JPH08276435A - Manufacture of contact rubber - Google Patents

Manufacture of contact rubber

Info

Publication number
JPH08276435A
JPH08276435A JP8222495A JP8222495A JPH08276435A JP H08276435 A JPH08276435 A JP H08276435A JP 8222495 A JP8222495 A JP 8222495A JP 8222495 A JP8222495 A JP 8222495A JP H08276435 A JPH08276435 A JP H08276435A
Authority
JP
Japan
Prior art keywords
conductive
rubber
contact
mold
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8222495A
Other languages
Japanese (ja)
Other versions
JP2999941B2 (en
Inventor
Yasuo Iwabuchi
康男 岩渕
Naoto Komine
尚登 小嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP8222495A priority Critical patent/JP2999941B2/en
Publication of JPH08276435A publication Critical patent/JPH08276435A/en
Application granted granted Critical
Publication of JP2999941B2 publication Critical patent/JP2999941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Manufacture Of Switches (AREA)

Abstract

PURPOSE: To mount conductive chips one by one at a dug part by so charging the chips in a mold that a conductive layer side is brought into contact with the mold surface, charging unvulcanized rubber thereon, and integrally molding it. CONSTITUTION: A sheetlike laminate in which an insulating rubber layer having a non-sticky treated surface is laminated on a conductive layer at the surface in which non-sticky treatment is not executed is punched in a predetermined shape to obtain a conductive chip. After the chip is so charged in a mold that the conductive layer is brought into contact with the mold surface, unvulcanized rubber is charged on the chip of the mold, and integrally molded to manufacture a contact rubber. More particularly, the conductive chip 29 which is non-sticky treated is so charged that the conductive layer side is brought into contact with the contact forming dug part 30 surface of the mold 31 for manufacturing the contact rubber. Then, after unvulcanized silicone rubber 34 is charged in an air gap 33 between the mold 31 and a key top forming mold 32, it is thermally cured to manufacture the contact rubber 35.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電話、計算機、AV機器等
の電子機器の入力用の接点ゴムとして用いられる接点ゴ
ムの製造方法に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a contact rubber used as a contact rubber for input of an electronic device such as a telephone, a calculator and an AV device.

【0002】[0002]

【従来の技術】上記電子機器の入力装置として用いられ
ている接点ゴムaの一般的な形態は、図6に示すよう
に、上方に膨出するキートップ部bと、薄肉部cを介し
て底面周側方に延出するベース部dと、キートップ部b
の底面中央部より下方に突出し、先端に導電接点部eを
有する可動凸部fとからなっている。操作者がキートッ
プ部bの天面を押圧すると、薄肉部cが屈従してキート
ップ部bを下方に押し下げ、可動凸部f先端の導電接点
部eが、(図示しない)回路基板上に設けられた固定接
点部と接触し、回路が閉じる。操作者がキートップ部b
の天面より指を離すと、薄肉部cが旧に復してキートッ
プ部bを押し上げ、導電接点部eが固定接点部と離れる
ため、回路が開く。
2. Description of the Related Art As shown in FIG. 6, a general form of a contact rubber a used as an input device of the above electronic equipment is a key top portion b which bulges upward and a thin portion c. Base part d extending laterally around the bottom surface and key top part b
And a movable convex portion f having a conductive contact portion e at its tip. When the operator presses the top surface of the key top portion b, the thin portion c flexes and pushes down the key top portion b, and the conductive contact portion e at the tip of the movable convex portion f is placed on the circuit board (not shown). The circuit is closed by contact with the fixed contact portion provided. The operator touches the key top b
When the finger is released from the top surface of the, the thin portion c returns to the old state and pushes up the key top portion b, and the conductive contact portion e separates from the fixed contact portion, so that the circuit opens.

【0003】一般に接点ゴム本体(接点ゴムaより導電
接点部eのみを除いたゴム状部分全体)は天然ゴムや各
種合成ゴムあるいは熱可塑性エラストマー等に代表され
る絶縁性のゴム状弾性体を原料とし、圧縮成形、射出成
形等の様々な方法で加工することにより製造される。ゴ
ム状弾性体の内では、電気絶縁性、耐寒性、耐熱性、精
密成形性、反ぱつ弾性等、接点ゴムに要求される好まし
い特性を有するシリコーンゴムの使用されることが多
い。接点ゴム本体への導電接点部eの形成方法には、
あらかじめ接点ゴム本体のみを製造しておき、導電接点
部eの形成部分に導電性インキを、スクリーン印刷法な
どの方法により配し、これを硬化させて設ける方法と、
金属板にゴム層を積層した積層体を所定形状に打ち抜
いて導電チップを製造した後、接点ゴム本体の形状に対
応した成形部を有する金型の導電チップ形成部分に、導
電チップを金属面が金型面に接するように装着し、シリ
コーンゴムを金型中に充填して、接点ゴム本体と導電チ
ップとを加熱硬化一体化させる方法(特開昭63-96822号
公報参照)とがある。しかし、上記の導電性インキの
印刷による方法では、導電接点部eを厚くできないこと
から、長期間の使用や低抵抗値対応の用途に適さない。
これに比べての導電チップを用いて接点部を形成する
方法は、導電接点部eを任意の厚さにできるほか片側が
金属面のため、低抵抗値対応の用途に適している。
Generally, the contact rubber main body (entire rubber-like portion excluding the conductive contact portion e from the contact rubber a) is made of an insulating rubber-like elastic material typified by natural rubber, various synthetic rubbers or thermoplastic elastomers. And processed by various methods such as compression molding and injection molding. Among the rubber-like elastic bodies, silicone rubber is often used, which has preferable properties required for contact rubbers, such as electric insulation, cold resistance, heat resistance, precision moldability, and rebound elasticity. The method of forming the conductive contact portion e on the contact rubber body is as follows.
A method in which only the contact rubber main body is manufactured in advance, conductive ink is arranged on a portion where the conductive contact portion e is formed by a method such as a screen printing method, and the cured ink is provided.
After manufacturing a conductive chip by punching a laminated body in which a rubber layer is laminated on a metal plate into a predetermined shape, the metal chip is attached to the conductive chip forming part of the mold having a molding part corresponding to the shape of the contact rubber body. There is a method (see JP-A-63-96822) in which the contact rubber main body and the conductive chip are integrally heat-cured and integrated by mounting them in contact with the mold surface and filling the mold with silicone rubber. However, the above-mentioned method of printing the conductive ink is not suitable for long-term use or low resistance value application because the conductive contact portion e cannot be thickened.
In contrast to this, the method of forming a contact portion using a conductive tip is suitable for low resistance value applications because the conductive contact portion e can have an arbitrary thickness and one side has a metal surface.

【0004】[0004]

【発明が解決しようとする課題】従来の接点ゴムの製造
に用いられる導電チップの部分拡大縦断面図を図7に示
す。この導電チップgは洋白hにニッケルメッキ層iと
金メッキ層jとを順次設けてなる導電層kと絶縁ゴム層
mとから構成されていて、導電層k側表面も絶縁ゴム層
m側表面も共にほぼ平滑になっている。この導電チップ
gを同様の構成からなるシート状積層体nから得る過程
を図8(a)〜(f)により工程順に示す。シート状積
層体nからの導電チップgの打抜きには、導電チップg
とほぼ同じ外形、大きさの筒状の刃pを備えた打抜き治
具または装置が用いられる。ところが、この打抜き加工
を連続して行うと、図8(c)、(d)に示すように、
先に打抜いた導電チップgの絶縁ゴム層m側表面に、続
いて打抜いた導電チップgの導電層k側表面が貼着し、
次々と図8(e)に示す状態に積重していって、図8
(f)に示すようなブロック体qを形成する。
FIG. 7 shows a partially enlarged vertical sectional view of a conductive chip used for manufacturing a conventional contact rubber. This conductive chip g is composed of a conductive layer k formed by sequentially providing a nickel plating layer i and a gold plating layer j on nickel silver h and an insulating rubber layer m. The surface of the conductive layer k side and the surface of the insulating rubber layer m side are also formed. Both are almost smooth. A process of obtaining the conductive chip g from the sheet-shaped laminated body n having the same structure is shown in the order of steps with reference to FIGS. For punching the conductive tip g from the sheet-shaped laminate n, the conductive tip g
A punching jig or device provided with a cylindrical blade p having substantially the same outer shape and size as the above is used. However, when this punching process is continuously performed, as shown in FIGS. 8 (c) and 8 (d),
The surface of the punched conductive chip g on the side of the insulating rubber layer m is attached to the surface of the punched conductive chip g on the side of the conductive layer k,
8A and 8B are piled up one after another in the state shown in FIG.
A block body q as shown in (f) is formed.

【0005】このため、この導電チップgを成形金型の
接点部形成用掘り込み部に装着して接点ゴムaを製造す
る際に、本来ならば1個の導電チップgだけが上記掘り
込み部rに装着されるところを、図9(a)、(b)に
示すように、複数の導電チップgの積重されたブロック
体qが装着されることになり、これが未加硫ゴムと一体
化する際に、その一部が樹脂の流れで分離して、本来は
絶縁性でなければならない部分を導電性にしてしまった
り、接点ゴム形成後に、ブロック体qを形成する導電チ
ップgの一部が脱落し、設計通りのストロークの接点ゴ
ムaが得られなくなる。そこで、このような不利を発生
させないために、上記掘り込み部rに導電チップgを装
填する際に、ブロック体qを分解する作業を行うと、金
型温度が下がって半加硫状態の接点ゴムができたり、加
工時間が長くなったりした。したがって、本発明の目的
は、導電チップを成形金型の接点部形成用掘り込み部に
装着して接点ゴムを製造する際に、導電チップが常に1
個づつ上記掘り込み部に装着できるようにした接点ゴム
の製造方法を提供するにある。
Therefore, when the conductive tip g is mounted on the digging portion for forming the contact portion of the molding die to manufacture the contact rubber a, only one conductive tip g is originally the digging portion. As shown in FIGS. 9 (a) and 9 (b), a block body q in which a plurality of conductive chips g are stacked is attached to the place where it is attached to r, which is integrated with the unvulcanized rubber. When it is turned into a resin, a part of it is separated by the flow of the resin to make a part that should originally be insulative into a conductive state. The part falls off, and the contact rubber a having the designed stroke cannot be obtained. Therefore, in order to prevent such a disadvantage, if the work of disassembling the block body q is carried out when the conductive tip g is loaded in the dug portion r, the mold temperature is lowered and the contact in the semi-vulcanized state is brought about. Rubber was formed and the processing time was long. Therefore, it is an object of the present invention to ensure that the conductive chip is always set to 1 when the conductive chip is attached to the contact portion forming dug portion of the molding die to manufacture the contact rubber.
It is another object of the present invention to provide a method of manufacturing contact rubbers that can be individually attached to the dug portion.

【0006】[0006]

【課題を解決するための手段】本発明による接点ゴムの
製造方法は、表面に非粘着処理の施された絶縁ゴム層が
表面に非粘着処理の施されていない面で導電層に積層さ
れているシート状積層体を、所定形状に打抜いて導電チ
ップとし、この導電チップをその導電層が金型面に接す
るように成形金型に装入し、未加硫ゴムを成形金型の導
電チップ上に充填し、一体成形することを特徴とするも
のである。また、本発明による製造方法では、絶縁ゴム
層がシリコーンゴムからなり、導電層が、カーボンブラ
ックを30〜75重量%含むシリコーンゴムか、洋白にニッ
ケルメッキおよび金メッキを順次施したものか、のいず
れかからなるものであること、絶縁ゴム層は、その表面
に 184.9nmと 253.7nmの波長の紫外線が積算光量 200〜
20,000mj/cm2の範囲で、放射照度 150mW/cm2未満で照射
するか、その表面に複数の凸を設けるかのいずれか、ま
たは両者を兼ねることにより、非粘着処理を施すことを
好適とする。
According to the method for producing a contact rubber according to the present invention, an insulating rubber layer having a non-adhesive surface is laminated on a conductive layer on a surface having no non-adhesive surface. The sheet-like laminated body is punched into a predetermined shape to form a conductive chip.The conductive chip is placed in a molding die so that the conductive layer contacts the mold surface, and unvulcanized rubber is electrically conductive to the molding die. It is characterized by being filled on a chip and integrally molded. Further, in the manufacturing method according to the present invention, the insulating rubber layer is made of silicone rubber, and the conductive layer is a silicone rubber containing 30 to 75% by weight of carbon black, or nickel silver and gold plating are sequentially applied to nickel silver. The surface of the insulating rubber layer is made of either of the ultraviolet rays with wavelengths of 184.9 nm and 253.7 nm.
In the range of 20,000mj / cm 2, or irradiated below irradiance 150 mW / cm 2, either providing a plurality of projections on its surface, or by serving as a both a suitably be subjected to non-adhesive treatment To do.

【0007】以下、本発明を詳細に説明する。本発明に
よる接点ゴムの製造方法において、最初に準備するシー
ト状積層体は表面に非粘着処理の施された絶縁ゴム層が
導電層に積層されているものである。このシート状積層
体は、絶縁ゴム層がシリコーンゴムからなり、導電層
が、カーボンブラックを30〜75重量%含むシリコーンゴ
ムか、洋白にニッケルメッキおよび金メッキを順次施し
たものか、のいずれかからなるものであることが好まし
い。導電層はまた、銀粉やニッケル粉をシリコーンゴム
内に配合したものでもよい。シリコーンゴムへのカーボ
ンブラックの配合量は、導通機能を満たすために30重量
%を超えることが望ましく、また75重量%を超えると均
一にシリコーンゴム中に配合することが難しくなるた
め、30〜75重量%とするのがよい。シート状積層体の全
体の厚みは、得ようとする導電チップの厚みと等しけれ
ばよいことから、 0.3〜2mmの範囲であればよい。絶縁
ゴム層と導電層の厚さの比率には特に規定はないが、導
電層の厚みが厚いほど抵抗値が低く設定できるため、そ
の点に留意すればよい。
Hereinafter, the present invention will be described in detail. In the method for producing a contact rubber according to the present invention, the first sheet-like laminate to be prepared is one in which an insulating rubber layer whose surface is subjected to a non-adhesive treatment is laminated on a conductive layer. In this sheet-shaped laminate, the insulating rubber layer is made of silicone rubber, and the conductive layer is either a silicone rubber containing 30 to 75% by weight of carbon black, or nickel silver and gold plated sequentially on nickel silver. It is preferable that The conductive layer may also be a mixture of silver powder and nickel powder in silicone rubber. The blending amount of carbon black in the silicone rubber is preferably more than 30% by weight in order to satisfy the conduction function, and when it exceeds 75% by weight, it becomes difficult to uniformly blend in the silicone rubber. It is good to set it as the weight%. Since the total thickness of the sheet-shaped laminate may be equal to the thickness of the conductive chip to be obtained, it may be in the range of 0.3 to 2 mm. The ratio of the thickness of the insulating rubber layer to the thickness of the conductive layer is not particularly specified, but the thicker the conductive layer is, the lower the resistance value can be set.

【0008】絶縁ゴム層の表面における非粘着処理は、
シート状積層体より導電チップを続けて打抜く際に、導
電チップの絶縁ゴム層面に、他の導電チップの導電層面
が接触して、両者が粘着一体化するのを防ぐためのもの
で、その時期は絶縁ゴム層と導電層との積層前、積層後
のいずれでも差し支えない。非粘着処理は、特には絶縁
性ゴム層がシリコーンゴムである場合に、 184.9nmと 2
53.7nmの波長の紫外線を、積算光量 200〜20,000mj/cm2
の範囲で、放射照度150mW/cm2未満で照射するか、その
表面に複数の凸を設けるかのいずれか、または両者を兼
ねることで行われる。非粘着処理方法を選択する場合の
留意点としては、導電層の導電機能や耐久性を失うよう
な処理を避けることである。一般に紫外線とは、広義に
は 100から 380nm(狭義には 200から 280nm)の範囲の
波長の光をいい、この照射により油分などの有機物質が
付着したガラス板や金属、セラミック板を洗浄できるこ
とはよく知られているが、本発明者らは上記の条件の紫
外線を、好ましくは酸素ガスの存在下で照射すると、シ
ート状積層体の絶縁ゴム層表面を劣化させることなく非
粘着性に改質できることを見出した。
The non-stick treatment on the surface of the insulating rubber layer is
When continuously punching the conductive chips from the sheet-shaped laminated body, the insulating rubber layer surface of the conductive chips is in contact with the conductive layer surface of another conductive chip to prevent the two from sticking together. The timing may be before or after the insulating rubber layer and the conductive layer are laminated. Non-adhesive treatment can be performed at 184.9 nm and 2 nm, especially when the insulating rubber layer is silicone rubber.
Ultraviolet light with a wavelength of 53.7 nm is integrated light intensity 200-20,000 mj / cm 2
In the range of 1, the irradiation is performed with an irradiance of less than 150 mW / cm 2 , the surface is provided with a plurality of protrusions, or both are performed. When selecting a non-adhesive treatment method, it is important to avoid a treatment that loses the conductive function or durability of the conductive layer. Generally speaking, ultraviolet rays are light with a wavelength in the range of 100 to 380 nm in a broad sense (200 to 280 nm in a narrow sense), and it is not possible to wash glass plates, metals, and ceramic plates with organic substances such as oil attached by this irradiation. As is well known, the inventors of the present invention, when irradiated with ultraviolet rays under the above conditions, preferably in the presence of oxygen gas, modify the insulating rubber layer surface of the sheet-shaped laminate to be non-adhesive without deterioration. I found that I could do it.

【0009】184.9nmと 253.7nmの波長の紫外線を単独
で時間をずらして照射しもよいが、作業環境と生産性を
考慮すると、同時に2種類の波長の紫外線を照射するの
が好ましい。これは波長 184.9nmの紫外線の吸収によ
り、空気中または酸素(O2 )リッチな雰囲気または酸
素(O2 )置換された雰囲気で、酸素(O2 )が次のよ
うに反応し、オゾン(O3 )を発生する。 O2 →O+
O、 O+O2 →O3これに対し、波長 253.7nmの紫外
線はその吸収によりオゾン(O3 )が分解する。一般に
オゾン(O3 )は極めて強力な酸化力を有し、人体に大
量に取り込まれると健康を害することもある。それ故、
空気中のオゾン濃度を必要以上に高めないために、波長
253.7nmの紫外線の照射は、波長 184.9nmの紫外線照射
とほぼ同時に、または波長 184.9nmの紫外線照射の後に
行うことが重要である。ここで発生するオゾン(O3
の強力な酸化力が積層体の絶縁性ゴム層表面を改質する
と推定される。つまり、物理的には表面が粗くなって静
摩擦係数が小さくなり、化学的には炭素原子(C)が減
少して酸素原子(O)が増加する。なお、市販の低圧水
銀灯の場合は、波長 253.7nmの紫外線が90%、波長 18
4.9nmの紫外線が数%放射されるので、これを用いても
よい。
The ultraviolet rays having the wavelengths of 184.9 nm and 253.7 nm may be radiated independently at different times, but considering the working environment and productivity, it is preferable to radiate the ultraviolet rays of two kinds of wavelengths at the same time. This is the absorption of ultraviolet rays having a wavelength of 184.9 nm, in air or oxygen (O 2) rich atmosphere or oxygen (O 2) is replaced atmosphere, oxygen (O 2) reacts as follows, ozone (O 3 ) to generate. O 2 → O +
O, O + O 2 → O 3 On the other hand, ozone (O 3 ) is decomposed by absorption of ultraviolet rays having a wavelength of 253.7 nm. In general, ozone (O 3 ) has an extremely strong oxidizing power, and if it is taken in a large amount by the human body, it may impair health. Therefore,
In order not to raise the ozone concentration in the air more than necessary,
It is important that the irradiation with 253.7 nm ultraviolet light is performed almost simultaneously with the irradiation with the 184.9 nm wavelength ultraviolet light, or after the irradiation with the 184.9 nm wavelength ultraviolet light. Ozone generated here (O 3 )
It is presumed that the strong oxidative power of is modified on the surface of the insulating rubber layer of the laminate. That is, the surface becomes physically rough and the coefficient of static friction becomes small, and the number of carbon atoms (C) decreases and the oxygen atoms (O) increase chemically. In the case of a commercially available low-pressure mercury lamp, 90% of the 253.7 nm UV light is
It may be used because it emits a few% of 4.9 nm ultraviolet light.

【0010】異なる2種類の波長の紫外線は絶縁性ゴム
層の表面に対して積算光量 200〜20,000mj/cm2の範囲で
照射するのが好ましい。これが 200mj/cm2未満では処理
効果が充分でなく、20,000mj/cm2を超えるとシート状積
層体が劣化してしまう。また、積算光量が 200〜20,000
mj/cm2の範囲であっても、放射照度が 150mW/cm2未満で
ないと適正でない。言い換えると、短時間で表面改質を
しようとしても、紫外線発光ランプとシート状積層体の
絶縁ゴム層の表面との距離が極めて小さいと、放射照度
が大きすぎて絶縁性ゴム層表面が劣化してしまう。放射
照度の下限値は実用面での処理時間、装置の許容サイズ
を考慮すると、10mW/cm2以上とすることが好ましい。紫
外線照射はバッチ処理用の炉タイプのものであってもよ
いし、コンベア方式の炉であってもよいが、紫外線がシ
ート状積層体の一部のみに集中照射されないように、シ
ート状積層体自体または紫外線発光ランプが一定速度で
移動できるような仕組みを持つものが望ましい。
It is preferable to irradiate the surface of the insulating rubber layer with ultraviolet rays of two different wavelengths in an integrated light amount of 200 to 20,000 mj / cm 2 . If it is less than 200 mj / cm 2 , the treatment effect is not sufficient, and if it exceeds 20,000 mj / cm 2 , the sheet-shaped laminate is deteriorated. Also, the accumulated light intensity is 200 to 20,000.
Even within the range of mj / cm 2 , it is not appropriate unless the irradiance is less than 150 mW / cm 2 . In other words, even if surface modification is attempted in a short time, if the distance between the ultraviolet light emitting lamp and the surface of the insulating rubber layer of the sheet-shaped laminate is extremely small, the irradiance becomes too large and the surface of the insulating rubber layer deteriorates. Will end up. The lower limit of the irradiance is preferably 10 mW / cm 2 or more in consideration of the processing time in practical use and the allowable size of the device. The UV irradiation may be a furnace type for batch processing, or may be a conveyor type furnace, but the sheet-shaped laminate is provided so that ultraviolet rays are not concentratedly irradiated to only a part of the sheet-shaped laminate. It is desirable to have a mechanism that allows itself or the ultraviolet light emitting lamp to move at a constant speed.

【0011】このようにして得られたシート状積層体
は、次に所定形状に打抜いて導電チップとされるが、こ
の打抜き方法については特に制約はなく、従来通りの打
抜き装置、打抜き治具を用いればよい。その打抜き方向
については、導電層が金属メッキ層からなる場合に金属
メッキ面より打抜き刃が入るように打抜くと、絶縁性ゴ
ム層が打抜き後に広がるため、ここがいわばシールの役
割を果たし、接点部形成用掘り込み部と導電チップとの
間にすき間が生じないので、未加硫ゴムの流入を防止で
きる。得られる導電チップは一般的には円柱状のものを
主流とし、そのサイズは、径をφ2〜10mm、厚みを 0.3
〜2mmとするのが好ましい。図1(a)はこのようにし
て得られた導電チップ1の部分拡大縦断面図である。こ
の導電チップ1では導電層2として洋白3にニッケルメ
ッキ層4、金メッキ層5の順で積層したものを示してい
るが、この導電層2はカーボンブラック、銀などの導電
性粒子を混入させたものでもよい。また6は絶縁ゴム層
で、7はその紫外線照射面である。
The sheet-like laminated body thus obtained is then punched into a predetermined shape to form a conductive chip. The punching method is not particularly limited, and a conventional punching device and punching jig are used. Can be used. Regarding the punching direction, when the conductive layer consists of a metal plating layer, if punching is done so that the punching blade enters from the metal plating surface, the insulating rubber layer spreads after punching, so here it plays the role of a seal and the contact point. Since there is no gap between the dug portion for forming a portion and the conductive tip, the inflow of unvulcanized rubber can be prevented. The conductive chips that are obtained generally have a columnar shape, and their sizes are φ2-10 mm and thickness 0.3 mm.
It is preferable that the thickness is ˜2 mm. FIG. 1A is a partially enlarged vertical sectional view of the conductive chip 1 thus obtained. In this conductive chip 1, a conductive layer 2 in which nickel plating layer 4 and gold plating layer 5 are laminated in this order on nickel silver 3 is shown. This conductive layer 2 contains conductive particles such as carbon black and silver. It may be a thing. Further, 6 is an insulating rubber layer, and 7 is its ultraviolet irradiation surface.

【0012】導電チップの絶縁ゴム層の表面を非粘着性
とする他の方法は、絶縁ゴム層表面に複数の凸を設ける
ことである。図1(b)はこのようにして得られた導電
チップ11の部分拡大縦断面図で、絶縁ゴム層6の表面に
複数の凸8が設けられているほかは、図1(a)と同じ
構成である。凸のサイズと配置密度は、連続打抜き作業
の際に、先に打抜かれた導電チップの絶縁ゴム層面と、
続いて打抜かれた導電チップの導電層面とが、打抜きの
際の圧力で瞬間的に密着しても圧力開放状態では粘着し
ないように設定するのが望ましい。したがって、打抜き
圧力や導電層を構成する材質、作業場温度、作業場湿度
により、やや異なる。例えば、打抜き圧力が 100kg/c
m2、作業場温度が28℃、作業場湿度が60%RHの場合、絶
縁ゴム層がシリコーンゴムで導電層が金メッキ層からな
る導電チップに、高さ0.01〜1mmで直径が0.01〜 0.5mm
の円柱状の凸を、50〜 100個/cm2の配置密度で設けたと
ころ、効果が認められた。また、導電層表面がカーボン
ブラックを40重量%配合したシリコーンゴムの場合、高
さが0.05〜 1.5mmで直径が0.03〜0.8mmの円柱状の外形
を有する凸を、50〜 100個/cm2の配置密度で設けたとこ
ろ、導電チップ同士の粘着は見られなかった。
Another method of making the surface of the insulating rubber layer of the conductive chip non-adhesive is to provide a plurality of protrusions on the surface of the insulating rubber layer. FIG. 1B is a partially enlarged vertical sectional view of the conductive chip 11 thus obtained, which is the same as FIG. 1A except that a plurality of protrusions 8 are provided on the surface of the insulating rubber layer 6. It is a composition. Convex size and arrangement density are the same as the insulating rubber layer surface of the conductive chip that was previously punched during continuous punching work.
It is desirable to set such that the conductive layer surface of the subsequently punched conductive chip does not stick to the conductive layer surface even if it is momentarily brought into close contact with the punched pressure when the pressure is released. Therefore, it is slightly different depending on the punching pressure, the material forming the conductive layer, the work place temperature, and the work place humidity. For example, the punching pressure is 100 kg / c
m 2, workshop temperature 28 ° C., if workplace humidity of 60% RH, the conductive tip insulating rubber layer is made of gold-plated layer conductive layer of silicone rubber, diameter 0.01 to 0.5 mm in height 0.01~1mm
The effect was recognized when the cylindrical convexes of were provided at an arrangement density of 50 to 100 pieces / cm 2 . Further, when the conductive layer surface of the silicone rubber blended with carbon black 40 wt%, the convex diameter is 0.05 to 1.5 mm height having a cylindrical outer shape of 0.03~0.8mm, 50~ 100 pieces / cm 2 Adhesion between the conductive chips was not observed when they were provided at the arrangement density of.

【0013】導電チップの絶縁ゴム層の表面に凸を設け
る方法の一例を、図2(a)〜(c)により工程順に示
す。シート状積層体製造用金型21の絶縁ゴム層形成用金
型22面にあらかじめ凸に対応する形状の掘り込み23を設
けておき、導電部材装填用金型24面に導電部材25を装填
し[図2(a)]、次に未加硫の絶縁ゴム原料26を充填
し[図2(b)]、加熱硬化して一体化すると、シート
状積層体27が得られる[図2(c)]。掘り込み23の形
成は放電加工で行ってもよいし、均一に処理することに
留意すればブラスト加工等によってもよい。図3(a)
〜(f)は絶縁ゴム層表面に凸を設けたシート状積層体
27から、従来と同様の筒状の刃28を用いた連続打抜き作
業により、多数の導電チップ29を得る過程を工程順に示
した縦断面図である。本発明の方法では従来法と異な
り、導電チップが積重してブロック体を形成することは
ない。なお、絶縁ゴム層の表面に凸を設けたものに、さ
らに前述の条件で紫外線照射を併用することもできる。
An example of a method for forming a protrusion on the surface of the insulating rubber layer of the conductive chip is shown in the order of steps with reference to FIGS. A dugout 23 having a shape corresponding to a convex is previously provided on the surface of the insulating rubber layer forming die 22 of the sheet-shaped laminate manufacturing die 21, and the conductive member 25 is loaded on the conductive member loading die 24 surface. [Fig. 2 (a)], then unvulcanized insulating rubber raw material 26 is filled [Fig. 2 (b)], and the mixture is heated and cured to obtain a sheet-like laminate 27 [Fig. 2 (c)]. )]. The dug 23 may be formed by electric discharge machining, or may be formed by blasting or the like if it is uniformly treated. FIG. 3 (a)
~ (F) is a sheet-like laminate having a convex surface on the insulating rubber layer
FIG. 23 is a vertical cross-sectional view showing a process of obtaining a large number of conductive chips 29 from 27 by a continuous punching operation using a cylindrical blade 28 similar to the conventional one in the order of steps. Unlike the conventional method, the method of the present invention does not stack conductive chips to form a block body. The insulating rubber layer having a convex surface may be further irradiated with ultraviolet rays under the above-mentioned conditions.

【0014】非粘着処理を施した導電チップ29を、図4
(a)、(b)の斜視図に示すように、接点ゴム製造用
金型(図示せず)の接点部形成用掘り込み部30に装填す
ると、導電チップ29は確実に一つづつ、所定の場所に装
填できる。図5(a)〜(c)は、上記導電チップ29を
接点ゴム製造用金型に装入し、未加硫ゴムを成形金型の
導電チップ上に充填し、一体成形するまでの過程を、工
程順に縦断面図で示したものである。導電チップ29はそ
の導電層側が接点ゴム製造用金型31の接点部形成用掘り
込み部30面に接するように装入し[図5(a)]、次に
接点ゴム製造用金型31とキートップ部形成用金型32との
空隙33に未加硫のシリコーンゴム34を充填し[図5
(b)]、加熱硬化すると、本発明による接点ゴム35が
得られる[図5(c)]。
The conductive chip 29 which has been subjected to the non-adhesive treatment is shown in FIG.
As shown in the perspective views of (a) and (b), when the contact-portion-forming dug portion 30 of the contact rubber manufacturing die (not shown) is loaded, the conductive chips 29 are surely provided one by one in a predetermined manner. Can be loaded at any place. 5 (a) to 5 (c) show a process of charging the conductive tip 29 into a contact rubber manufacturing die, filling unvulcanized rubber onto the conductive tip of the molding die, and integrally molding. , Are shown in a vertical cross-sectional view in the order of steps. The conductive chip 29 is inserted so that its conductive layer side is in contact with the contact portion forming dug portion 30 surface of the contact rubber manufacturing die 31 [FIG. 5 (a)], and then the contact rubber manufacturing die 31 is formed. An unvulcanized silicone rubber 34 is filled in a space 33 between the key top portion forming die 32 and the die 32 [Fig.
(B)], When cured by heating, the contact rubber 35 according to the present invention is obtained [FIG. 5 (c)].

【0015】[0015]

【作用】本発明の接点ゴムは導電チップの絶縁ゴム層表
面に非粘着処理が施されているため、連続打抜き加工を
しても、先に打抜いた導電チップと次に打抜いた導電チ
ップとが粘着することがない。
In the contact rubber of the present invention, the surface of the insulating rubber layer of the conductive chip is subjected to a non-adhesive treatment. Therefore, even if continuous punching is performed, the conductive chip first punched and the conductive chip subsequently punched And do not stick.

【0016】[0016]

【実施例】【Example】

実施例1 シート状積層体形成用金型の絶縁ゴム層形成側金型面に
ブラスト加工により、深さ0.05mm、直径 0.5mmの掘り込
みを形成した。このシート状積層体形成用金型を 175℃
に加熱しておき、洋白…JIS 2級(50μm)にニッケル
メッキ層(0.5 μm)を設け、さらに、そのニッケルメ
ッキ層の上に金メッキ層(10μm)を設けた導電部材
を、シート状積層体形成用金型の導電層形成用掘り込み
部に装填し、シリコーンゴムコンパウンド KE-941U(信
越化学工業社製、商品名) 100重量部に架橋剤 C-8(同
前)2重量部を配合してなる未加硫シリコーンゴム原料
を前記導電部材上に載置し、金型を閉じて加熱加圧し、
導電層と絶縁ゴム層とからなる厚さ0.55mmのシート状積
層体を得た。このシート状積層体を、その金メッキ層表
面から打抜き治具により打抜き、φ3.8mmの導電チップ
を得た。接点ゴム形成用金型をあらかじめ 175℃に加熱
しておき、金型の接点部形成用掘り込み部に、導電チッ
プを金メッキ面が金型に接するように装填し、シリコー
ンゴムコンパウンド KE-951U(同前)100 重量部に架橋
剤 C-8(同前)2重量部を配合してなる未加硫シリコー
ンゴム原料を、接点ゴム本体部形成用掘り込み部に充填
し、金型を閉じて加熱硬化し(硬化時間:3分)、導電
性接点部を有する接点ゴムを得た。この方法で 500ショ
ットの成形を行ったが、導電チップ同士が粘着している
ことがなかったため、導電性接点部形成に係る不具合は
生じなかった。なお、 500ショットの総合成形時間は
2,500分であった。
Example 1 A dent having a depth of 0.05 mm and a diameter of 0.5 mm was formed by blasting on the surface of a mold for forming an insulating rubber layer of a mold for forming a sheet-shaped laminate. This sheet-shaped laminate forming die is heated to 175 ° C.
After heating to nickel, a nickel-plated layer (0.5 μm) is provided on nickel silver (JIS 2) (50 μm), and a conductive member having a gold-plated layer (10 μm) on the nickel-plated layer is laminated in sheet form. It is loaded in the dug portion for forming the conductive layer of the body forming mold, and 100 parts by weight of silicone rubber compound KE-941U (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) and 2 parts by weight of the cross-linking agent C-8 (same as above). An unvulcanized silicone rubber raw material prepared is placed on the conductive member, the mold is closed and heated and pressed,
A sheet-like laminate having a thickness of 0.55 mm and including a conductive layer and an insulating rubber layer was obtained. This sheet-shaped laminate was punched from the surface of the gold-plated layer with a punching jig to obtain a conductive chip of φ3.8 mm. The contact rubber forming mold is heated to 175 ° C in advance, and the conductive tip is loaded in the contact part forming dug portion so that the gold-plated surface is in contact with the mold, and the silicone rubber compound KE-951U ( (Same as above) 100 parts by weight of cross-linking agent C-8 (Same as above) and 2 parts by weight of unvulcanized silicone rubber are filled in the dug portion for forming the contact rubber body, and the mold is closed. It was cured by heating (curing time: 3 minutes) to obtain a contact rubber having a conductive contact portion. Molding was carried out for 500 shots by this method, but since the conductive chips were not adhered to each other, no problem related to the formation of the conductive contact portion occurred. The total molding time for 500 shots is
It was 2,500 minutes.

【0017】比較例1 絶縁ゴム層形成部が平滑面であるシート状積層体形成用
金型を 175℃に加熱しておき、実施例1で用いた導電部
材とシリコーンゴム原料とを加熱硬化してシート状積層
体とした。このシート状積層体を実施例1と同様の方法
で打抜き加工し、導電チップを得た。次に、実施例1の
接点ゴム形成用金型を用い、実施例1と同様の作業を試
みたところ、導電チップ同士が2〜7個粘着したブロッ
ク体が多数生じた。これを手作業で可能な限り分離し、
所定の接点部形成用掘り込み部に装填し、未加硫ゴムと
一体成形を行った。この方法で 500ショット成形作業を
行ったが、良品率は70%で、不良品の内、10%は所定の
部位以外に導電部が形成されものであり、12%は接点ゴ
ムに導電チップが複数個重なって設けられ、その一部が
金型から離型後に分離してストローク不良となったもの
であった。また、残りの8%は接点ゴムの一部が未加硫
であったり発泡を生じたりしたものであった。 500ショ
ットの総成形時間は 3、540分であった。
Comparative Example 1 A sheet-shaped laminate forming die having an insulating rubber layer forming portion having a smooth surface was heated to 175 ° C., and the conductive member and the silicone rubber raw material used in Example 1 were heat-cured. To obtain a sheet-shaped laminate. This sheet-shaped laminate was punched by the same method as in Example 1 to obtain a conductive chip. Next, when the same work as in Example 1 was tried using the contact rubber forming mold of Example 1, a large number of block bodies in which 2 to 7 conductive chips were adhered to each other were produced. Manually separate this as much as possible,
It was loaded in a predetermined dug portion for forming a contact portion and integrally molded with unvulcanized rubber. We performed 500 shots molding work by this method, and the good product rate was 70%. Of the defective products, 10% had conductive parts other than the specified parts, and 12% had conductive chips on the contact rubber. Multiple strokes were provided, and some of them were separated from the mold after being released from the mold, resulting in a stroke failure. The remaining 8% was obtained by unvulcanizing or foaming a part of the contact rubber. The total molding time for 500 shots was 3,540 minutes.

【0018】実施例2、比較例2、比較例3および比較
例4 シリコーンゴムコンパウンドKE-9510U(同前) 100重量
部、シリコーン生ゴムKE-78VBS(同前) 100重量部、架
橋剤C-8 (同前)2重量部およびカーボンブラック40重
量部を配合してなる導電性シリコーンゴムの未加硫原料
を用いてロールキュア装置により厚さ0.25mmの導電シー
トを製造した。この導電シートを比較例1で用いた 175
℃に加熱されたシート状積層体成形用金型の導電部材装
填用掘り込み部に装填後、KE-9710U(同前) 100重量部
とC-82重量部とからなる未加硫のゴム原料を充填し、
加熱硬化してシート状積層体とした。これを複数個成形
した。次に、得られた複数個のシート状積層体につい
て、絶縁ゴム層表面に条件を種々変えて紫外線照射を行
なった。
Example 2, Comparative Example 2, Comparative Example 3 and Comparative Example 4 100 parts by weight of silicone rubber compound KE-9510U (same as above), 100 parts by weight of silicone raw rubber KE-78VBS (same as above), crosslinking agent C-8 (Same as above) A conductive sheet having a thickness of 0.25 mm was manufactured by a roll curing device using an unvulcanized raw material of a conductive silicone rubber containing 2 parts by weight and 40 parts by weight of carbon black. This conductive sheet was used in Comparative Example 1 175
Unvulcanized rubber raw material consisting of 100 parts by weight of KE-9710U (same as above) and C-82 parts by weight after being loaded in the digging part for loading the conductive member of the sheet-shaped laminate molding die heated to ℃ Fill the
It was heat-cured to obtain a sheet-shaped laminate. A plurality of these were molded. Next, the obtained plurality of sheet-shaped laminates were irradiated with ultraviolet rays on the surface of the insulating rubber layer under various conditions.

【0019】これらシート状積層体を実施例1および比
較例1の方法と同じ条件で連続打抜きし、それぞれ絶縁
ゴム層の表面状態が異なる導電チップを得た。得られた
各導電チップを用いて、実施例1および比較例1と同じ
接点ゴム形成用金型で、同じ未加硫ゴム原料、同じ成形
条件にて、各500 ショットづつ成形したところ、積算光
量が 200〜20,000mj/cm2の範囲で、放射照度 150mW/cm2
未満で照射したシート状積層体を用いて導電接点部を設
けた接点ゴムは、良品率、生産性共に良好であったのに
対し、紫外線照射処理を施さなかったり、施しても積算
光量が 200mj/cm2未満であったシート状積層体を用いた
場合は、導電チップがブロック体を形成し易く、良品
率、生産性共に低かった。また、紫外線照射処理を施し
ても積算光量が20,000mj/cm2を超えたシート状積層体で
は、それ自体が劣化していたため、これを用いた接点ゴ
ムは製造できなかった。
These sheet-like laminates were continuously punched out under the same conditions as in the method of Example 1 and Comparative Example 1 to obtain conductive chips having different insulating rubber layer surface states. Each of the obtained conductive chips was molded with the same contact rubber forming mold as in Example 1 and Comparative Example 1 under the same raw material of unvulcanized rubber and under the same molding condition for each 500 shots. in the range but of 200~20,000mj / cm 2, irradiance 150mW / cm 2
Although the contact rubber provided with the conductive contact part using the sheet-like laminate irradiated with less than 2% had good yield and good productivity, the ultraviolet irradiation treatment was not applied or the integrated light amount was 200 mj even if it was applied. In the case of using the sheet-shaped laminate having a value of less than / cm 2 , the conductive chips were likely to form a block, and the yield rate and productivity were low. Further, even if the ultraviolet irradiation treatment was performed, the sheet-like laminate having an integrated light amount of more than 20,000 mj / cm 2 was deteriorated, so that a contact rubber using the same could not be manufactured.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】本発明によれば低抵抗の導電性接点部を
有する接点ゴムを高い良品率で作業性よく製造できる。
According to the present invention, a contact rubber having a low-resistance conductive contact portion can be manufactured with a high yield rate and good workability.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)、(b)はいずれも本発明の接点ゴムの
製造方法で用いられる導電チップの一例についての部分
拡大縦断面図である。
1A and 1B are partially enlarged vertical sectional views of an example of a conductive chip used in a method for producing a contact rubber according to the present invention.

【図2】(a)〜(c)はいずれも本発明で用いられる
シート状積層体の製造方法を工程順に示した縦断面図で
ある。
2A to 2C are vertical cross-sectional views showing a method of manufacturing a sheet-shaped laminate used in the present invention in the order of steps.

【図3】(a)〜(f)はそれぞれ本発明で用いられる
導電チップについて、同様の構成のシート状積層体から
得る過程の一例を工程順に示した縦断面図である。
3 (a) to 3 (f) are vertical cross-sectional views showing, in the order of steps, an example of a process for obtaining a conductive chip used in the present invention from a sheet-shaped laminate having the same structure.

【図4】(a)および(b)はそれぞれ本発明で用いら
れる導電チップの、接点ゴム形成用掘り込み部への装填
前後の状態を示す斜視図である。
4 (a) and 4 (b) are perspective views showing states of a conductive chip used in the present invention before and after loading into a contact rubber forming dug portion, respectively.

【図5】(a)〜(c)はそれぞれ本発明で用いられる
導電チップと接点ゴム本体との一体化作業を工程順に示
す縦断面図である。
5 (a) to 5 (c) are vertical cross-sectional views showing, in the order of steps, the work of integrating the conductive chip and the contact rubber body used in the present invention.

【図6】従来の接点ゴムの縦断面図である。FIG. 6 is a vertical sectional view of a conventional contact rubber.

【図7】従来の接点ゴムの製造に用いられる導電チップ
の部分拡大縦断面図である。
FIG. 7 is a partially enlarged vertical cross-sectional view of a conductive chip used for manufacturing a conventional contact rubber.

【図8】(a)〜(f)はそれぞれ従来法で用いられる
導電チップについて、同様の構成のシート状積層体から
得る過程を工程順に示した縦断面図である。
8A to 8F are vertical cross-sectional views showing, in the order of steps, processes of obtaining a conductive chip used in a conventional method from a sheet-shaped laminate having the same structure.

【図9】(a)および(b)はそれぞれ従来の導電チッ
プの、接点ゴム形成用掘り込み部への装填前後の状態を
示す斜視図である。
9 (a) and 9 (b) are perspective views showing states of a conventional conductive chip before and after being loaded in a contact rubber forming dug portion, respectively.

【符号の説明】[Explanation of symbols]

1、11‥導電チップ、 2‥導電層、
3‥洋白、 4‥ニッケルメッ
キ層、5‥金メッキ層、 6‥絶縁ゴ
ム層、7‥紫外線照射面、 8‥凸、21
‥シート状積層体製造用金型、 22‥絶縁ゴム層形成
用金型、23‥掘り込み、 24‥導電
部材装填用金型、25‥導電部材、
26‥絶縁ゴム原料、27‥シート状積層体、
28‥筒状の刃、29‥導電チップ、
30‥接点部形成用掘り込み部、31‥接点ゴム製造用金
型、 32‥キートップ部形成用金型、33‥空
隙、 34‥未加硫のシリコーン
ゴム、35‥接点ゴム。
1, 11 ... Conductive chip, 2 ... Conductive layer,
3 ... nickel silver, 4 ... nickel plated layer, 5 ... gold plated layer, 6 ... insulating rubber layer, 7 ... ultraviolet irradiation surface, 8 ... convex, 21
... Mold for sheet-like laminate production, 22 ... Mold for forming insulating rubber layer, 23 ... Digging, 24 ... Mold for loading conductive member, 25 ... Conductive member,
26: Insulating rubber material, 27: Sheet-like laminate,
28: Cylindrical blade, 29: Conductive tip,
30: dug portion for forming contact portion, 31: die for manufacturing contact rubber, 32: die for forming key top portion, 33: void, 34: unvulcanized silicone rubber, 35: contact rubber.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】表面に非粘着処理の施された絶縁ゴム層が
表面に非粘着処理の施されていない面で導電層に積層さ
れているシート状積層体を、所定形状に打抜いて導電チ
ップとし、この導電チップをその導電層側が金型面に接
するように成形金型に装入し、未加硫ゴムを成形金型の
導電チップ上に充填し、一体成形することを特徴とする
接点ゴムの製造方法。
1. A sheet-like laminated body, in which an insulating rubber layer having a non-adhesive treatment on the surface is laminated on a conductive layer on a surface not having the non-adhesive treatment on the surface, is punched into a predetermined shape to be electrically conductive. It is characterized in that it is made into a chip, the conductive chip is charged into a molding die so that the conductive layer side is in contact with the mold surface, unvulcanized rubber is filled on the conductive chip of the molding die, and integrally molded. Method of manufacturing contact rubber.
【請求項2】絶縁ゴム層がシリコーンゴムからなり、導
電層が、カーボンブラックを30〜75重量%含むシリコー
ンゴムか、洋白にニッケルメッキおよび金メッキを順次
施したものか、のいずれかからなる、請求項1記載の接
点ゴムの製造方法。
2. The insulating rubber layer is made of silicone rubber, and the conductive layer is made of either silicone rubber containing 30 to 75% by weight of carbon black or nickel-silver plated nickel and gold in sequence. A method for producing a contact rubber according to claim 1.
【請求項3】絶縁ゴム層は、その表面に、 184.9nmと 2
53.7nmの波長の紫外線が積算光量 200〜20,000mj/cm2
範囲で、放射照度 150mW/cm2未満で照射されるか、複数
の凸が設けられるかのいずれか、または両者を兼ねるこ
とにより、非粘着処理が施される、請求項1または2の
いずれかに記載の接点ゴムの製造方法。
3. The insulating rubber layer has 184.9 nm and 2
By irradiating ultraviolet rays with a wavelength of 53.7 nm with an integrated light intensity of 200 to 20,000 mj / cm 2 at an irradiance of less than 150 mW / cm 2 , or by providing multiple convexes, or by both. The method for producing a contact rubber according to claim 1, wherein a non-adhesive treatment is performed.
JP8222495A 1995-04-07 1995-04-07 Manufacturing method of contact rubber Expired - Fee Related JP2999941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8222495A JP2999941B2 (en) 1995-04-07 1995-04-07 Manufacturing method of contact rubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8222495A JP2999941B2 (en) 1995-04-07 1995-04-07 Manufacturing method of contact rubber

Publications (2)

Publication Number Publication Date
JPH08276435A true JPH08276435A (en) 1996-10-22
JP2999941B2 JP2999941B2 (en) 2000-01-17

Family

ID=13768445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8222495A Expired - Fee Related JP2999941B2 (en) 1995-04-07 1995-04-07 Manufacturing method of contact rubber

Country Status (1)

Country Link
JP (1) JP2999941B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0938111A2 (en) * 1998-02-20 1999-08-25 Polymatech Co., Ltd. Contact key switch and method for its manufacturing the same
CN102376484A (en) * 2011-07-18 2012-03-14 健雄职业技术学院 Membrane base point electrode and preparation method thereof
WO2018066490A1 (en) * 2016-10-07 2018-04-12 信越ポリマー株式会社 Contact member, contact member production method, and push-button switch member equipped with contact member
JP2018511686A (en) * 2015-04-16 2018-04-26 ダウ コーニング コーポレーションDow Corning Corporation Surface modification of silicone

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0938111A2 (en) * 1998-02-20 1999-08-25 Polymatech Co., Ltd. Contact key switch and method for its manufacturing the same
EP0938111A3 (en) * 1998-02-20 2000-04-12 Polymatech Co., Ltd. Contact key switch and method for its manufacturing the same
US6180900B1 (en) 1998-02-20 2001-01-30 Polymatech Co., Ltd. Contact key switch and method for its manufacturing the same
CN102376484A (en) * 2011-07-18 2012-03-14 健雄职业技术学院 Membrane base point electrode and preparation method thereof
JP2018511686A (en) * 2015-04-16 2018-04-26 ダウ コーニング コーポレーションDow Corning Corporation Surface modification of silicone
US10518468B2 (en) 2015-04-16 2019-12-31 Dow Silicones Corporation Surface modification of silicones
WO2018066490A1 (en) * 2016-10-07 2018-04-12 信越ポリマー株式会社 Contact member, contact member production method, and push-button switch member equipped with contact member
CN109791851A (en) * 2016-10-07 2019-05-21 信越聚合物株式会社 Contact component, contact component manufacturing method and have the push-button switch member of contact component
US10763052B2 (en) 2016-10-07 2020-09-01 Shin-Etsu Polymer Co., Ltd. Contact member, contact member production method, and push-button switch member equipped with contact member

Also Published As

Publication number Publication date
JP2999941B2 (en) 2000-01-17

Similar Documents

Publication Publication Date Title
TWI251320B (en) Thermal conductive composition, a heat-dissipating putty sheet and heat-dissipating structure using the same
DE50312017D1 (en) Composite material for producing electrical contacts and method for its production
TW200704288A (en) Electronic device substrate, electronic device, method of manufacturing electronic device, and electronic apparatus
KR101531647B1 (en) Method of manufacturing electrostatic chuck mechanism
TW200511904A (en) Material for the manufacturing of printed circuit boards
WO2007076014A3 (en) Thermal management circuit materials, method of manufacture thereof, and articles formed therefrom
KR101837762B1 (en) Manufacturing method of fuel cell separator
US20080254286A1 (en) Method of Evaluating Adhesion Property, Low-Adhesion Material, and Mold for Molding Resin
MY148627A (en) Method and apparatus for manufacturing glass substrate for storage medium, glass substrate for storage medium, and storage medium
ATE484060T1 (en) ELECTRICALLY CONDUCTIVE ELASTOMERS, METHOD FOR THE PRODUCTION THEREOF AND ARTICLES THEREOF
EP0938111B1 (en) Contact key switch and method for its manufacturing the same
JPH08276435A (en) Manufacture of contact rubber
CN1591842A (en) Circuit board and method of manufacturing the same
JP2004146381A (en) Oled (organic light emitting device) package and its manufacturing method
DE502004009653D1 (en) ELECTRICAL PLUG-IN CONTACTS AND A HALF TOOL FOR THEIR MANUFACTURE
EP0895486A1 (en) Grafted thermoplastic elastomer barrier layer
US20060121243A1 (en) Surface bonding method for PET film and silica gel buttons and a manufactured article of the same
WO2004114440A3 (en) Electrode, battery, and method of manufacturing the same
KR101049927B1 (en) Silicone coated plastic bonding sheet and method of making same
JP4089038B2 (en) Manufacturing method of gasket material
ATE432809T1 (en) OLED FILM AND METHOD FOR PRODUCING IT
JP6929989B1 (en) Laminating equipment
TW200605139A (en) Material transfer method and manufacturing method for substrate for plasma display
CN111607232A (en) Composite part with IP sealing function and EMI function and forming method thereof
RU2000133335A (en) STAMP FORM, METHOD FOR MAKING A STAMP FORM, AND METHOD FOR PRODUCING A PRODUCT USING A STAMP FORM

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 12

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141105

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees