JPH08277117A - Transparent and electroconductive oxide material - Google Patents

Transparent and electroconductive oxide material

Info

Publication number
JPH08277117A
JPH08277117A JP7080954A JP8095495A JPH08277117A JP H08277117 A JPH08277117 A JP H08277117A JP 7080954 A JP7080954 A JP 7080954A JP 8095495 A JP8095495 A JP 8095495A JP H08277117 A JPH08277117 A JP H08277117A
Authority
JP
Japan
Prior art keywords
oxide
phase
hours
molar ratio
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7080954A
Other languages
Japanese (ja)
Inventor
Keiji Sato
敬二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP7080954A priority Critical patent/JPH08277117A/en
Publication of JPH08277117A publication Critical patent/JPH08277117A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE: To obtain a double oxide material which has high visible-light transmission and good electroconductivity and is useful as a transparent electrode, an antistatic membrane or an electromagnetic shielding membrane. CONSTITUTION: This double oxide has a crystalline structure of triple rutile type, comprises zinc oxide or magnesium oxide and antimony oxide at a molar ratio of (1+x)/2, where -0.1<=X<=0.1, and contains at least one of metallic element selected from among In, Ga, Al, Y and La.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽電池や液晶デバイ
ス(LCD)等の透明電極、あるいは帯電防止膜、電磁
遮蔽膜、防曇ガラスおよび熱線反射ガラス等に利用され
る優れた可視光透過性を有し、一方で良好な電気伝導性
を兼ね備えた透明導電性酸化物材料に関する。
BACKGROUND OF THE INVENTION The present invention relates to a transparent electrode for solar cells, liquid crystal devices (LCDs), antistatic films, electromagnetic shielding films, anti-fog glass, heat ray-reflecting glass, etc. The present invention relates to a transparent conductive oxide material which has a good electric conductivity while having a good electric conductivity.

【0002】[0002]

【従来の技術】現在、透明導電材料は、LCDや太陽電
池等の透明電極、あるいは電磁遮蔽膜、帯電防止膜、防
曇ガラス、熱線反射ガラス等に利用されており、中でも
酸化インジウム系および酸化スズ系材料は、比較的導電
率が高く、また可視光透過性を有していることから、前
記応用に対し広く用いられている。
2. Description of the Related Art Currently, transparent conductive materials are used for transparent electrodes of LCDs and solar cells, electromagnetic shielding films, antistatic films, anti-fog glass, heat-reflecting glass and the like. Tin-based materials are widely used for the above applications because of their relatively high electrical conductivity and their ability to transmit visible light.

【0003】これらの材料は、上記の応用を行うにあた
り、スパッタリング法やイオンプレーティング法などの
物理的成膜方法、あるいはゾル−ゲル法やスプレーパイ
ロリシス法などの化学的成膜方法により成膜され、使用
されている。
In applying the above-mentioned materials, these materials are formed by a physical film forming method such as a sputtering method or an ion plating method, or a chemical film forming method such as a sol-gel method or a spray pyrolysis method. Has been used.

【0004】ここで、近年、市場が大幅に拡大しつつあ
るLCDや太陽電池用の透明電極に対しては、電気伝導
性とパターニング性が比較的良好なことから、酸化イン
ジウムにスズを数mol%添加した、ITO(Indi
um−Tin−Oxide)が主に用いられている。
Here, in the case of transparent electrodes for LCDs and solar cells, the market of which has been greatly expanding in recent years, since the electric conductivity and the patterning property are relatively good, a few mol of tin is added to indium oxide. % Added, ITO (Indi
um-Tin-Oxide) is mainly used.

【0005】しかし、ITOは、従来の他の材料と比較
して、導電性に優位性がある反面、透明性については、
材料本来の本質的特性から、可視光透過性が高くなく、
とくに可視光の短波長域での吸収が多く、成膜後の薄膜
は、やや青みがかって見えるという欠点がある。
However, while ITO is superior in conductivity to other conventional materials, it is not transparent.
Visible light transmission is not high due to the intrinsic characteristics of the material,
In particular, there is a large amount of absorption of visible light in the short wavelength region, and the thin film after film formation has the drawback of appearing slightly bluish.

