. It has been put to practical use. It is well known that the strength and toughness of this 9% Ni steel are determined by the component composition and heat treatment, and the 9% Ni steel sheet is standardized. However, the composition of 9% Ni shaped steel and the heat treatment method have not been standardized.

【0003】9%Ni形鋼に使用性能を付与するために
従来から行なわれている手段は、表1に示すJIS G
3127(SL9N520)およびASTM−A353
に規定された化学成分と熱処理によっている。特に形鋼
の場合には、その形状の複雑さから、変形と曲がりを伴
わずに焼入れ−焼もどしを施すことが極めて困難なため
に2回焼ならし−焼もどし型の熱処理が採用されてい
る。
Means conventionally used for imparting serviceability to 9% Ni-section steel is JIS G shown in Table 1.
3127 (SL9N520) and ASTM-A353
It depends on the chemical composition and heat treatment specified in. In particular, in the case of shaped steel, it is extremely difficult to perform quenching-tempering without deformation and bending due to the complexity of the shape, so a double-tempering-tempering type heat treatment is adopted. There is.

【0004】[0004]

【表1】 [Table 1]

【0005】[0005]

【発明が解決しようとする課題】ところが上記に規格化
されている化学成分と熱処理でプロパー生産を行なった
際、強度が規格の下限を少し上回るか、場合によっては
下回る場合があった。また−196℃のVノッチシャル
ピー吸収エネルギー(以降吸収エネルギーと略)も、特
に厚手材で規格の下限をやや上回る程度のものが散見さ
れた。また、靭性を向上させるために中間熱処理も試み
たが(詳細は後述する)、−196℃の吸収エネルギー
は十分なレベルに改善されるものの、析出オーステナイ
トの増加によって降伏点が著しく低下して規格外れとな
った。また近年、−196℃の吸収エネルギーが100
Jという高品質の9%Ni形鋼のニーズも出てきた。こ
のような理由から、安定して上記規格の強度と−196
℃の吸収エネルギーを満足する9%Ni形鋼の製造方法
が求められている。
However, in the proper production with the chemical components and the heat treatment which are standardized as described above, the strength may be slightly above or below the lower limit of the standard in some cases. Also, the V-notch Charpy absorbed energy at -196 ° C (hereinafter abbreviated as absorbed energy) was found to be slightly higher than the lower limit of the standard, especially for thick materials. An intermediate heat treatment was also attempted to improve the toughness (details will be described later), but although the absorbed energy at -196 ° C is improved to a sufficient level, the yield point is remarkably lowered due to the increase in precipitated austenite, and It was off. In recent years, the absorbed energy at -196 ° C is 100.
The need for high quality 9% Ni shaped steel called J has emerged. For this reason, the strength of the above standard and -196 are stable.
There is a demand for a method for manufacturing 9% Ni-shaped steel that satisfies the absorbed energy at ° C.

【0006】[0006]

【課題を解決するための手段】本発明はこのような課題
すなわちJIS G3127(SL9N520)および
ASTM A353−82に定められた機械的性質を十
分満足する9%Ni形鋼、具体的には引張強さが平均値
で725N/mm2 以上で、−196℃の吸収エネルギー
が100J以上を得る9%Ni形鋼及びその製造方法で
あり、要旨は次の通りである。
SUMMARY OF THE INVENTION The present invention is directed to such problems, that is, 9% Ni-shaped steel, specifically tensile strength, that sufficiently satisfies the mechanical properties specified in JIS G3127 (SL9N520) and ASTM A353-82. Is a 9% Ni shaped steel having an average value of 725 N / mm 2 or more and an absorbed energy at -196 ° C. of 100 J or more, and a manufacturing method thereof, and the gist is as follows.

【0007】(1) 重量%でC:0.04〜0.12
%、Si:0.05〜0.40%、Mn:0.40〜
0.90%、Ni:8.50〜9.50%、Cr:0.
05〜0.15%、残部は鉄および不可避的不純物から
なり、かつC(%)+1/6Mn(%)+1/5Cr
(%)≧0.185を満足する組成の鋼であって、72
5N/mm2 以上の引張強さと100J以上の−196℃
におけるシャルピー衝撃吸収エネルギーを有することを
特徴とする高強度高靭性9%Ni形鋼。
(1) C: 0.04 to 0.12 in% by weight
%, Si: 0.05 to 0.40%, Mn: 0.40
0.90%, Ni: 8.50 to 9.50%, Cr: 0.
05-0.15%, the balance consisting of iron and inevitable impurities, and C (%) + 1 / 6Mn (%) + 1 / 5Cr
Steel having a composition satisfying (%) ≧ 0.185,
Tensile strength of 5 N / mm 2 or more and 100 J or more of -196 ° C
9% Ni shaped steel having high strength and high toughness, which has Charpy impact absorption energy in

【0008】(2)重量%でC:0.04〜0.12
%、Si:0.05〜0.40%、Mn:0.40〜
0.90%、Ni:8.50〜9.50%、Cr:0.
05〜0.15%、残部は鉄および不可避的不純物から
なり、かつC(%)+1/6Mn(%)+1/5Cr
(%)≧0.185を満足する組成を有する形鋼をAc
3 以上の温度で焼ならし、さらにもう一度Ac3 以上の
温度で焼ならし、ついで550〜600℃の温度範囲に
加熱したのち400℃までの冷却速度が0.5〜5℃/S
となるような衝風冷却を常温まで施す焼もどし処理を行
なうことを特徴とする高強度高靭性9%Ni形鋼の製造
方法。
(2) C by weight%: 0.04 to 0.12
%, Si: 0.05 to 0.40%, Mn: 0.40
0.90%, Ni: 8.50 to 9.50%, Cr: 0.
05-0.15%, the balance consisting of iron and inevitable impurities, and C (%) + 1 / 6Mn (%) + 1 / 5Cr
(%) ≧ 0.185, a shaped steel having a composition satisfying Ac
Normalizing fired at 3 temperatures above once again Ac normalizing fired at three or more temperature and then cooling rate to 400 ° C. After heating to a temperature range of 550 to 600 ° C. is 0.5 to 5 ° C. / S
A high strength and high toughness 9% Ni shaped steel manufacturing method, characterized by performing a tempering treatment in which a blast cooling such that

【0009】(3)重量%でC:0.04〜0.12
%、Si:0.05〜0.40%、Mn:0.40〜
0.90%、Ni:8.50〜9.50%、Cr:0.
05〜0.15%、残部は鉄および不可避的不純物から
なり、かつC(%)+1/6Mn(%)+1/5Cr
(%)≧0.185を満足する組成を有する形鋼をAc
3 以上の温度で焼ならし、さらにもう一度Ac3 以上の
温度に加熱し400℃までの冷却速度が0.7〜5℃/S
となるような衝風冷却を常温まで施す焼ならしを行な
い、ついで550〜600℃の温度範囲に加熱する焼も
どし処理を施すことを特徴とする高強度高靭性9%Ni
形鋼の製造方法。
(3) C by weight%: 0.04 to 0.12
%, Si: 0.05 to 0.40%, Mn: 0.40
0.90%, Ni: 8.50 to 9.50%, Cr: 0.
05-0.15%, the balance consisting of iron and inevitable impurities, and C (%) + 1 / 6Mn (%) + 1 / 5Cr
(%) ≧ 0.185, a shaped steel having a composition satisfying Ac
Normalizing fired at 3 temperatures above once more cooling rate until heated to Ac 3 temperature above 400 ° C. is 0.7 to 5 ° C. / S
High strength and high toughness 9% Ni, characterized by performing normalizing by blast cooling to room temperature, and then performing tempering treatment in the temperature range of 550 to 600 ° C.
Shaped steel manufacturing method.

【0010】(4)重量%でC:0.04〜0.12
%、Si:0.05〜0.40%、Mn:0.40〜
0.90%、Ni:8.50〜9.50%、Cr:0.
05〜0.15%、残部は鉄および不可避的不純物から
なり、かつC(%)+1/6Mn(%)+1/5Cr
(%)≧0.185を満足する組成を有する形鋼をAc
3 以上の温度で焼ならし、さらにもう一度Ac3 以上の
温度に加熱し400℃までの冷却速度が0.7〜5℃/S
となるような衝風冷却を常温まで施し、ついで550〜
600℃の温度範囲に加熱したのち400℃までの冷却
速度が0.5〜5℃/Sとなるような衝風冷却を常温まで
施す焼もどし処理を行なうことを特徴とする高強度高靭
性9%Ni形鋼の製造方法。
(4) C by weight%: 0.04 to 0.12
%, Si: 0.05 to 0.40%, Mn: 0.40
0.90%, Ni: 8.50 to 9.50%, Cr: 0.
05-0.15%, the balance consisting of iron and inevitable impurities, and C (%) + 1 / 6Mn (%) + 1 / 5Cr
(%) ≧ 0.185, a shaped steel having a composition satisfying Ac
Normalizing fired at 3 temperatures above once more cooling rate until heated to Ac 3 temperature above 400 ° C. is 0.7 to 5 ° C. / S
Blast cooling to room temperature, then 550-
High-strength and high-toughness characterized by performing a tempering treatment in which wind-cooling is performed up to room temperature such that the cooling rate up to 400 ° C is 0.5 to 5 ° C / S after heating in the temperature range of 600 ° C 9 % Ni shaped steel manufacturing method.

【0011】以下本発明の成分限定理由および熱処理条
件について詳細に説明する。Cは焼入れ性を増して強度
を向上させるが0.04%未満ではJIS G3127
(SL9N520)やASTM A353−82に規定
されている強度を安定して満足しないために下限を0.
04%とし、過剰なCの存在はフィライト中の固溶量を
増大して靭性を低下させるために上限は0.12%とし
た。
The reasons for limiting the components of the present invention and the heat treatment conditions will be described in detail below. C increases the hardenability to improve the strength, but if it is less than 0.04%, JIS G3127
(SL9N520) and ASTM A353-82, the lower limit is set to 0 because the strength is not stably satisfied.
The upper limit was made 0.14% because the presence of excessive C increases the amount of solid solution in the phyllite and reduces the toughness.

【0012】Siは脱酸成分として必要で通常0.05
%以上含有する。また0.40%以上含有すると靭性が
低下する傾向がある。従って0.05〜0.40%に限
定した。Niは靭性および強度を向上させるのに不可欠
の有用な元素であり、また焼もどし時にオーステナイト
中に拡散吸収されて析出オーステナイトを低温で安定化
する。しかし、あまり含有量を多くすると高価になるの
で8.50〜9.50%に限定した。
Si is necessary as a deoxidizing component and is usually 0.05
% Or more. Further, if the content is 0.40% or more, the toughness tends to decrease. Therefore, it is limited to 0.05 to 0.40%. Ni is a useful element indispensable for improving toughness and strength, and is diffused and absorbed in austenite during tempering to stabilize precipitated austenite at a low temperature. However, if the content is too large, it becomes expensive, so the content was limited to 8.50 to 9.50%.

【0013】Mnは鋼の焼入れ性を向上させるととも
に、焼もどし時に析出する極微細なオーステナイトを安
定化してフェライト素地の靭性と強度を高める。しか
し、あまり多いと焼もどし脆性を助長するために0.4
0〜0.90%に限定した。Crは焼入れ性を上げて強
度を向上させる。しかし多量になると炭化物を高温まで
安定化して焼きもどし脆性感受性を高めるため好ましく
ない。従って0.05〜0.15%に限定した。
Mn improves the hardenability of steel and stabilizes the ultrafine austenite precipitated during tempering to enhance the toughness and strength of the ferrite body. However, if too much, 0.4 is added to promote temper brittleness.
It was limited to 0 to 0.90%. Cr improves hardenability and strength. However, a large amount is not preferable because it stabilizes the carbide to a high temperature and increases the temper susceptibility to brittleness. Therefore, it is limited to 0.05 to 0.15%.

【0014】本発明では優れた靭性とともに安定した引
張強さ(725N/mm2 )を得るために以上の各元素の
効果と範囲限定に加えて、さらにC(%)+1/6Mn
(%)+1/5Cr(%)≧0.185となるように添
加元素範囲を限定する。
In order to obtain stable tensile strength (725 N / mm 2 ) as well as excellent toughness, the present invention not only has the above-mentioned effects and range limits of each element, but also C (%) + 1 / 6Mn.
The range of additional elements is limited so that (%) + 1 / 5Cr (%) ≧ 0.185.

【0015】図1はJIS G3127(SL9N52
0)およびASTM A353−82の化学成分を満足
する20数種類の成分組成の鋼塊を3種類の等辺山形鋼
に圧延した後、第1回焼ならし(加熱温度890℃、自
然空冷)→第2回焼ならし(加熱温度790℃、自然冷
却)→焼もどし(575℃、自然冷却)の熱処理を施し
たものの(C(%)+1/6Mn(%)+1/5Cr
(%))と引張強さの関係を示したものであるが、両者
には極めて良い相関がある。
FIG. 1 shows JIS G3127 (SL9N52).
0) and ASTM A353-82, the steel ingots of more than 20 kinds of composition are rolled into three types of equilateral angle steel, and then the first normalizing (heating temperature 890 ° C, natural air cooling) → 2 times normalizing (heating temperature 790 ° C, natural cooling) → tempering (575 ° C, natural cooling), though (C (%) + 1 / 6Mn (%) + 1 / 5Cr)
(%)) And the tensile strength are shown, but both have a very good correlation.

