JPH08277392A - Estimation of gas permeability of softened coal - Google Patents

Estimation of gas permeability of softened coal

Info

Publication number
JPH08277392A
JPH08277392A JP8001195A JP8001195A JPH08277392A JP H08277392 A JPH08277392 A JP H08277392A JP 8001195 A JP8001195 A JP 8001195A JP 8001195 A JP8001195 A JP 8001195A JP H08277392 A JPH08277392 A JP H08277392A
Authority
JP
Japan
Prior art keywords
coal
softened
gas permeability
coke oven
compression ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8001195A
Other languages
Japanese (ja)
Inventor
Takashi Arima
孝 有馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8001195A priority Critical patent/JPH08277392A/en
Publication of JPH08277392A publication Critical patent/JPH08277392A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

PURPOSE: To reduce the maintenance cost of a coke oven and prolong the life of the oven by measuring the gas permeability of coal in softened and molten state and efficiently estimating the gas permeability of softened coal at an arbitrary position in the coke oven from a relational diagram between the gas permeability and a compression ratio. CONSTITUTION: The gas permeability of softened and molten coal to be charged to a coke oven is measured to prepare a relational diagram between the gas permeability and a compression ratio of the coal expressed by formula, C=Vo /V [C is compression ratio (-); Vo is specific volume of coal (cm<3> /g-coal) in freely expanded state; V is specific volume of coal (cm<3> /g-coal) at the time of measuring the gas permeability]. The gas permeability of softened coal at an arbitrary position in the coke oven in carbonization is estimated from the density of the charged coal at the above position and the relational diagram. Preferably, the relationship between the coal nature and the gradient K of the straight line of the relational diagram of the gas permeability of the coal and the compression ratio is determined beforehand and the gas permeability of the softened coal is estimated from the nature of the coal to be charged into the coke oven and the relationship between the gradient K and the coal nature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はコークス炉での石炭乾留
過程における軟化石炭のガス透過係数を推定する方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating the gas permeation coefficient of softened coal in the coal carbonization process in a coke oven.

【0002】[0002]

【従来の技術】石炭からコークスを製造する過程で、加
熱された石炭は膨脹しコークス炉の炉壁に圧力を及ぼ
す。この圧力を膨脹圧と呼んでいるが、膨脹圧が高いと
コークス炉が損傷する危険がある。従って、膨脹圧をコ
ークス炉の炉体強度からの限界値以下に制御すること
は、コークス炉操業において重要な課題である。
During the process of producing coke from coal, heated coal expands and exerts pressure on the wall of the coke oven. This pressure is called expansion pressure, but if the expansion pressure is high, there is a risk of damaging the coke oven. Therefore, controlling the expansion pressure to be equal to or less than the limit value based on the strength of the coke oven body is an important issue in coke oven operation.

【0003】従来より、揮発分、炭素含有率、平均反射
率等で表される石炭化度が高い石炭に膨脹圧が高いもの
が多いことが知られている。そのため、コークス炉に使
用する石炭の石炭化度に上限を設定することにより、膨
脹圧をコークス炉の炉体強度からの限界値以下に制御し
ようとしてきた。しかし、石炭化度が高い石炭にも膨脹
圧が比較的低いものもあり、石炭化度だけでは膨脹圧は
決まらない。
It has been conventionally known that many coals having a high degree of coalification represented by volatile matter, carbon content, average reflectance, etc. have a high expansion pressure. Therefore, by setting an upper limit on the degree of coalification of the coal used in the coke oven, it has been attempted to control the expansion pressure to be equal to or lower than the limit value based on the strength of the furnace body of the coke oven. However, some coals with a high degree of coalification have a relatively low expansion pressure, and the expansion pressure cannot be determined only by the degree of coalification.

【0004】また、全膨張率や最高流動度等の粘結性パ
ラメーターで膨脹圧を整理しようと試みた例もあるが、
うまく関係づけられていない。
In addition, there is an example in which the expansion pressure is tried to be organized by the caking parameters such as the total expansion coefficient and the maximum fluidity.
Not well related.

【0005】このように、膨脹圧を石炭性状から予測す
ることができないので、コークス炉の損傷を避けるため
には、コークス炉で使用する前に試験炉で実際に石炭を
乾留して膨脹圧を測定する必要がある。膨脹圧測定には
片側の炉壁が可動になっている可動壁炉を用いる必要が
あるが、この可動壁炉は高価である。かつ、石炭の乾留
量が比較的多く(約300kg〜400kg)、測定方
法も簡便ではなく、原料石炭の配合や乾留条件の変更に
迅速に対応することができない。
As described above, since the expansion pressure cannot be predicted from the properties of coal, in order to avoid damage to the coke oven, the coal is actually carbonized in the test furnace before use in the coke oven to adjust the expansion pressure. Need to measure. For the expansion pressure measurement, it is necessary to use a movable wall furnace whose one side wall is movable, but this movable wall furnace is expensive. In addition, the amount of dry distillation of coal is relatively large (about 300 kg to 400 kg), the measuring method is not simple, and it is not possible to quickly cope with the blending of raw coal and the change of dry distillation conditions.