【0006】また、ITOの主構成成分である酸化イン
ジウムは、資源性に乏しく、現在のところかなり高価で
あるため、成膜コストの高いことも問題である。その
他、酸化インジウムは、難焼結性であるため、代表的な
成膜方法であるスパッタリング法における高密度ターゲ
ット製造が容易ではない。
Further, indium oxide, which is a main constituent of ITO, has a poor resource property and is quite expensive at present, so that the film forming cost is also a problem. In addition, since indium oxide is difficult to sinter, it is not easy to manufacture a high-density target by a sputtering method which is a typical film forming method.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記の問題
を解決するため、鋭意検討の結果、特定組成の複酸化物
にすることにより、可視光透過性および電気伝導性が優
れていることを見出し本発明に到達した。
In order to solve the above problems, the present inventor has made earnest studies and, as a result, has made it possible to obtain a visible light transmissivity and an electric conductivity by using a double oxide having a specific composition. The inventors have found that and reached the present invention.

【0008】すなわち本発明は、三重ルチル型結晶構造
を有する複酸化物であり、該複酸化物中の酸化亜鉛もし
くは酸化マグネシウムと酸化アンチモンとのモル比の割
合が、(1+X):2(但し、−0.1≦X≦0.1)
であり、該複酸化物中に、In、Ga、Al、La、Y
から選ばれる少なくとも1種の金属元素を含有すること
を特徴とする透明導電性酸化物材料を提供するものであ
る。
That is, the present invention is a complex oxide having a triple rutile type crystal structure, and the molar ratio of zinc oxide or magnesium oxide to antimony oxide in the complex oxide is (1 + X): 2 (however, , -0.1≤X≤0.1)
And In, Ga, Al, La, Y in the mixed oxide
The present invention provides a transparent conductive oxide material containing at least one metal element selected from the group consisting of:

【0009】本発明では、上記組成において、酸化亜鉛
もしくは酸化マグネシウムと酸化アンチモンとのモル比
の割合が、(1+X):2(但し、−0.1≦X≦0.
1)であることが重要である。
In the present invention, in the above composition, the molar ratio of zinc oxide or magnesium oxide to antimony oxide is (1 + X): 2 (provided that -0.1≤X≤0.
It is important that it is 1).

【0010】上記構成元素による三重ルチル型結晶構造
を有する複酸化物は、バンドギャップがITOに比べて
広く、基礎吸収端が紫外寄りに存在する。このため、I
TOと比較して可視光の短波長域での吸収が少なく、優
れた可視光透過性が期待でき、また、三重ルチル型結晶
構造では、高い導電性を示すルチル型結晶構造に非常に
類似した単位格子を有しており、高い導電性が期待でき
る。しかし、上記組成の割合をはずれると、焼成後に高
い電気伝導度を示す三重ルチル相以外の第2相が生成
し、電気伝導度が低下するため好ましくない。
The complex oxide having a triple rutile type crystal structure of the above constituent elements has a wider bandgap than ITO, and its basic absorption edge is near the ultraviolet. Therefore, I
Compared with TO, absorption of visible light in the short wavelength region is small, and excellent visible light transmittance can be expected. In addition, the triple rutile type crystal structure is very similar to the rutile type crystal structure showing high conductivity. Since it has a unit cell, high conductivity can be expected. However, if the proportion of the composition is out of the above range, a second phase other than the triple rutile phase showing high electric conductivity is generated after firing, and the electric conductivity is lowered, which is not preferable.