【0016】また図2は、C(%)+1/6Mn(%)
+1/5Cr(%)=0.180および0.167の成
分組成の鋼塊を不等辺不等厚山形鋼に圧延した後、本発
明の熱処理、すなわち第1回焼ならし(加熱温度890
℃、自然空冷)→第2回焼ならし(加熱温度790℃、
衝風冷却)→焼もどし(加熱温度575℃、自然空冷)
の熱処理を施したものの、第2回焼ならし時の冷却速度
と−196℃の吸収エネルギーとの関係を示すが、本発
明冷却速度の範囲では目標とした100Jを超える優れ
た吸収エネルギーが得られる。図2のA,B材の化学成
分を表2に示す。
Further, FIG. 2 shows that C (%) + 1 / 6Mn (%)
+ 1 / 5Cr (%) = 0.180 and a steel ingot having a composition of 0.167 were rolled into unequal thickness unequal thick angle steel, and then the heat treatment of the present invention, that is, the first normalizing (heating temperature 890
℃, natural air cooling → 2nd normalizing (heating temperature 790 ℃,
Wind cooling) → Tempering (heating temperature 575 ° C, natural air cooling)
Although the above heat treatment is performed, the relationship between the cooling rate during the second normalization and the absorbed energy at −196 ° C. is shown. In the range of the cooling rate of the present invention, excellent absorbed energy exceeding 100 J that is the target is obtained. To be Table 2 shows the chemical composition of materials A and B in FIG.

【0017】[0017]

【表2】 [Table 2]

【0018】ところが同様に第2回焼ならし時の冷却速
度と引張強さの関係を示す図3では、本発明冷却速度範
囲でも降伏点は上昇するものの、引張強さの上昇は少な
く、規格下限をわずかに上回る程度である。これは該山
形鋼の成分組成C+1/6Mn+1/5Cr≦0.18
5に起因するものである。以上の結果に基づいて、本発
明では安定した引張強さ(725Nmm2 )を得るために
C(%)+1/6Mn(%)+1/5Cr(%)≧0.
185とした。図3のA,B材の化学成分を表3に示
す。
However, in FIG. 3 which similarly shows the relationship between the cooling rate and the tensile strength at the time of the second normalizing, although the yield point increases even in the cooling rate range of the present invention, the tensile strength does not increase so much and the standard It is slightly above the lower limit. This is the chemical composition of the angle steel C + 1 / 6Mn + 1 / 5Cr ≦ 0.18.
5 is caused. Based on the above results, in the present invention, in order to obtain a stable tensile strength (725 Nmm 2 ), C (%) + 1 / 6Mn (%) + 1 / 5Cr (%) ≧ 0.
185. Table 3 shows the chemical composition of materials A and B in FIG.

【0019】[0019]

【表3】 [Table 3]

【0020】次に本発明の熱処理条件について述べる。
図4は本発明の成分組成範囲のC(%)+1/6Mn
(%)+1/5Cr(%)=0.203の鋼塊を等辺山
形鋼(150mm×150mm×10mm)に圧延した後、第
1回焼ならし(加熱温度890℃、自然空冷)→第2回
焼ならし(加熱温度790℃、自然空冷および衝風冷
却)→焼もどし(加熱温度575℃、自然空冷)の熱処
理を施した時の、引張強さと第2回焼ならし時の冷却速
度との関係を示す。
Next, the heat treatment conditions of the present invention will be described.
FIG. 4 shows C (%) + 1 / 6Mn in the composition range of the present invention.
(%) + 1 / 5Cr (%) = 0.203 steel ingot is rolled into equilateral angle steel (150mm × 150mm × 10mm), then 1st normalizing (heating temperature 890 ° C, natural air cooling) → 2nd Tensile strength at the time of heat treatment of tempering (heating temperature 790 ° C, natural air cooling and wind cooling) → tempering (heating temperature 575 ° C, natural air cooling) and cooling rate at the time of second tempering Shows the relationship with.

【0021】また図5は同じく−196℃の吸収エネル
ギーと第2回焼ならし時の冷却速度との関係を示す。引
張強さは第2回焼ならし時の冷却速度が早くなるほど若
干の低下を示すが、成分組成の調整によって、本発明の
冷却速度の範囲では725N/mm2 以上を確保できる。
FIG. 5 also shows the relationship between the absorbed energy at −196 ° C. and the cooling rate during the second normalizing. The tensile strength shows a slight decrease as the cooling rate in the second normalizing becomes faster, but by adjusting the component composition, 725 N / mm 2 or more can be secured within the cooling rate range of the present invention.

【0022】圧延方向から試験片を採取したもの(L方
向)の−196℃の吸収エネルギーは第2回焼ならし時
の冷却速度が2℃/Sまでは上昇するが、それ以上では高
位安定する。一方、圧延方向に直角方向から採取したも
の(C方向)の−196℃の吸収エネルギーは冷却速度
が早いほど高くなる。
The absorbed energy at −196 ° C. of the test piece taken from the rolling direction (L direction) increases up to the cooling rate of 2 ° C./S during the second normalizing, but above that, it is stable at a high level. To do. On the other hand, the absorbed energy at −196 ° C. of the sample taken from the direction perpendicular to the rolling direction (C direction) becomes higher as the cooling rate becomes faster.

【0023】このような−196℃の吸収エネルギーの
向上は、第2回焼ならし時の冷却速度を高めることによ
って、焼もどし後の微細なマルテンサイト量の増加、
炭化物の微細化と均一分散、析出オーステナイト微
細化と均一化、析出オーステナイトの安定化(−19
6℃の極低温でも安定)、の相乗効果によるものであ
る。
The improvement of the absorbed energy at -196 ° C. is to increase the amount of fine martensite after tempering by increasing the cooling rate during the second normalizing.
Refining and uniform dispersion of carbides, refinement and homogenization of precipitated austenite, stabilization of precipitated austenite (-19
It is stable even at an extremely low temperature of 6 ° C.).

【0024】図6は前述した成分組成とサイズの等辺山
形鋼に、第1回焼ならし(加熱温度890℃、自然空
冷)→第2回焼ならし(加熱温度790℃、自然空冷)
→焼もどし(加熱温度575℃、自然空冷および衝風冷
却)の熱処理を施した時の焼もどし後の冷却速度と引張
強さの関係を示し、図7は同じく焼もどし後の冷却速度
と−196℃の吸収エネルギーの関係を示す。
FIG. 6 shows the equine angle steel having the above-described composition and size, the first normalizing (heating temperature 890 ° C., natural air cooling) → the second normalizing (heating temperature 790 ° C., natural air cooling)
→ The relationship between the cooling rate after tempering and the tensile strength when heat treatment of tempering (heating temperature 575 ° C., natural air cooling and wind cooling) is shown, and FIG. 7 also shows the cooling rate after tempering and − The relationship of the absorbed energy at 196 ° C is shown.

【0025】図から明らかなように、第2回焼ならし後
自然空冷した形鋼を焼もどした場合の引張強さは、焼も
どし後の冷却速度が早くなると若干低下するが、目標と
した725N/mm2 は十分満足し、−196℃の吸収エ
ネルギーは焼もどし後の冷却速度に比例して著しく向上
する。
As is clear from the figure, the tensile strength in the case of tempering the section steel which was naturally air-cooled after the second normalization was slightly lowered when the cooling rate after tempering was increased, but was set as a target. 725 N / mm 2 is sufficiently satisfied, and the absorbed energy at −196 ° C. is remarkably improved in proportion to the cooling rate after tempering.

【0026】このような−196℃の吸収エネルギーの
改善は、焼もどし脆性の緩和すなわち衝風冷却によって
炭化物の粒界析出・凝集を抑制するとともに、極低温で
も安定な析出オーステナイトの増加によるものであるこ
とがわかった。
The improvement of the absorbed energy at -196 ° C. is due to the relaxation of temper embrittlement, that is, the suppression of grain boundary precipitation / aggregation of carbides by blast cooling, and the increase of precipitated austenite which is stable even at an extremely low temperature. I knew it was.

【0027】図8は前述した成分組成とサイズの等辺山
形鋼に第1回焼ならし(加熱温度890℃、自然空冷)
→第2回焼ならし(加熱温度790℃、衝風冷却)→焼
もどし(加熱温度575℃、自然空冷および衝風冷却)
の熱処理を施した時の、焼もどし後の冷却速度と引張強
さの関係を示し、図9は同じく焼もどし後の冷却速度と
−196℃の吸収エネルギーの関係を示す。
FIG. 8 shows the first normalizing of equilateral angle steel having the above-described composition and size (heating temperature 890 ° C., natural air cooling).
→ 2nd normalizing (heating temperature 790 ° C, air cooling) → tempering (heating temperature 575 ° C, natural air cooling and air cooling)
FIG. 9 shows the relationship between the cooling rate after tempering and the tensile strength when the above heat treatment was performed, and FIG. 9 shows the relationship between the cooling rate after tempering and the absorbed energy at −196 ° C.

【0028】第2回焼ならし後衝風冷却した形鋼を焼も
どした場合の引張強さは、焼もどし後の冷却速度にあま
り依存せず、本発明の成分組成範囲では目標値を十分に
満足する。また圧延方向から採取したものの−196℃
の吸収エネルギーは冷却速度に依存せず高位安定を示す
が、圧延方向に直角に採取したものの−196℃の吸収
エネルギーは冷却速度に比例して向上する。このような
低温靭性の向上は、先に述べた第2回焼ならし後の衝風
冷却の効果に加えて、焼もどし時の衝風冷却による焼も
どし脆性の緩和が重畳された結果である。
After the second tempering, the tensile strength in the case of temper tempered shaped steel that has been cooled by blast does not depend much on the cooling rate after tempering, and the target value is sufficient in the composition range of the present invention. To be satisfied with. Also sampled from the rolling direction -196 ° C
The absorbed energy of 1 shows high stability without depending on the cooling rate, but the absorbed energy at -196 ° C of the sample taken at a right angle to the rolling direction improves in proportion to the cooling rate. Such an improvement in low temperature toughness is a result of the fact that tempering brittleness is relaxed by the blast cooling during tempering, in addition to the effect of blast cooling after the second tempering described above. .

【0029】以上述べたごとく、鋼塊法で製造した鋼塊
あるいは連続鋳造法で製造した鋳片を熱間圧延して得た
本発明のC(%)+1/6Mn(%)+1/5Cr
(%)≧0.185の成分組成の形鋼に、本発明の熱処
理すなわちAc3 以上の温度で焼ならし、さらにもう一
度Ac3 以上の温度で焼ならし、ついで550〜600
℃の温度範囲に加熱したのち、400℃までの冷却速度
が0.5〜5℃/Sとなるような衝風冷却を常温まで行う
熱処理を施すことによって、高強度と低温靭性に優れた
9%Ni形鋼の製造が可能である。
As described above, C (%) + 1 / 6Mn (%) + 1 / 5Cr of the present invention obtained by hot rolling a steel ingot produced by the steel ingot method or a slab produced by the continuous casting method.
(%) In the form steel composition of ≧ 0.185, normalizing baked by a heat treatment i.e. Ac 3 temperatures above the present invention, normalizing baked at once more Ac 3 or higher, and then 550 to 600
After being heated in the temperature range of ℃, heat treatment is performed to cool the air flow to 400 ℃ is 0.5 to 5 ℃ / S, and the heat treatment is performed to room temperature, the high strength and excellent low temperature toughness 9 % Ni shaped steel can be manufactured.

【0030】さらに本発明は、同上熱間圧延形鋼をAc
3 以上の温度で焼ならし、さらにもう一度Ac3 以上の
温度に加熱し400℃までの冷却速度が0.7〜5℃/S
となるような衝風冷却を常温まで施し、ついで550〜
600℃の温度範囲に加熱する焼もどし処理を行う熱処
理を施す。
Further, the present invention is the same as the above hot rolled steel
Normalizing fired at 3 temperatures above once more cooling rate until heated to Ac 3 temperature above 400 ° C. is 0.7 to 5 ° C. / S
Blast cooling to room temperature, then 550-
A heat treatment for performing a tempering process of heating within a temperature range of 600 ° C. is performed.

【0031】さらに本発明は同上熱間圧延形鋼をAc3
以上の温度で焼ならし、さらにもう一度Ac3 以上の温
度に加熱し400℃までの冷却速度が0.7〜5℃/Sと
なるような衝風冷却を常温まで施し、ついで550〜6
00℃の温度範囲に加熱したのち400℃までの冷却速
度が0.5〜5℃/Sとなるような衝風冷却を常温まで行
なう熱処理を施す。
Further, in the present invention, the hot-rolled shaped steel is the same as Ac 3
Normalize at the above temperature, heat it again to a temperature of Ac 3 or higher, and cool it to 400 ° C with a blast cooling of 0.7 to 5 ° C / S to room temperature, then 550 to 6
After being heated to a temperature range of 00 ° C., heat treatment is performed to cool it to room temperature by blast cooling so that the cooling rate up to 400 ° C. is 0.5 to 5 ° C./S.