【0006】そこで、石炭性状と乾留条件から膨脹圧を
予測する方法として、軟化石炭のガス透過係数、軟化石
炭層の厚みおよび軟化石炭層からのガス発生速度を用い
て石炭乾留過程における膨脹圧の経時変化を予測する方
法が考案され、例えば、特開平5−340937号公報
に開示されている。ガス透過係数は石炭層内のガスの通
り易さの指標であり、これと軟化石炭層の厚みとから軟
化石炭層の通気抵抗が決まる。通気抵抗とガス発生速度
との兼合いにより軟化石炭層内のガス圧が決まる。この
ガス圧がコークスを介してコークス炉炉壁に伝達され膨
脹圧になる。軟化石炭のガス透過係数は同一石炭でも密
度により大きく変化する。そこで、この膨脹圧予測方法
では、乾留過程での物質移動を考慮することにより各時
刻での軟化石炭層の密度を算出し、あらかじめ測定して
求めておいたガス透過係数と軟化石炭層密度の関係を用
いてガス透過係数を得ている。なお、ガス透過係数の測
定は、例えば、野村ら(材料とプロセス、5巻、92
頁、1992年日本鉄鋼協会発行)のように軟化石炭層
内の圧力損失を測定することにより、行うことができ
る。
Therefore, as a method of predicting the expansion pressure from the coal properties and carbonization conditions, the expansion pressure in the coal carbonization process is determined by using the gas permeability coefficient of softened coal, the thickness of the softened coal layer and the gas generation rate from the softened coal layer. A method of predicting the change over time has been devised, and is disclosed in, for example, Japanese Unexamined Patent Publication No. 5-340937. The gas permeability coefficient is an index of the ease of passage of gas in the coal bed, and the ventilation resistance of the softened coal bed is determined from this and the thickness of the softened coal bed. The gas pressure in the softened coal bed is determined by the balance between the ventilation resistance and the gas generation rate. This gas pressure is transferred to the furnace wall of the coke oven through the coke and becomes an expansion pressure. The gas permeability coefficient of softened coal varies greatly with the density of the same coal. Therefore, in this expansion pressure prediction method, the density of the softened coal bed at each time is calculated by considering the mass transfer in the carbonization process, and the gas permeation coefficient and the softened coal bed density obtained by measurement in advance are calculated. The relationship is used to obtain the gas permeability coefficient. The gas permeability coefficient can be measured, for example, by Nomura et al.
Page, 1992 issued by the Iron and Steel Institute of Japan), by measuring the pressure loss in the softened coal bed.

【0007】従って、この膨脹圧推定方法においては、
軟化石炭のガス透過係数を実測し、軟化石炭層密度との
関係を求めておく必要があるが、ガス透過係数の密度に
よる変化の態様は直線関係にならず、また、石炭によっ
て異なる。従って、使用するすべての石炭についてガス
透過係数の密度による変化を実測する必要がある。
Therefore, in this inflation pressure estimation method,
It is necessary to measure the gas permeability coefficient of the softened coal and determine the relationship with the softened coal layer density, but the mode of change of the gas permeability coefficient with the density does not have a linear relationship and differs depending on the coal. Therefore, it is necessary to measure the change in the gas permeation coefficient depending on the density for all the coals used.

【0008】さらに、ガス透過係数の密度による変化は
直線的ではなく、数点の測定値から回帰式を作り任意の
密度におけるガス透過係数を推定することも困難であ
る。
Further, the change of the gas permeation coefficient with the density is not linear, and it is difficult to estimate the gas permeation coefficient at an arbitrary density by making a regression equation from several measured values.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上述したよ
うな従来技術における問題点を解決するため、簡便な軟
化石炭のガス透過係数の推定方法を提供することを目的
とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a simple method for estimating the gas permeation coefficient of softened coal in order to solve the problems in the prior art as described above.

【0010】[0010]

【課題を解決するための手段】本発明は、上記の課題を
解決するために、コークス炉に装入する石炭について、
軟化溶融状態にある石炭のガス透過係数を測定し、
(1)式に示す圧縮比との関係線図を予め作成し、コー
クス炉に装入した石炭の任意箇所の密度と前記関係線図
より、乾留時のコークス炉内の前記箇所における軟化石
炭のガス透過係数を推定することを特徴とする軟化石炭
のガス透過係数の推定方法である。
In order to solve the above-mentioned problems, the present invention relates to a coal charged into a coke oven,
Measuring the gas permeability coefficient of coal in the softened and molten state,
A relational diagram with the compression ratio shown in the equation (1) is created in advance, and from the density of the coal charged in the coke oven and the relational diagram, the softened coal of the softened coal in the coke oven at the time of carbonization is shown. It is a method of estimating a gas permeability coefficient of softened coal, which is characterized by estimating a gas permeability coefficient.

【0011】 C=V0 /V …(1) ここで、C:圧縮比〔−〕、V0 :自由膨張時の石炭比
容積〔cm3 /g−coal〕、V:ガス透過係数測定
時の石炭比容積〔cm3 /g−coal〕である。
C = V 0 / V (1) where C: compression ratio [−], V 0 : coal specific volume at free expansion [cm 3 / g-coal], V: at gas permeability measurement Is the specific volume of coal [cm 3 / g-coal].

【0012】また、上記の石炭のガス透過係数と圧縮比
との関係線図における直線の勾配kと石炭性状との関係
を予め求めておき、コークス炉に装入する石炭の石炭性
状と前記勾配kと石炭性状との関係を用いて、コークス
炉に装入した石炭の任意箇所の密度より、乾留時のコー
クス炉内の前記箇所における軟化石炭のガス透過係数を
推定することを特徴とする軟化石炭のガス透過係数の推
定方法である。
Further, the relationship between the straight line gradient k in the relational diagram of the gas permeation coefficient of the coal and the compression ratio and the coal property is obtained in advance, and the coal property of the coal charged into the coke oven and the above-mentioned slope are obtained. Using the relationship between k and coal properties, the gas permeation coefficient of the softened coal at the location in the coke oven during carbonization is estimated from the density of the arbitrary location of the coal charged in the coke oven. This is a method for estimating the gas permeability coefficient of coal.

【0013】ここで石炭性状とは、平均反射率などの石
炭化度及び粘結性等を示す。
Here, the coal property indicates the degree of coalification such as average reflectance and the caking property.

【0014】[0014]

【作用】コークス炉に石炭を装入し乾留を開始すると、
炉壁近傍に石炭の軟化した層ができ、この軟化層が見掛
け上炉壁側から炭化室中心に移動していき乾留が進行す
る。軟化層の中ではガス発生するが、軟化層はガス透過
係数が低いためガスは容易に層外に逃げられずガス圧が
生じる。このガス圧が石炭の膨脹圧の原因である。従っ
て、膨脹圧を予測するためには軟化層のガス透過係数を
正確に知る必要がある。
[Operation] When coal is charged into the coke oven and the carbonization starts,
A coal softened layer is formed near the furnace wall, and this softened layer apparently moves from the furnace wall side to the center of the carbonization chamber, and carbonization proceeds. Although gas is generated in the softened layer, the softened layer has a low gas permeation coefficient, so that the gas cannot easily escape to the outside of the layer and a gas pressure is generated. This gas pressure is the cause of the expansion pressure of coal. Therefore, it is necessary to accurately know the gas permeability coefficient of the softening layer in order to predict the expansion pressure.

【0015】本願発明者は、軟化石炭のガス透過係数に
ついて検討を進め軟化石炭のガス透過係数が低くなる原
因を解明した結果、軟化石炭のガス透過係数の逆数(通
気抵抗に相当)を圧縮比に対してプロットすると、いず
れの石炭の場合も直線になることを見い出し、その推定
方法を発明するに至った。
The present inventor has studied the gas permeation coefficient of softened coal and clarified the cause of the low gas permeation coefficient of softened coal. As a result, the reciprocal of the gas permeation coefficient of softened coal (corresponding to ventilation resistance) is calculated as the compression ratio. It was found that a straight line was obtained for all coals when plotting against, and the estimation method was invented.

【0016】石炭粒子が軟化すると、熱分解により発生
するガスにより膨脹する。石炭を自由に膨脹させた場合
はガス透過係数は高い。しかし、コークス炉内において
は軟化石炭層の体積は一定に制限されており層全体とし
ては膨脹できないため、石炭粒子は粒子間の空隙に膨脹
していくしかない。そのため、粒子間の空隙の体積が減
少する。この空隙率低下により軟化層のガス透過係数が
低下する。
When the coal particles are softened, they are expanded by the gas generated by thermal decomposition. The gas permeability coefficient is high when the coal is expanded freely. However, in the coke oven, the volume of the softened coal bed is limited to a certain amount and the bed as a whole cannot expand. Therefore, coal particles have no choice but to expand into voids between the particles. Therefore, the volume of voids between particles is reduced. This reduction in porosity reduces the gas permeability coefficient of the softened layer.

【0017】このように、石炭軟化層がその膨脹を拘束
されるとガス透過係数が低くなる。このような考え方か
ら、野村ら(材料とプロセス、5巻、92頁、1992
年日本鉄鋼協会発行)の軟化石炭層内の圧力損失を測定
する方法を用いてガス透過係数を測定し、ガス透過係数
と軟化石炭層密度の関係を検討した。いくつかの石炭に
ついて石炭の比容積(密度の逆数)を種々変えてガス透
過係数を測定し、次の(1)式で定義される圧縮比とガ
ス透過係数の関係を調べた。
As described above, when the expansion of the coal softening layer is restricted, the gas permeability coefficient becomes low. Based on this idea, Nomura et al. (Materials and Process, Vol. 5, p. 92, 1992)
The gas permeation coefficient was measured using the method of measuring the pressure loss in the softened coal bed (published by the Iron and Steel Institute of Japan), and the relationship between the gas permeation coefficient and the density of the softened coal bed was examined. For some coals, the gas permeation coefficient was measured while varying the specific volume (reciprocal of density) of the coal, and the relationship between the compression ratio and the gas permeation coefficient defined by the following equation (1) was investigated.

【0018】 C=V0 /V …(1) ここで、Cは圧縮比〔−〕を、V0 は自由膨脹時の石炭
比容積〔cm3 /g−coal〕を、Vはガス透過係数
測定時の石炭比容積〔cm3 /g−coal〕を、それ
ぞれ表す。圧縮比は、ガス透過係数を測定する時に、自
由に膨脹できる場合と比較して、どの程度石炭が圧縮さ
れているか示す値である。自由膨脹時の石炭比容積V0
は、例えば、JIS M 8801に記載されている膨
脹性試験方法により測定される膨脹率b〔%〕から次の
(2)式により求めることができる。
C = V 0 / V (1) where C is the compression ratio [−], V 0 is the specific volume of coal in free expansion [cm 3 / g-coal], and V is the gas permeability coefficient. The specific volume of coal [cm 3 / g-coal] at the time of measurement is shown. The compression ratio is a value indicating how much the coal is compressed when the gas permeation coefficient is measured, as compared with the case where the gas can freely expand. Specific volume of coal during free expansion V 0
Can be determined by the following equation (2) from the expansion rate b [%] measured by the expansion test method described in JIS M8801.

【0019】 V0 =πd2 L(100+b)/400W …(2) ここで、πは円周率を、dは膨脹率測定用細管の内径
〔cm〕を、Lは石炭充填高さ〔cm〕を、Wは石炭装
入量〔g〕を、それぞれ表す。Vは石炭が軟化して膨脹
した時の、装入石炭重量ベースの密度の逆数であり、す
なわち、軟化層の石炭密度の逆数である。
V 0 = πd 2 L (100 + b) / 400W (2) Here, π is the circular constant, d is the inner diameter [cm] of the expansion coefficient measuring thin tube, and L is the coal filling height [cm]. ], W represents the amount of coal charged [g], respectively. V is the reciprocal of the density of the coal based on the weight of the charged coal when the coal is softened and expanded, that is, the reciprocal of the coal density of the softened layer.

【0020】縦軸に測定されたガス透過係数の逆数(通
気抵抗に相当)をとり圧縮比に対してプロットすると、
いずれの石炭の場合も直線になった。また、これらの直
線はいずれも(1,0)の点を通っていた。
When the reciprocal of the measured gas permeation coefficient (corresponding to ventilation resistance) is taken on the vertical axis and plotted against the compression ratio,
For both coals, it became a straight line. Further, all of these straight lines passed through the point (1,0).

【0021】この結果から、圧縮比が1、すなわち石炭
が自由に膨脹できる時には、ガスが抜け易くガス透過係
数が非常に大きいが、膨脹が制限されることにより通気
抵抗が上昇すると考えることができる。
From these results, it can be considered that when the compression ratio is 1, that is, when the coal can freely expand, the gas easily escapes and the gas permeability coefficient is very large, but the ventilation resistance increases due to the restriction of expansion. .

【0022】従って、ガス透過係数の圧縮比による変化
は、kを定数として次の(3)式で表される。
Therefore, the change of the gas permeation coefficient due to the compression ratio is expressed by the following equation (3), where k is a constant.

【0023】 1/P=k(C−1) …(3) ここで、Pはガス透過係数〔m2 〕を、Cは圧縮比
〔−〕を、それぞれ表す。
1 / P = k (C−1) (3) Here, P represents a gas permeability coefficient [m 2 ] and C represents a compression ratio [−].

【0024】上述の結果から、石炭のガス透過係数を比
容積を何種類か変えて測定し、得られたガス透過係数を
(1)式で定義される圧縮比に対してプロットすること
により得られる(3)式の直線から、任意の圧縮比にお
けるガス透過係数を推定することができる。従って、任
意の密度におけるガス透過係数を推定することができる
ことになる。従って、これを用いて、例えば、前記の特
開平5−340937号公報に開示されている膨脹圧推
定方法により、膨脹圧を推定することができる。
From the above results, the gas permeation coefficient of coal was measured by changing the specific volume for several kinds, and the obtained gas permeation coefficient was plotted against the compression ratio defined by the equation (1). The gas permeation coefficient at an arbitrary compression ratio can be estimated from the straight line of the equation (3). Therefore, it is possible to estimate the gas permeation coefficient at an arbitrary density. Therefore, using this, for example, the expansion pressure can be estimated by the expansion pressure estimation method disclosed in Japanese Unexamined Patent Publication No. 5-340937.

【0025】また、炭種による違いは、上記のようにプ
ロットしたときの(3)式の直線の勾配kとV0 (自由
膨脹時の石炭比容積)の2つに集約できる。V0 は、例
えば、JIS M 8801に記載されている膨脹性試
験方法により測定される膨脹率b〔%〕から上記の
(2)式により求めることができる。勾配kについて
は、石炭の平均反射率、揮発分等の石炭化度を表す性状
と相関関係があることが分った。従って、kとこれらの
石炭性状との関係を求めておけば、kも石炭性状のみか
ら推定することができる。すなわち、ガス透過係数を実
測しなくとも、石炭性状のみから任意の密度におけるガ
ス透過係数を推定することが可能である。これを用い
て、例えば、前記の特開平5−340937号公報に開
示されている膨脹圧測定方法により、膨脹圧を予測する
ことができる。
Further, the difference depending on the coal type can be summarized in two, namely, the straight line gradient k of the equation (3) when plotted as described above and V 0 (coal specific volume during free expansion). V 0 can be obtained from the expansion coefficient b [%] measured by the expansion test method described in JIS M 8801 by the above formula (2). It was found that the slope k has a correlation with properties such as the average reflectance of coal and the degree of coalification such as volatile matter. Therefore, if the relationship between k and these coal properties is obtained, k can also be estimated only from the coal properties. That is, it is possible to estimate the gas permeability coefficient at an arbitrary density only from the coal properties without actually measuring the gas permeability coefficient. Using this, for example, the expansion pressure can be predicted by the expansion pressure measuring method disclosed in the above-mentioned JP-A-5-340937.

【0026】[0026]

【実施例】【Example】

実施例1 野村ら(材料とプロセス、5巻、92頁、1992年日
本鉄鋼協会発行)の軟化石炭層内の圧力損失を測定する
方法により、いくつかの石炭について石炭の比容積を種
々変えてガス透過係数を測定し、圧縮比とガス透過係数
の関係を調べた。
Example 1 Nomura et al. (Materials and Process, Vol. 5, p. 92, issued by the Iron and Steel Institute of Japan, 1992) measure the pressure loss in a softened coal seam, while varying the specific volume of coal for some coals. The gas permeability coefficient was measured and the relationship between the compression ratio and the gas permeability coefficient was investigated.

【0027】この結果、図1に、石炭A(平均反射率
1.65)、石炭B(平均反射率1.32)、石炭C
(平均反射率1.12)について例を示すように、縦軸
にガス透過係数の逆数(通気抵抗に相当)をとり圧縮比
に対してプロットすると、いずれの石炭の場合も直線に
なった。また、これらの直線はいずれも(1,0)の点
を通っている。
As a result, in FIG. 1, coal A (average reflectance 1.65), coal B (average reflectance 1.32), coal C
As shown in the example of (average reflectance 1.12), when the reciprocal of the gas permeation coefficient (corresponding to ventilation resistance) was taken on the vertical axis and plotted against the compression ratio, a straight line was obtained for all coals. Further, all of these straight lines pass through the point (1,0).

【0028】従って、この直線から、任意の圧縮比にお
けるガス透過係数を推定することができる。圧縮比は、
軟化層の石炭密度の逆数であるVと(1)式の関係にあ
る。従って、任意の密度おけるガス透過係数を推定する
ことができる。従って、これを用いて、例えば、特開平
5−340937号公報に開示されている膨脹圧推定方
法により、乾留過程での物質移動を考慮することにより
各時刻での軟化石炭層の密度を算出し、算出された密度
におけるガス透過係数を本発明の方法により推定するこ
とにより、膨脹圧を精度よく推定することができる。
Therefore, the gas permeation coefficient at an arbitrary compression ratio can be estimated from this straight line. The compression ratio is
There is a relation of V, which is the reciprocal of the coal density of the softening layer, with the equation (1). Therefore, the gas permeation coefficient at an arbitrary density can be estimated. Therefore, using this, for example, by the expansion pressure estimation method disclosed in Japanese Patent Laid-Open No. 5-340937, the density of the softened coal layer at each time is calculated by considering the mass transfer in the carbonization process. The expansion pressure can be accurately estimated by estimating the gas permeation coefficient at the calculated density by the method of the present invention.

【0029】例えば、石炭Aの場合、図1から、ガス透
過係数Pと圧縮比Cの関係は次の(4)式で表される。
For example, in the case of coal A, the relationship between the gas permeation coefficient P and the compression ratio C is expressed by the following equation (4) from FIG.

【0030】 1/P=12.0×1015×(C−1) …(4) また、石炭Aの自由膨脹時の石炭比容積V0 は2.25
〔cm3 /g−coal〕であった。この石炭Aをコー
クス炉に密度0.8〔g−coal/cm3 〕で装入し
た場合、特開平5−340937号公報に開示されてい
る膨脹圧推定方法により、炉壁近傍では軟化石炭層の比
容積Vは1.25〔cm3 /g−coal〕と算出さ
れ、従って、ガス透過係数は(1)式と(3)式とを用
いて、1.04×10-16 〔m2 〕と算出される。ま
た、同様にして、炭化室中心部では、軟化石炭層の比容
積Vは1.65〔cm3 /g−coal〕と算出され、
従って、ガス透過係数は(1)式と(4)式とを用い
て、2.29×10-16 〔m2 〕と算出される。
1 / P = 12.0 × 10 15 × (C-1) (4) Further, the coal specific volume V 0 at the time of free expansion of the coal A is 2.25.
It was [cm 3 / g-coal]. When this coal A is charged into a coke oven at a density of 0.8 [g-coal / cm 3 ], a softened coal layer near the furnace wall is obtained by the expansion pressure estimation method disclosed in Japanese Patent Laid-Open No. 5-340937. Is calculated to be 1.25 [cm 3 / g-coal], and therefore the gas permeation coefficient is 1.04 × 10 −16 [m 2] using the equations (1) and (3). ] Is calculated. Similarly, in the center of the carbonization chamber, the specific volume V of the softened coal layer is calculated to be 1.65 [cm 3 / g-coal],
Therefore, the gas permeability coefficient is calculated as 2.29 × 10 −16 [m 2 ] by using the equations (1) and (4).

【0031】実施例2 実施例1と同様にして、種々の石炭について比容積を種
々変えてガス透過係数を測定し、(1)式で定義される
圧縮比とガス透過係数の関係を調べた。縦軸にガス透過
係数の逆数(通気抵抗に相当)をとり圧縮比に対してプ
ロットすると、いずれの石炭の場合も直線になった。
Example 2 In the same manner as in Example 1, the gas permeation coefficient was measured for various coals with various specific volumes, and the relationship between the compression ratio defined by the equation (1) and the gas permeation coefficient was investigated. . When the reciprocal of the gas permeation coefficient (corresponding to ventilation resistance) was taken on the vertical axis and plotted against the compression ratio, a straight line was obtained for all coals.

【0032】この直線の勾配は、図2に示すように、石
炭の石炭化度(図2では平均反射率Ro を用いた)と一
定の関係があることが分かった。従って、ガス透過係数
を測定しなくとも、石炭性状のみにより任意の密度おけ
るガス透過係数を推定することが可能である。従って、
これを用いて、例えば、特開平5−340937号公報
に開示されている膨脹圧推定方法により、乾留過程での
物質移動を考慮することにより各時刻での軟化石炭層の
密度を算出し、算出された密度におけるガス透過係数を
本発明の方法により推定することにより、膨脹圧を精度
よく推定することができる。
As shown in FIG. 2, it was found that the slope of this straight line has a certain relationship with the degree of coalification of coal (the average reflectance Ro was used in FIG. 2). Therefore, without measuring the gas permeation coefficient, it is possible to estimate the gas permeation coefficient at an arbitrary density based only on the coal properties. Therefore,
Using this, for example, by the expansion pressure estimation method disclosed in Japanese Patent Laid-Open No. 5-340937, the density of the softened coal layer at each time is calculated by considering the mass transfer in the carbonization process, and calculated. The expansion pressure can be accurately estimated by estimating the gas permeation coefficient at the obtained density by the method of the present invention.

【0033】例えば、図2から、kと石炭の平均反射率
Ro の関係は次の(5)式で表される。
For example, referring to FIG. 2, the relationship between k and the average reflectance Ro of coal is expressed by the following equation (5).

【0034】 logk=3.350×Ro +11.22 …(5) この式を使うことにより、石炭の平均反射率Ro を測定
することにより任意の石炭のkが推定できる。例えば、
石炭Dの平均反射率は1.35〔%〕であった。従って
この石炭のkは(5)式から5.52×1015と算出さ
れる。また、石炭Dの自由膨脹時の石炭比容積V0
2.48〔cm3 /g−coal〕であった。そこで、
この石炭Dをコークス炉に密度0.7〔g−coal/
cm3 〕で装入した場合、特開平5−340937号公
報に開示されている膨脹圧推定方法により、炉壁近傍で
は軟化石炭層の比容積Vは1.43〔cm3 /g−co
al〕と算出され、従って、ガス透過係数は(1)式と
(3)式とを用いて、2.47×10-16 〔m2 〕と算
出される。また、同様にして、炭化室中心部では、軟化
石炭層の比容積Vは1.95〔cm3 /g−coal〕
と算出され、従って、ガス透過係数は(1)式と(3)
式とを用いて、6.67×10-16 〔m2 〕と算出され
る。
Logk = 3.350 × Ro + 11.22 (5) By using this formula, the k of an arbitrary coal can be estimated by measuring the average reflectance Ro of the coal. For example,
The average reflectance of Coal D was 1.35 [%]. Therefore, k of this coal is calculated as 5.52 × 10 15 from the equation (5). The specific volume V 0 of the coal D when it was freely expanded was 2.48 [cm 3 / g-coal]. Therefore,
This coal D was placed in a coke oven at a density of 0.7 [g-coal /
[cm 3 ], the specific volume V of the softened coal layer near the furnace wall is 1.43 [cm 3 / g-co] according to the expansion pressure estimation method disclosed in JP-A-5-340937.
Therefore, the gas permeation coefficient is calculated as 2.47 × 10 −16 [m 2 ] using the equations (1) and (3). Similarly, in the center of the carbonization chamber, the specific volume V of the softened coal layer is 1.95 [cm 3 / g-coal].
Therefore, the gas permeation coefficient is calculated by the equations (1) and (3).
It is calculated as 6.67 × 10 −16 [m 2 ] by using the equation and.

【0035】[0035]

【発明の効果】本発明により、軟化石炭のガス透過係数
を精度よくかつ迅速に推定することができる。これによ
り、コークス炉に石炭を装入する前に膨脹圧を精度よく
推定することが可能になった。
According to the present invention, the gas permeation coefficient of softened coal can be accurately and quickly estimated. This made it possible to accurately estimate the expansion pressure before charging coal into the coke oven.

【0036】この結果、コークス炉の損傷を回避するこ
とができ、コークス炉の補修費用の低減およびコークス
炉寿命の延長が達成でき、その経済効果は大きい。
As a result, the damage of the coke oven can be avoided, the repair cost of the coke oven can be reduced and the life of the coke oven can be extended, and its economic effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】石炭の圧縮比とガス透過係数の逆数の関係を示
す図。
FIG. 1 is a diagram showing the relationship between the compression ratio of coal and the reciprocal of the gas permeation coefficient.

【図2】石炭の石炭化度(平均反射率Ro )と石炭の圧
縮比とガス透過係数の逆数の関係の直線の勾配kとの関
係を示す図。
FIG. 2 is a diagram showing the relationship between the degree of coalification (average reflectance Ro) of coal, the compression ratio of coal, and the slope k of the straight line of the reciprocal of the gas permeation coefficient.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コークス炉に装入する石炭について、軟
化溶融状態にある石炭のガス透過係数を測定し、(1)
式に示す圧縮比との関係線図を予め作成し、コークス炉
に装入した石炭の任意箇所の密度と前記関係線図より、
乾留時のコークス炉内の前記箇所における軟化石炭のガ
ス透過係数を推定することを特徴とする軟化石炭のガス
透過係数の推定方法 C=V0 /V …(1) ここで、 C:圧縮比〔−〕 V0 :自由膨張時の石炭比容積〔cm3 /g−coa
l〕 V:ガス透過係数測定時の石炭比容積〔cm3 /g−c
oal〕
1. The gas permeation coefficient of coal in a softened and molten state is measured for coal charged into a coke oven, and (1)
A relationship diagram with the compression ratio shown in the formula is created in advance, and from the relationship diagram and the density of an arbitrary portion of the coal charged in the coke oven,
Method for estimating gas permeation coefficient of softened coal characterized by estimating gas permeation coefficient of softened coal at the above-mentioned location in coke oven during carbonization C = V 0 / V (1) where C: compression ratio [−] V 0 : Specific volume of coal at free expansion [cm 3 / g-coa
l] V: Specific volume of coal when measuring gas permeation coefficient [cm 3 / g-c
oal]
【請求項2】 請求項1記載の石炭のガス透過係数と圧
縮比との関係線図における直線の勾配kと石炭性状との
関係を予め求めておき、コークス炉に装入する石炭の石
炭性状と前記勾配kと石炭性状との関係を用いて、コー
クス炉に装入した石炭の任意箇所の密度より、乾留時の
コークス炉内の前記箇所における軟化石炭のガス透過係
数を推定することを特徴とする軟化石炭のガス透過係数
の推定方法。
2. The coal property of the coal to be charged into the coke oven is obtained in advance by previously obtaining the relationship between the straight line gradient k in the relationship diagram between the gas permeability coefficient and the compression ratio of the coal according to claim 1 and the coal property. And the gradient k and the coal properties, the gas permeability coefficient of the softened coal at the location in the coke oven during carbonization is estimated from the density of the arbitrary location of the coal charged in the coke oven. Method for estimating gas permeation coefficient of softened coal.
JP8001195A 1995-04-05 1995-04-05 Estimation of gas permeability of softened coal Withdrawn JPH08277392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8001195A JPH08277392A (en) 1995-04-05 1995-04-05 Estimation of gas permeability of softened coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8001195A JPH08277392A (en) 1995-04-05 1995-04-05 Estimation of gas permeability of softened coal

Publications (1)

Publication Number Publication Date
JPH08277392A true JPH08277392A (en) 1996-10-22

Family

ID=13706389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8001195A Withdrawn JPH08277392A (en) 1995-04-05 1995-04-05 Estimation of gas permeability of softened coal

Country Status (1)

Country Link
JP (1) JPH08277392A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110261569A (en) * 2019-06-21 2019-09-20 中国矿业大学 Experimental system for simulating and method based on pipe network system draining coal seam gas effect

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110261569A (en) * 2019-06-21 2019-09-20 中国矿业大学 Experimental system for simulating and method based on pipe network system draining coal seam gas effect
CN110261569B (en) * 2019-06-21 2020-06-12 中国矿业大学 Simulation experiment system and method for coal seam gas extraction effect based on pipe network system

Similar Documents

Publication Publication Date Title
KR101649672B1 (en) Method for sample quality prediction and Method for forecasting CSR(Coke Strength Reaction)
JP6680163B2 (en) Coke particle size estimation method
JPH08277392A (en) Estimation of gas permeability of softened coal
JP3971563B2 (en) Method for estimating surface fracture strength of coke
CN113322085A (en) Coal cake production method for tamping coking
JPH11116968A (en) Evaluation and blending of coal for preparation of coke
JP4321369B2 (en) Coke oven operation method
JP3100722B2 (en) Method and apparatus for measuring gas permeability coefficient of coal seam in softened and molten state
JPH03273091A (en) Method for forecasting shrinkage of blended coal for coke
JP4899326B2 (en) Method for estimating coke shrinkage of blended coal and method for producing coke
JPH02235989A (en) Method for determining coefficient of horizontal shrinkage of charge in coke oven
KR20010057262A (en) Measuring method of force acting on the oven wall during coal carbonization in test coke oven
Orlova et al. Choice of evolution equation for internal stress in creep
JPH08302413A (en) Method for controlling terminating point of blowing in converter
JP6874487B2 (en) Method of adjusting compound coal and method of manufacturing coke
JP3142637B2 (en) Estimation method of coal expansion pressure
JP2561211B2 (en) Mixing method of coking coal
JPH09255965A (en) Method for estimating specific volume of coal blend
Donnelly et al. Comparative determinations of reactivities of chars, cokes, charcoals and graphite by a thermogravimetric method
JPH0967579A (en) Method for estimating particle diameter of coke in chamber oven
JPH10197516A (en) Coke strength presuming method
Tangstad et al. Electrical Resistivity of Partially Transformed Silicon Carbide Made from Coal
JPH04306294A (en) Control of expansion pressure on carbonization of coal
JP2872343B2 (en) Prediction method of fire time of coke oven
JP2023081775A (en) Evaluation method for spontaneous heat build up property of coal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020702