【0011】次に、相対密度80%以上の高密度で、か
つ均一な組成をもつ本発明の複酸化物を得るためには、
平均粒径1μm以下、純度99.99%以上の原料酸化
物を用い、ボールミル等で混合し、成形後、500〜1
200℃で仮焼し、さらに1200〜1600℃の温度
範囲で大気中で焼結処理する。混合は、湿式ボールミル
が望ましく、また、焼結温度範囲をはずれると、三重ル
チル相が十分生成しないか、もしくは三重ルチル相以外
の第2相が生成するため好ましくない。
Next, in order to obtain the double oxide of the present invention having a high density and a uniform composition with a relative density of 80% or more,
After using a raw material oxide having an average particle size of 1 μm or less and a purity of 99.99% or more and mixing by a ball mill or the like and molding, 500 to 1
It is calcined at 200 ° C. and further sintered in the atmosphere in the temperature range of 1200 to 1600 ° C. Mixing is preferably performed by a wet ball mill, and if the temperature is out of the sintering temperature range, the triple rutile phase is not sufficiently formed, or the second phase other than the triple rutile phase is formed, which is not preferable.

【0012】また、上記の組成に高原子価金属元素を添
加し置換固溶させることによって、非化学量論から生じ
るキャリア注入も可能である。この場合、高原子価金属
元素とは、Zn2+,Mg2+よりも高原子価である3価金
属元素のIn、Ga、Al、La、Yが適当であり、こ
れらの中から選ばれる少なくとも1種の金属元素を添加
することによって、キャリア注入が可能であり、さらに
電気伝導度が向上した材料が得られる。
Further, by adding a high-valent metal element to the above composition and performing substitution solid solution, carrier injection caused by non-stoichiometry is also possible. In this case, the high valence metal element is preferably a trivalent metal element having a higher valence than Zn 2+ and Mg 2+ , In, Ga, Al, La and Y, and is selected from these. By adding at least one kind of metal element, carrier injection is possible and a material having improved electric conductivity can be obtained.

【0013】この場合、金属元素の添加量は、とくに制
限されないが、In、Ga、Al、La、Y金属または
これらの酸化物から選ばれる少なくとも1種の金属元素
を0.01〜20原子%含むことが望ましい。この範囲
を超えると金属元素は、固溶限を超え、これによりスピ
ネル相以外の第2相が生成して電気伝導度の低下を招く
恐れがある。このため金属元素の添加量は、上記の範囲
で行うことが望ましい。
In this case, the amount of the metallic element added is not particularly limited, but 0.01 to 20 atomic% of at least one metallic element selected from In, Ga, Al, La, Y metals or their oxides is used. It is desirable to include. If it exceeds this range, the metal element exceeds the solid solubility limit, which may cause the formation of a second phase other than the spinel phase, resulting in a decrease in electrical conductivity. Therefore, it is desirable to add the metal element within the above range.

【0014】一方、本発明の複酸化物の主な構成元素
は、SbおよびZnもしくはMgであり、ITOの主構
成元素であるInと比較して天然資源に富んでおり、非
常に安価で、なおかつ焼結性が良好である。このため、
成膜材料であるスパッタリングターゲット等の製造が安
価に行えるという利点を有する。
On the other hand, the main constituent elements of the complex oxide of the present invention are Sb and Zn or Mg, which are rich in natural resources as compared with In, which is the main constituent element of ITO, and are very inexpensive. Moreover, the sinterability is good. For this reason,
There is an advantage that a sputtering target, which is a film forming material, can be manufactured at low cost.

【0015】[0015]

【実施例】以下、本発明を実施例に基づいてさらに説明
するが、かかる実施例により限定されるものではない。
EXAMPLES The present invention will be further described below based on examples, but the present invention is not limited to these examples.

【0016】実施例 1 平均粒径1μm以下、純度99.99%の酸化亜鉛粉末
と酸化アンチモン粉末をモル比で、1:2になるように
秤量し、エタノール溶媒中で湿式ボールミル混合した。
さらに、得られたスラリーを60℃、24時間乾燥後、
アルミナるつぼ中で、1000℃、5時間仮焼した。仮
焼後の前駆体を再びエタノール溶媒中で湿式ボールミル
粉砕し、乾燥後、成型バインダとしてPVAを2重量%
添加した。
Example 1 A zinc oxide powder and an antimony oxide powder having an average particle size of 1 μm or less and a purity of 99.99% were weighed out in a molar ratio of 1: 2 and mixed in a wet ball mill in an ethanol solvent.
Furthermore, after drying the obtained slurry at 60 ° C. for 24 hours,
It was calcined in an alumina crucible at 1000 ° C. for 5 hours. The precursor after calcination is wet-ball milled again in ethanol solvent, dried, and then 2% by weight of PVA as a molding binder.
Was added.