【0032】なお、第2回焼ならし後および焼もどし後
の冷却速度が5℃/Sを超えると、製品の大曲がりがJI
S規格の許容範囲に納まらないことが明らかになったた
め、冷却速度の上限は5℃/Sとした。また第2回焼なら
し時の冷却速度が0.7℃/S未満では−196℃の吸収
エネルギーが目標とした100Jを下回る場合があった
ため0.7℃/Sを冷却速度の下限とし、焼もどし時の冷
却速度の下限も同様の理由によって0.5℃/Sとした。
If the cooling rate after the second normalizing and after the tempering exceeds 5 ° C./S, the large bending of the product will be JI.
Since it was clarified that it did not fall within the allowable range of the S standard, the upper limit of the cooling rate was set to 5 ° C / S. If the cooling rate at the time of the second normalizing is less than 0.7 ° C / S, the absorbed energy at -196 ° C may be less than the target 100J, so 0.7 ° C / S is set as the lower limit of the cooling rate, The lower limit of the cooling rate during tempering was set to 0.5 ° C./S for the same reason.

【0033】[0033]

【実施例】表4に示す5種類の成分の鋼塊を不等辺不等
厚山形鋼1種類{250mm×90mm×15mm×(フラン
ジ厚)×10mm(ウエブ厚)}、等辺山形鋼3種類{2
50mm×250mm×25mm,200mm×200mm×20
mm,150mm×150mm×10mm}に圧延したのち、各
10m長さに切断し、工場の熱処理炉で試番1〜18の
熱処理を施した。
[Example] The steel ingots of the five components shown in Table 4 are one type of unequal side unequal thick angle steel {250 mm × 90 mm × 15 mm × (flange thickness) × 10 mm (web thickness)}, three types of equilateral angle steel { Two
50mm x 250mm x 25mm, 200mm x 200mm x 20
mm, 150 mm × 150 mm × 10 mm} and then cut into lengths of 10 m, and heat-treated at trial numbers 1 to 18 in a heat treatment furnace of a factory.

【0034】熱処理条件の冷却速度の項で*印は所定の
温度に保持した(不等辺不等厚山形鋼は30分間、等辺
山形鋼200mm×200mm×20mmは45分間、250
mm×250mm×25mmは60分間、150mm×150mm
×10mmは30分間)のち、加熱炉から抽出後は自然空
冷したものである。
In the term of the cooling rate of the heat treatment conditions, the mark * is kept at a predetermined temperature (30 minutes for non-equal unequal thick angle steel, 45 minutes for equilateral angle 200 mm x 200 mm x 20 mm, 250
mm x 250 mm x 25 mm for 60 minutes, 150 mm x 150 mm
(× 10 mm for 30 minutes), and after being extracted from the heating furnace, it was naturally air-cooled.

【0035】*印のないものは加熱炉から抽出後、両側
に大型送風機を適切な間隔に配置した冷却床で形鋼をオ
シレートしながら衝風冷却を実施したものである。
Those not marked with * are those subjected to blast cooling while extracting from the heating furnace and oscillating the shaped steel in the cooling floor with large air blowers arranged at appropriate intervals on both sides.

【0036】熱処理を終了したそれぞれの形鋼の長さ方
向中央部の1/2フランジの位置から圧延方向に平行に
引張試験片および2mmVノッチシャルピー衝撃試験片
(フルサイズ)を採取して機械的性質を調査した。その
結果を表4にまとめて示した。
A tensile test piece and a 2 mm V-notch Charpy impact test piece (full size) were taken in parallel with the rolling direction from the position of the ½ flange at the center in the length direction of each heat-treated shaped steel and mechanically sampled. The nature was investigated. The results are summarized in Table 4.

【表4】 [Table 4]

【0037】[0037]

【表5】 [Table 5]

【0038】表4中、試番1〜3はC(%)+1/6M
n(%)+1/5Cr(%)=0.167の本発明から
外れた従来成分の形鋼の熱処理条件と機械的性質の関係
を示している。すなわち試番1は第2回焼ならしおよび
焼もどしの冷却速度が本発明の冷却速度より遅い(自然
空冷の)もので、その引張強さ686N/mm2 はJIS
G3127・SL9N520の規格(以下規格と略)
を下回っており、−196℃の吸収エネルギーも低い。
In Table 4, trial numbers 1 to 3 are C (%) + 1 / 6M
It shows the relationship between the heat treatment conditions and the mechanical properties of the shaped steel having the conventional composition of n (%) + 1 / 5Cr (%) = 0.167 which is out of the present invention. That is, in the trial number 1, the cooling rate of the second normalizing and tempering is slower than the cooling rate of the present invention (natural air cooling), and the tensile strength thereof is 686 N / mm 2 according to JIS.
G3127 / SL9N520 standard (hereinafter abbreviated as standard)
And the absorbed energy at -196 ° C is also low.

【0039】試番2は第2回焼ならしおよび焼もどしの
冷却速度を本発明の範囲にまで高めたものであるが、−
196℃の吸収エネルギーの著しい上昇は認められたも
のの、引張強さはわずかしか向上せず規格下限ぎりぎり
で目標値(725N/mm2 )を下回った。試番3は第2
回焼ならし代わりにいわゆる中間熱処理を施したもので
あるが、この場合は降伏点が著しく低下して規格外れと
なる。
Test No. 2 is one in which the cooling rate of the second normalizing and tempering is increased to the range of the present invention.
Although a remarkable increase in absorbed energy at 196 ° C. was recognized, the tensile strength was only slightly improved and was below the target value (725 N / mm 2 ) just within the lower limit of the standard. Trial number 3 is second
A so-called intermediate heat treatment is applied instead of the normalizing, but in this case, the yield point is remarkably lowered and the result is out of the specification.

【0040】また試番4,5は試番1〜3よりも焼入れ
性を高めた成分組成(C+1/6Mn+1/5Cr=
0.180)のものであるが、第2回焼ならしおよび焼
もどしの冷却速度が本発明よりも小さい(自然空冷)試
番4の引張強さは698N/mm2 と、規格下限をやや上
回る程度であり、−196℃の吸収エネルギーも68J
で目標値(100J)より低い。
Further, the trial compositions Nos. 4 and 5 are component compositions (C + 1 / 6Mn + 1 / 5Cr =) having higher hardenability than the trial Nos. 1 to 3.
0.180), but the cooling rate of the second normalizing and tempering is lower than that of the present invention (natural air cooling), the tensile strength of the test No. 4 is 698 N / mm 2 , which is slightly lower than the lower limit of the specification. It exceeds the level, and the absorbed energy at -196 ° C is 68J.
Is lower than the target value (100J).

【0041】試番5は第2回焼ならしおよび焼もどしの
冷却速度を本発明の範囲まで高めたもので、−196℃
の吸収エネルギーは著しく改善されるものの、やはり引
張強さが規格下限ぎりぎりでしかない。
Test No. 5 has a cooling rate for the second normalizing and tempering increased to the range of the present invention, and is -196 ° C.
Although the absorbed energy of is remarkably improved, the tensile strength is just below the lower limit of the standard.

【0042】一方、試番6〜18は成分組成が本発明の
範囲にある形鋼の熱処理条件と機械的性質の関係を示し
ている。試番6〜10はC+1/6Mn+1/5Cr=
0.204の成分組成を有する25mmの等辺山形鋼の場
合であるが、第2回焼ならしおよび焼もどしの冷却速度
が本発明の範囲よりも小さい(自然空冷の)試番6の引
張強さは規格を十分満足しかつ目標値を上回るものの、
−196℃の吸収エネルギーは試番1と大差ない50J
であった。
On the other hand, trial Nos. 6 to 18 show the relationship between the heat treatment conditions and the mechanical properties of the shaped steels having the composition within the range of the present invention. Trial Nos. 6 to 10 are C + 1 / 6Mn + 1 / 5Cr =
In the case of a 25 mm equilateral angle steel having a composition of 0.204, the cooling rate of the second normalizing and tempering is smaller than the range of the present invention (natural air cooling), the tensile strength of trial No. 6 Satisfies the standard and exceeds the target value,
Absorbed energy at -196 ° C is not much different from trial number 1 50J
Met.

【0043】しかし、焼もどしの冷却速度を本発明範囲
の0.62℃/Sに高めた試番7、第2回焼ならしの冷却
速度を同じく0.86℃/Sに高めた試番8、さらに第2
回焼ならしおよび焼もどしの両者の冷却速度を本発明の
範囲に高めた試番9のいずれもが、規格を上回ってかつ
目標とした引張強さ(725N/mm2 )と−196℃の
吸収エネルギー(100J)を満足する。
However, trial number 7 in which the cooling rate for tempering was increased to 0.62 ° C./S within the range of the present invention, and trial number in which the cooling rate for the second normalizing was also increased to 0.86 ° C./S 8 and second
Both of the trial numbers 9 in which the cooling rates of both the normalizing and the tempering were increased within the scope of the present invention, the tensile strength (725 N / mm 2 ) and the target tensile strength (725 N / mm 2 ) which exceeded the standard were satisfied. Satisfies the absorbed energy (100 J).

【0044】また、焼もどし温度を600℃にして、第
2回焼ならしおよび焼もどしの冷却速度を本発明範囲に
した試番10も、焼もどし温度が575℃で冷却条件は
試番10と同じ試番9と同等の機械的性質を示した。
Also, in the trial No. 10 in which the tempering temperature was set to 600 ° C. and the cooling rates of the second normalizing and the tempering were within the scope of the present invention, the tempering temperature was 575 ° C. and the cooling condition was trial No. 10. The same mechanical property as that of trial No. 9 was exhibited.

【0045】試番11〜14はC(%)+1/6Mn
(%)+1/5Cr(%)=0.203の成分組成を有
する10mm厚さの等辺山形鋼の熱処理条件と機械的性質
の関係を示しているが、この場合も試番6〜10と同じ
傾向を示した。すなわち第2回焼ならしおよび焼もどし
の冷却速度が小さい(自然空冷の)試番11は引張強さ
は高いものの−196℃の吸収エネルギーは目標値を下
回る達成するが、下限レベルである。
Test Nos. 11 to 14 are C (%) + 1/6 Mn
(%) + 1 / 5Cr (%) = 0.203 shows the relationship between heat treatment conditions and mechanical properties of equilateral angle steel with a thickness of 10 mm, which is the same as trial number 6-10. Showed a trend. That is, although trial number 11 with a low cooling rate for the second normalizing and tempering (natural air cooling) has a high tensile strength, the absorbed energy at −196 ° C. is below the target value, but it is at the lower limit level.

【0046】一方、焼もどしの冷却速度を1.01℃/S
に高めた試番12、第2回焼ならしの冷却速度を同じく
1.60℃/Sに早めた試番13、さらに第2回焼ならし
および焼もどし両者の冷却速度を本発明範囲に高めた試
番14のいずれも、その引張強さは十分規格を満足しか
つ目標値を上回る。また−196℃の吸収エネルギー
は、試番12〜14のいずれもが、第2回焼ならしおよ
び焼もどし後自然空冷した試番11の2倍以上に向上し
ている。
On the other hand, the cooling rate for tempering is 1.01 ° C./S.
No. 12 increased to 1, the second normalizing cooling rate was also increased to 1.60 ° C./S, and the second cooling rate for both normalizing and tempering is within the range of the present invention. The tensile strength of each of the raised test Nos. 14 sufficiently satisfies the standard and exceeds the target value. Further, the absorbed energy at −196 ° C. is improved in all of the trial numbers 12 to 14 to more than twice that of the trial number 11 which is naturally air cooled after the second normalizing and tempering.

【0047】試番15〜18はC(%)+1/6Mn
(%)+1/5Cr(%)=0.192の成分組成を有
する20mm厚さの等辺山形鋼の、焼もどし温度を550
℃とした時の熱処理条件と機械的性質の関係を示してい
る。焼もどし温度が550℃になっても、第2回焼なら
しおよび焼もどしの冷却速度が本発明範囲にある試番1
6,17,18のいずれもが、第2回焼ならしおよび焼
もどしの冷却速度が小さい試番15に比較して、−19
6℃の吸収エネルギーが約1.5〜2倍に向上してい
る。
Test Nos. 15 to 18 are C (%) + 1/6 Mn
(%) + 1 / 5Cr (%) = 0.192, the tempering temperature of the equilateral angle steel with a thickness of 20 mm is 550
The relationship between heat treatment conditions and mechanical properties when the temperature is set to ° C is shown. Even if the tempering temperature reaches 550 ° C., the cooling rate for the second tempering and tempering is within the range of the present invention, trial number 1.
Each of Nos. 6, 17 and 18 has a value of −19 as compared with Test No. 15 in which the cooling rate of the second normalizing and the tempering is small.
The absorbed energy at 6 ° C. is improved by about 1.5 to 2 times.

【0048】[0048]

【発明の効果】成分組成又は成分組成と第2回焼ならし
および焼もどしの冷却速度を規定することによって、従
来の成分組成と熱処理方法(第2回焼ならしおよび焼も
どしを自然空冷とした)では得られない、引張強さが7
25N/mm2 以上でかつ−196℃の吸収エネルギーが
100Jの高強度高靭性9%Ni形鋼が製造できる。
EFFECTS OF THE INVENTION By defining the component composition or the component composition and the cooling rate of the second normalizing and tempering, the conventional component composition and heat treatment method (the second normalizing and tempering are naturally air cooled). It has a tensile strength of 7
A high-strength, high-toughness 9% Ni shaped steel having an absorbed energy of 25 N / mm 2 or more and an absorption energy of -196 ° C of 100 J can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】C(%)+1/6Mn(%)+1/5Cr
(%)の値と引張強さ(T.S)の関係を示す図表。
FIG. 1 C (%) + 1/6 Mn (%) + 1 / 5Cr
The chart which shows the relationship between the value of (%) and tensile strength (TS).

【図2】第2回焼ならし時の760〜400℃間の冷却
速度と−196℃の吸収エネルギーの関係を示す図表。
FIG. 2 is a chart showing the relationship between the cooling rate between 760 and 400 ° C. and the absorbed energy at −196 ° C. during the second normalizing.

【図3】第2回焼ならし時の760〜400℃間の冷却
速度と引張強さの関係を示す図表。
FIG. 3 is a chart showing the relationship between the cooling rate and the tensile strength between 760 and 400 ° C. during the second normalizing.

【図4】等辺山形鋼(150×150×10)の第2回
焼ならし時の760〜400℃間の冷却速度と引張強さ
(T.S)および降伏点(Y.P)の関係を示す図表。
FIG. 4 shows the relationship between the cooling rate, tensile strength (TS) and yield point (YP) between 760 and 400 ° C. during the second normalizing of equilateral angle steel (150 × 150 × 10). Chart showing.

【図5】等辺山形鋼(150×150×10)の第2回
焼ならし時の760〜400℃間の冷却速度と−196
℃の吸収エネルギーの関係を示す図表。
FIG. 5: -196 and the cooling rate between 760 and 400 ° C during the second normalizing of equilateral angle steel (150 × 150 × 10)
The chart which shows the relationship of the absorbed energy of ° C.

【図6】等辺山形鋼(150×150×10)の第2回
焼ならし(自然空冷)後、焼もどした時の560〜40
0℃間の冷却速度と引張強さおよび降伏点の関係の図
表。
[Fig. 6] 560 to 40 when tempered after the second normalizing (natural air cooling) of equilateral angle steel (150 x 150 x 10)
The figure of the relationship of the cooling rate, tensile strength, and yield point between 0 degreeC.

【図7】等辺山形鋼(150×150×10)の第2回
焼ならし(衝風冷却)後、焼もどした時の560〜40
0℃間の冷却速度と引張強さおよび降伏点の関係の図
表。
FIG. 7: 560-40 when tempered after the second normalizing (blast cooling) of equilateral angle steel (150 × 150 × 10)
The figure of the relationship of the cooling rate, tensile strength, and yield point between 0 degreeC.

【図8】等辺山形鋼(150×150×10)の第2回
焼ならし(自然空冷)後、焼もどした時の560〜40
0℃間の冷却速度と−196℃の吸収エネルギーの関係
の図表。
[Fig. 8] 560 to 40 when tempered after the second normalizing (natural air cooling) of equilateral angle steel (150 x 150 x 10)
The figure of the relationship between the cooling rate between 0 degreeC, and the absorbed energy of -196 degreeC.

【図9】等辺山形鋼(150×150×10)の第2回
焼ならし(衝風冷却)後、焼もどした時の560〜40
0℃間の冷却速度と−196℃の吸収エネルギーの関係
の図表。
FIG. 9: 560 to 40 when tempered after the second normalizing (blast cooling) of equilateral angle steel (150 × 150 × 10)
The figure of the relationship between the cooling rate between 0 degreeC, and the absorbed energy of -196 degreeC.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で C :0.04〜0.12%、 Si:0.05〜0.40%、 Mn:0.40〜0.90%、 Ni:8.50〜9.50%、 Cr:0.05〜0.15%、残部は鉄および不可避的
不純物からなり、かつ C(%)+1/6Mn(%)+1/5Cr(%)≧0.185 を満足する組成の鋼であって、725N/mm2 以上の引
張強さと100J以上の−196℃におけるシャルピー
衝撃吸収エネルギーを有することを特徴とする高強度高
靭性9%Ni形鋼。
1. C: 0.04 to 0.12% by weight, Si: 0.05 to 0.40%, Mn: 0.40 to 0.90%, Ni: 8.50 to 9.50. %, Cr: 0.05 to 0.15%, the balance being iron and inevitable impurities, and a steel having a composition satisfying C (%) + 1 / 6Mn (%) + 1 / 5Cr (%) ≧ 0.185. A high strength and high toughness 9% Ni shaped steel having a tensile strength of 725 N / mm 2 or more and a Charpy impact absorption energy of 100 J or more at -196 ° C.
【請求項2】 重量%で C :0.04〜0.12%、 Si:0.05〜0.40%、 Mn:0.40〜0.90%、 Ni:8.50〜9.50%、 Cr:0.05〜0.15%、残部は鉄および不可避的
不純物からなり、かつ C(%)+1/6Mn(%)+1/5Cr(%)≧0.185 を満足する組成を有する形鋼をAc3 以上の温度で焼な
らし、さらにもう一度Ac3 以上の温度で焼ならし、つ
いで550〜600℃の温度範囲に加熱したのち400
℃までの冷却速度が0.5〜5℃/Sとなるような衝風冷
却を常温まで施す焼もどし処理を行なうことを特徴とす
る高強度高靭性9%Ni形鋼の製造方法。
2. C: 0.04 to 0.12% by weight%, Si: 0.05 to 0.40%, Mn: 0.40 to 0.90%, Ni: 8.50 to 9.50. %, Cr: 0.05 to 0.15%, the balance being iron and inevitable impurities, and having a composition satisfying C (%) + 1 / 6Mn (%) + 1 / 5Cr (%) ≧ 0.185. Shaped steel is normalized at a temperature of Ac 3 or higher, further normalized at a temperature of Ac 3 or higher, then heated to a temperature range of 550 to 600 ° C., and then 400
A method for producing a high strength and high toughness 9% Ni-shaped steel, which comprises performing tempering treatment in which blast cooling is performed to room temperature such that the cooling rate up to ℃ becomes 0.5 to 5 ° C / S.
【請求項3】 重量%で C :0.04〜0.12%、 Si:0.05〜0.40%、 Mn:0.40〜0.90%、 Ni:8.50〜9.50%、 Cr:0.05〜0.15%、残部は鉄および不可避的
不純物からなり、かつ C(%)+1/6Mn(%)+1/5Cr(%)≧0.185 を満足する組成を有する形鋼をAc3 以上の温度で焼な
らし、さらにもう一度Ac3 以上の温度に加熱し400
℃までの冷却速度が0.7〜5℃/Sとなるような衝風冷
却を常温まで施す焼ならしを行ない、ついで550〜6
00℃の温度範囲に加熱する焼もどし処理を行なうこと
を特徴とする高強度高靭性9%Ni形鋼の製造方法。
3. C: 0.04 to 0.12% by weight%, Si: 0.05 to 0.40%, Mn: 0.40 to 0.90%, Ni: 8.50 to 9.50. %, Cr: 0.05 to 0.15%, the balance being iron and inevitable impurities, and having a composition satisfying C (%) + 1 / 6Mn (%) + 1 / 5Cr (%) ≧ 0.185. normalizing baked shaped steel Ac 3 temperatures above and heated to once more Ac 3 temperatures above 400
Normalizing by blast cooling to room temperature such that the cooling rate up to ℃ becomes 0.7 to 5 ℃ / S, and then 550 to 6
A method for producing a high-strength, high-toughness 9% Ni-section steel, which comprises performing a tempering treatment by heating in a temperature range of 00 ° C.
【請求項4】 重量%で C :0.04〜0.12%、 Si:0.05〜0.40%、 Mn:0.40〜0.90%、 Ni:8.50〜9.50%、 Cr:0.05〜0.15%、残部は鉄および不可避的
不純物からなり、かつ C(%)+1/6Mn(%)+1/5Cr(%)≧0.185 を満足する組成を有する形鋼をAc3 以上の温度で焼な
らし、さらにもう一度Ac3 以上の温度に加熱し400
℃までの冷却速度が0.7〜5℃/Sとなるような衝風冷
却を常温まで施す焼ならしを行ない、ついで550〜6
00℃の温度範囲に加熱したのち400℃までの冷却速
度が0.5〜5℃/Sとなるような衝風冷却を常温まで施
す焼もどし処理を行なうことを特徴とする高強度高靭性
9%Ni形鋼の製造方法。
4. C: 0.04 to 0.12% by weight, Si: 0.05 to 0.40%, Mn: 0.40 to 0.90%, Ni: 8.50 to 9.50. %, Cr: 0.05 to 0.15%, the balance being iron and inevitable impurities, and having a composition satisfying C (%) + 1 / 6Mn (%) + 1 / 5Cr (%) ≧ 0.185. normalizing baked shaped steel Ac 3 temperatures above and heated to once more Ac 3 temperatures above 400
Normalizing by blast cooling to room temperature such that the cooling rate up to ℃ becomes 0.7 to 5 ℃ / S, and then 550 to 6
High-strength and high-toughness characterized by performing a tempering treatment in which wind-cooling is performed up to room temperature such that the cooling rate up to 400 ° C. is 0.5 to 5 ° C./S after heating to a temperature range of 00 ° C. 9 % Ni shaped steel manufacturing method.
JP7917995A 1995-04-04 1995-04-04 High strength and high toughness 9% nickel shape steel and its production Withdrawn JPH08277442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7917995A JPH08277442A (en) 1995-04-04 1995-04-04 High strength and high toughness 9% nickel shape steel and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7917995A JPH08277442A (en) 1995-04-04 1995-04-04 High strength and high toughness 9% nickel shape steel and its production

Publications (1)

Publication Number Publication Date
JPH08277442A true JPH08277442A (en) 1996-10-22

Family

ID=13682760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7917995A Withdrawn JPH08277442A (en) 1995-04-04 1995-04-04 High strength and high toughness 9% nickel shape steel and its production

Country Status (1)

Country Link
JP (1) JPH08277442A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107460294A (en) * 2017-07-24 2017-12-12 天人汽车底盘(芜湖)股份有限公司 The closed torsion beam bulk heat treatmet processing method of car

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107460294A (en) * 2017-07-24 2017-12-12 天人汽车底盘(芜湖)股份有限公司 The closed torsion beam bulk heat treatmet processing method of car

Similar Documents

Publication Publication Date Title
JP5750546B2 (en) Low yield ratio high toughness steel sheet and manufacturing method thereof
JP5750547B2 (en) High strength high toughness steel plate with yield strength of 700 MPa class and method for producing the same
JP2007277696A (en) Dead soft high-carbon hot-rolled steel sheet and its manufacturing method
WO2011089845A1 (en) Method for producing hot-rolled high carbon steel sheet
JPWO2020184162A1 (en) Thick steel plate and its manufacturing method
JP5884190B2 (en) High-strength martensite-ferritic stainless steel plate with excellent workability and manufacturing method thereof
JP2005290547A (en) High carbon hot-rolled steel sheet having excellent ductility and stretch-flange formability, and production method therefor
JPH07188834A (en) High strength steel sheet having high ductility and its production
KR100959475B1 (en) Producing method for reinforcing steel
JP4273338B2 (en) Martensitic stainless steel pipe and manufacturing method thereof
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPH1192881A (en) Ferritic heat resistant steel having lath martensitic structure and its production
JP4857583B2 (en) Steel manufacturing method with excellent fatigue crack propagation characteristics with small strength difference in the thickness direction
JPH06184630A (en) Production of thick 9% ni steel excellent in low temperature toughness
JP6206423B2 (en) High strength stainless steel plate excellent in low temperature toughness and method for producing the same
JPH08277442A (en) High strength and high toughness 9% nickel shape steel and its production
JP2019081916A (en) Ferritic stainless steel sheet and method for producing the same
JPH0827517A (en) Heat treatment for 9%ni steel excellent in yield strength and toughness
JP2004250766A (en) METHOD OF PRODUCING Ni-CONTAINING STEEL HAVING EXCELLENT STRENGTH/LOW TEMPERATURE TOUGHNESS
JPH029649B2 (en)
JP3848397B2 (en) Manufacturing method of high-efficiency and highly uniform tough steel plate
JP3620099B2 (en) Method for producing Cr-Mo steel excellent in strength and toughness
KR20210019519A (en) Ferritic stainless steel sheet and its manufacturing method
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
JP4517459B2 (en) Manufacturing method of steel material having ultrafine martensite structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604