【0017】その後、150μmアンダーに整粒し、φ
15mm×3mmtのサイズで一軸成型およびラバープ
レス(2t/cm2 )し、成型後のグリーンディスク
を、1400℃、5時間大気中で焼成した。以上のよう
にして調製した焼結体は、粉末X線回折法による解析の
結果、三重ルチル相のみが認められ、三重ルチル相以外
の第2相は認められなかった。
Then, the particles are sized to 150 μm under,
After uniaxial molding with a size of 15 mm × 3 mmt and rubber pressing (2 t / cm 2 ), the molded green disk was baked at 1400 ° C. for 5 hours in the air. As a result of analysis by the powder X-ray diffraction method, only the triple rutile phase was found in the sintered body prepared as described above, and the second phase other than the triple rutile phase was not found.

【0018】実施例 2 平均粒径1μm以下、純度99.99%の酸化マグネシ
ウム粉末と酸化アンチモン粉末をモル比で、1:2にな
るように秤量し、エタノール溶媒中で湿式ボールミル混
合した。さらに、得られたスラリーを60℃、24時間
乾燥後、アルミナるつぼ中で、1000℃、5時間仮焼
した。仮焼後の前駆体を再びエタノール溶媒中で湿式ボ
ールミル粉砕し、乾燥後、成型バインダとしてPVAを
2重量%添加した。
Example 2 Magnesium oxide powder and antimony oxide powder having an average particle size of 1 μm or less and a purity of 99.99% were weighed in a molar ratio of 1: 2 and mixed in an ethanol solvent by a wet ball mill. Further, the obtained slurry was dried at 60 ° C. for 24 hours and then calcined in an alumina crucible at 1000 ° C. for 5 hours. The precursor after calcination was wet-ball milled again in an ethanol solvent, dried, and then 2% by weight of PVA was added as a molding binder.

【0019】その後、150μmアンダーに整粒し、φ
15mm×3mmtのサイズで一軸成型およびラバープ
レス(2t/cm2 )し、成型後のグリーンディスク
を、1400℃、5時間大気中で焼成した。以上のよう
にして調製した焼結体は、粉末X線回折法による解析の
結果、三重ルチル相のみが認められ、三重ルチル相以外
の第2相は認められなかった。
Then, the particles are sized to 150 μm under, and φ
After uniaxial molding with a size of 15 mm × 3 mmt and rubber pressing (2 t / cm 2 ), the molded green disk was baked at 1400 ° C. for 5 hours in the air. As a result of analysis by the powder X-ray diffraction method, only the triple rutile phase was found in the sintered body prepared as described above, and the second phase other than the triple rutile phase was not found.

【0020】実施例 3 平均粒径1μm以下、純度99.99%の酸化亜鉛粉末
と酸化アンチモン粉末および酸化インジウム粉末をモル
比で、0.9:2:0.1になるように秤量し、エタノ
ール溶媒中で湿式ボールミル混合した。さらに、得られ
たスラリーを60℃、24時間乾燥後、アルミナるつぼ
中で、1000℃、5時間仮焼した。仮焼後の前駆体を
再びエタノール溶媒中で湿式ボールミル粉砕し、乾燥
後、成型バインダとしてPVAを2重量%添加した。
Example 3 Zinc oxide powder, antimony oxide powder and indium oxide powder having an average particle size of 1 μm or less and a purity of 99.99% were weighed so that the molar ratio was 0.9: 2: 0.1, Wet ball mill mixing in ethanol solvent. Further, the obtained slurry was dried at 60 ° C. for 24 hours and then calcined in an alumina crucible at 1000 ° C. for 5 hours. The precursor after calcination was wet-ball milled again in an ethanol solvent, dried, and then 2% by weight of PVA was added as a molding binder.

【0021】その後、150μmアンダーに整粒し、φ
15mm×3mmtのサイズで一軸成型およびラバープ
レス(2t/cm2 )し、成型後のグリーンディスク
を、1400℃、5時間大気中で焼成した。以上のよう
にして調製した焼結体は、粉末X線回折法による解析の
結果、三重ルチル相のみが認められ、三重ルチル相以外
の第2相は認められなかった。
Then, the particles are sized to 150 μm under,
After uniaxial molding with a size of 15 mm × 3 mmt and rubber pressing (2 t / cm 2 ), the molded green disk was baked at 1400 ° C. for 5 hours in the air. As a result of analysis by the powder X-ray diffraction method, only the triple rutile phase was found in the sintered body prepared as described above, and the second phase other than the triple rutile phase was not found.

【0022】実施例 4 平均粒径1μm以下、純度99.99%の酸化亜鉛粉末
と酸化アンチモン粉末および酸化アルミニウム粉末をモ
ル比で、0.9:2:0.1になるように秤量し、エタ
ノール溶媒中で湿式ボールミル混合した。さらに、得ら
れたスラリーを60℃、24時間乾燥後、アルミナるつ
ぼ中で、1000℃、5時間仮焼した。仮焼後の前駆体
を再びエタノール溶媒中で湿式ボールミル粉砕し、乾燥
後、成型バインダとしてPVAを2重量%添加した。
その後、150μmアンダーに整粒し、φ15mm×3
mmtのサイズで一軸成型およびラバープレス(2t/
cm2 )し、成型後のグリーンディスクを、1400
℃、5時間大気中で焼成した。以上のようにして調製し
た焼結体は、粉末X線回折法による解析の結果、三重ル
チル相のみが認められ、三重ルチル相以外の第2相は認
められなかった。
Example 4 Zinc oxide powder, antimony oxide powder and aluminum oxide powder having an average particle size of 1 μm or less and a purity of 99.99% were weighed so that the molar ratio was 0.9: 2: 0.1, Wet ball mill mixing in ethanol solvent. Further, the obtained slurry was dried at 60 ° C. for 24 hours and then calcined in an alumina crucible at 1000 ° C. for 5 hours. The precursor after calcination was wet-ball milled again in an ethanol solvent, dried, and then 2% by weight of PVA was added as a molding binder.
After that, size is adjusted to 150 μm under, φ15 mm × 3
mmt size uniaxial molding and rubber press (2t /
cm 2 ), and the green disc after molding is 1400
Firing was performed in the air at 5 ° C for 5 hours. As a result of an analysis by a powder X-ray diffraction method, only the triple rutile phase was found in the sintered body prepared as described above, and the second phase other than the triple rutile phase was not found.

【0023】比較例 1 平均粒径1μm以下、純度99.99%の酸化インジウ
ム粉末と酸化スズ粉末をモル比で、0.9:0.1にな
るように秤量し、エタノール溶媒中で湿式ボールミル混
合した。さらに、得られたスラリーを60℃、24時間
乾燥後、アルミナるつぼ中で、1000℃、5時間仮焼
した。仮焼後の前駆体を再びエタノール溶媒中で湿式ボ
ールミル粉砕し、乾燥後、成型バインダとしてPVAを
2重量%添加した。
Comparative Example 1 Indium oxide powder and tin oxide powder having an average particle diameter of 1 μm or less and a purity of 99.99% were weighed so that the molar ratio was 0.9: 0.1, and wet ball mill in an ethanol solvent. Mixed. Further, the obtained slurry was dried at 60 ° C. for 24 hours and then calcined in an alumina crucible at 1000 ° C. for 5 hours. The precursor after calcination was wet-ball milled again in an ethanol solvent, dried, and then 2% by weight of PVA was added as a molding binder.

【0024】その後、150μmアンダーに整粒し、φ
15mm×3mmtのサイズで一軸成型およびラバープ
レス(2t/cm2 )し、成型後のグリーンディスク
を、1400℃、5時間大気中で焼成した。以上のよう
にして調製した焼結体は、粉末X線回折法による解析の
結果、酸化インジウム相のみが認められ、酸化インジウ
ム相以外の第2相は認められなかった。
After that, the particle size is adjusted to 150 μm under, and φ
After uniaxial molding with a size of 15 mm × 3 mmt and rubber pressing (2 t / cm 2 ), the molded green disk was baked at 1400 ° C. for 5 hours in the air. As a result of analysis by the powder X-ray diffraction method, only the indium oxide phase was found in the sintered body prepared as described above, and the second phase other than the indium oxide phase was not found.

【0025】〔物性評価〕本発明における可視光透過性
の評価方法については、試料が多結晶セラミックスであ
るため、透過率測定と等価である拡散反射率測定法を採
用した。ここで、測定試料は上記の実施例で調製した焼
結体を粉砕し、φ25mm×3mmtのサイズに一軸成
型したものを用いた。
[Evaluation of Physical Properties] As a method for evaluating visible light transmittance in the present invention, since the sample is a polycrystalline ceramic, a diffuse reflectance measuring method which is equivalent to the transmittance measuring was adopted. Here, as the measurement sample, the sinter prepared in the above example was pulverized and uniaxially molded into a size of φ25 mm × 3 mmt.

【0026】また、標準白色試料には、純度99.99
%のMgO粉末を上記と同様の方法で成型したものを用
いた。一方、電気伝導度測定は、上記の実施例で調製し
た焼結体を、ダイヤモンドカッターにて直方体に切り出
し、電圧および電流電極を取り付けた素子を用いた、通
常の直流4端子法を採用した。
The standard white sample has a purity of 99.99.
% MgO powder molded by the same method as above was used. On the other hand, for the electrical conductivity measurement, a normal DC four-terminal method was employed, in which the sintered body prepared in the above example was cut into a rectangular parallelepiped with a diamond cutter and an element equipped with voltage and current electrodes was used.

【0027】表1に本発明における実施例および比較例
で調製した複酸化物の拡散反射率測定結果を示した。表
1から明らかなように、本発明の複酸化物は、従来材料
であるITO(比較例1)と比較して、全体に反射率、
すなわち可視光透過性が非常に高く、とくに可視域短波
長側での吸収が顕著に少ないことがわかる。
Table 1 shows the results of measuring the diffuse reflectance of the composite oxides prepared in Examples and Comparative Examples of the present invention. As is clear from Table 1, the composite oxide of the present invention has a reflectance as a whole as compared with the conventional material ITO (Comparative Example 1),
That is, it can be seen that the visible light transmittance is extremely high, and the absorption particularly on the short wavelength side of the visible region is significantly small.

【0028】[0028]

【表1】 [Table 1]

【0029】表2に本発明の実施例で調製した複酸化物
の、−40℃、室温(25℃)、100℃での電気伝導
度を示した。ここで、各酸化物は電気伝導度が温度にほ
とんど依存しないとういう金属的導電挙動に近い、良好
な電気伝導性を示していることがわかる。
Table 2 shows the electric conductivity of the composite oxides prepared in the examples of the present invention at -40 ° C, room temperature (25 ° C) and 100 ° C. Here, it can be seen that each oxide exhibits good electrical conductivity, which is close to the metallic conductive behavior that the electrical conductivity hardly depends on temperature.

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【発明の効果】本発明の三重ルチル型結晶構造を有する
複酸化物は、良好な電気伝導性を示しながらも、従来材
料と比較して透明性とくに可視域短波長側での飛躍的な
向上、および材料コスト低減を与えるものである。
INDUSTRIAL APPLICABILITY The complex oxide having a triple rutile type crystal structure of the present invention shows excellent electric conductivity, but is significantly improved in transparency as compared with conventional materials, particularly in the visible wavelength short wavelength side. , And material cost reduction.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 三重ルチル型結晶構造を有する複酸化物
であり、該複酸化物中の酸化亜鉛と酸化アンチモンとの
モル比の割合が、(1+X):2(但し、−0.1≦X
≦0.1)であることを特徴とする透明導電性酸化物材
料。
1. A composite oxide having a triple rutile type crystal structure, wherein the molar ratio of zinc oxide and antimony oxide in the composite oxide is (1 + X): 2 (where -0.1 ≦ X
≦ 0.1) A transparent conductive oxide material.
【請求項2】 三重ルチル型結晶構造を有する複酸化物
であり、該複酸化物中の酸化マグネシウムと酸化アンチ
モンとのモル比の割合が、(1+X):2(但し、−
0.1≦X≦0.1)であることを特徴とする透明導電
性酸化物材料。
2. A complex oxide having a triple rutile type crystal structure, wherein the molar ratio of magnesium oxide to antimony oxide in the complex oxide is (1 + X): 2 (provided that −
0.1 ≦ X ≦ 0.1) A transparent conductive oxide material.
【請求項3】 複酸化物中に、In、Ga、Al、L
a、Yから選ばれる少なくとも1種の金属元素を含有す
ることを特徴とする請求項1、2記載の透明導電性酸化
物材料。
3. In, Ga, Al, L in the double oxide
3. The transparent conductive oxide material according to claim 1, which contains at least one metal element selected from a and Y.
JP7080954A 1995-04-06 1995-04-06 Transparent and electroconductive oxide material Pending JPH08277117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7080954A JPH08277117A (en) 1995-04-06 1995-04-06 Transparent and electroconductive oxide material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7080954A JPH08277117A (en) 1995-04-06 1995-04-06 Transparent and electroconductive oxide material

Publications (1)

Publication Number Publication Date
JPH08277117A true JPH08277117A (en) 1996-10-22

Family

ID=13732908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7080954A Pending JPH08277117A (en) 1995-04-06 1995-04-06 Transparent and electroconductive oxide material

Country Status (1)

Country Link
JP (1) JPH08277117A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005008515A (en) * 2003-05-26 2005-01-13 Nissan Chem Ind Ltd Metal oxide particle and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005008515A (en) * 2003-05-26 2005-01-13 Nissan Chem Ind Ltd Metal oxide particle and its manufacturing method

Similar Documents

Publication Publication Date Title
KR101841314B1 (en) Sintered oxide material, method for manufacturing same, sputtering target, oxide transparent electrically conductive film, method for manufacturing same, and solar cell
KR101590429B1 (en) Sintered complex oxide, method for producing sintered complex oxide, sputtering target and method for producing thin film
JP3746094B2 (en) Target and manufacturing method thereof
JP4560149B2 (en) Transparent conductive material, transparent conductive glass and transparent conductive film
KR20090045234A (en) Zinc oxide sinter, process for producing the same, and sputtering target
TWI525060B (en) An oxide sintered body, a sputtering target, a thin film, and an oxide sintered body
JPWO2009078329A1 (en) Zinc oxide sintered body and manufacturing method thereof, sputtering target, electrode
JP3864425B2 (en) Aluminum-doped zinc oxide sintered body, method for producing the same, and use thereof
TWI564250B (en) Oxide sintered body, sputtering target and oxide film
KR20090008299A (en) Zno deposition material and zno film formed of same
WO2011052375A1 (en) Indium oxide sintered body and indium oxide transparent conductive film
KR950006208B1 (en) Zinc oxide sintered body and preparation process thereof
JP5418105B2 (en) Composite oxide sintered body, oxide transparent conductive film, and manufacturing method thereof
KR20150038539A (en) Composite oxide sintered body and transparent conductive oxide film
JPH0570943A (en) High density sintered target material for forming electric conductive transparent thin film by sputtering
KR100891952B1 (en) Oxide-based target for transparent conductive film and method for manufacturing the same, and oxide-based transparent conductive film
JP3379743B2 (en) Transparent conductive oxide material
JPH0570942A (en) High density sintered target material for forming electric conductive transparent thin film by sputtering
JPH08277112A (en) Transparent conductive oxide material
JPH08277117A (en) Transparent and electroconductive oxide material
KR20150084834A (en) Oxide sinter, sputtering target using same, and oxide film
JP3379745B2 (en) Transparent conductive oxide material
JPH0316954A (en) Oxide sintered product and preparation and use thereof
CN107012435B (en) Sintered body, sputtering target comprising the sintered body, and thin film formed using the sputtering target
JP5018552B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby