JPH08276283A - Manufacture of titanium clad steel sheet - Google Patents

Manufacture of titanium clad steel sheet

Info

Publication number
JPH08276283A
JPH08276283A JP8001495A JP8001495A JPH08276283A JP H08276283 A JPH08276283 A JP H08276283A JP 8001495 A JP8001495 A JP 8001495A JP 8001495 A JP8001495 A JP 8001495A JP H08276283 A JPH08276283 A JP H08276283A
Authority
JP
Japan
Prior art keywords
rolling
titanium
slab
clad steel
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8001495A
Other languages
Japanese (ja)
Inventor
Masanori Taiyama
正則 泰山
Kazuhiro Ogawa
和博 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8001495A priority Critical patent/JPH08276283A/en
Publication of JPH08276283A publication Critical patent/JPH08276283A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE: To manufacture a titanium clad steel sheet having a high joining strength at a low cost. CONSTITUTION: In the manufacture of a titanium clad steel sheet by in the hot rolling, an assembling slab for rolling is heated to 900-1,100 deg.C, then subjected to hot rolling by a total draft of >=10 at <=750 deg.C, or subjected to hot rolling at >=850 deg.C and <750 deg.C, then immediately cooled at a cooling rate of >=2 deg.C/sec. The cooling of >=2 deg.C/sec may be replaced with being left for cooling assuming the finish thickness of the slab is <=20mm. The mass production of a titanium clad steel sheet can be achieved by using the existing hot rolling equipment for steel. The total draft is large to drastically improve the yield and joining strength, thereby obtaining the objective titanium clad steel sheet with a high joining strength at low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、チタンクラッド鋼板の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a titanium clad steel plate.

【0002】[0002]

【従来の技術】クラッド材は、それぞれの異種金属を層
状に接合したもので、それぞれの金属が有している優れ
た特性を併せ持った材料として注目されている。特に、
チタンクラッド鋼は、鋼の優れた強度、熱伝導性および
溶接性とチタンの高耐食性とを併せ持った材料として、
化学プラント用および海洋防食用等の高い強度と耐食性
が要求される部材への適用が進められている。
2. Description of the Related Art A clad material is obtained by joining dissimilar metals in layers, and is attracting attention as a material having excellent characteristics possessed by each metal. In particular,
Titanium clad steel is a material that combines the excellent strength, thermal conductivity and weldability of steel with the high corrosion resistance of titanium.
It is being applied to members that require high strength and corrosion resistance, such as those for chemical plants and marine anticorrosion.

【0003】現在、チタンクラッド鋼板は大別して爆着
法と圧延法により製造されている。
At present, titanium clad steel plates are roughly classified into the explosive deposition method and the rolling method.

【0004】爆着法は爆発のエネルギーを利用してチタ
ンと鋼の接合を行うもので、接合材のサイズ、形状に制
限が大きいことに加え、接合施工を実施する場所につい
ても大きな制約を受けるため、大量生産には不向きであ
り、爆着法で安価なチタンクラッド鋼板を製造すること
は困難である。
The explosive welding method uses the energy of explosion to join titanium and steel, and in addition to the large restrictions on the size and shape of the joining material, the place where the joining work is carried out is also greatly restricted. Therefore, it is not suitable for mass production, and it is difficult to manufacture an inexpensive titanium clad steel plate by the explosion deposition method.

【0005】圧延法では、従来の圧延設備を利用するこ
とができる上に、板厚の制限が小さく、生産性も比較的
高いことから、圧延法は爆着法と比べ有利な製造方法で
あるということができる。しかし、熱間圧延であるため
にチタンと鋼の接合界面に脆弱なTi−Fe系金属間化
合物やTiC炭化物が形成される可能性が高く、この金
属間化合物や炭化物の形成により、クラッド鋼板の界面
強度や耐食性が著しく低下することが懸念される。
In the rolling method, the conventional rolling equipment can be used, the plate thickness is limited, and the productivity is relatively high. Therefore, the rolling method is an advantageous manufacturing method as compared with the explosive deposition method. Can be said. However, since it is hot rolling, it is highly possible that a fragile Ti-Fe-based intermetallic compound or TiC carbide is formed at the joining interface between titanium and steel. Due to the formation of this intermetallic compound or carbide, There is concern that interface strength and corrosion resistance will be significantly reduced.

【0006】これまで、このような接合界面でのTi−
Fe系金属間化合物やTiC炭化物の形成に対しては、
圧延接合温度および中間材によるFe−TiやTi−C
の相互拡散の防止という観点から、種々の取り組みがな
されている。
Until now, Ti-
For the formation of Fe-based intermetallic compounds and TiC carbide,
Fe-Ti and Ti-C depending on rolling joining temperature and intermediate material
Various efforts have been made from the viewpoint of preventing mutual diffusion of.

【0007】例えば、チタンと鋼との間に中間材とし
て、炭素量が0.03%以下の薄鋼板を介在させる方法
(特開昭62−158584号公報、特開昭63−56
370号公報参照)や、0.01%以下の鋼とニッケル
の薄板(特開平5−8059号公報参照)、あるいは銅
とニッケルの薄板(特開昭60−170586号公報参
照)等の2層を介在させる方法が提案されている。
For example, a method in which a thin steel sheet having a carbon content of 0.03% or less is interposed between titanium and steel as an intermediate material (JP-A-62-158584, JP-A-63-56).
370), a 0.01% or less steel and nickel thin plate (see JP-A-5-8059), or a copper and nickel thin plate (see JP-A-60-170586). Has been proposed.

【0008】また、中間材を使わないで、特定の圧延条
件、すなわち圧延加熱温度を800〜850℃とし、圧
延終了温度を700℃以上とする方法(特開昭56−1
63005号公報参照)や、850〜900℃に加熱
し、圧下比2以上で圧延し、次いで650〜950℃で
熱処理を行った後、圧下比1.1〜5で熱間圧延を行う
方法(特開昭60−213378号公報参照)や、75
0〜950℃の温度域で圧下比3以上の第1圧延を施
し、この第1圧延から2分以内に2℃/秒以上の冷却速
度で冷却を開始して500℃以下まで冷却する方法(特
公平6−61629号公報参照)、あるいは750℃以
上の圧延パス間隔を30秒以内とする方法(特開平4−
123883号公報参照)などが提案されている。
[0008] Also, without using an intermediate material, a method in which specific rolling conditions, that is, a rolling heating temperature is set to 800 to 850 ° C and a rolling end temperature is set to 700 ° C or more (Japanese Patent Laid-Open No. 56-1).
No. 63005) or a method of heating at 850 to 900 ° C., rolling at a reduction ratio of 2 or more, heat treatment at 650 to 950 ° C., and then hot rolling at a reduction ratio of 1.1 to 5 ( JP-A-60-213378), and 75
A method of performing a first rolling with a reduction ratio of 3 or more in a temperature range of 0 to 950 ° C., starting cooling at a cooling rate of 2 ° C./sec or more within 2 minutes from the first rolling, and cooling to 500 ° C. or less ( Japanese Patent Publication No. 6-61629) or a method in which the rolling pass interval at 750 ° C. or higher is set within 30 seconds (Japanese Patent Laid-Open No. 4-62).
No. 123883), etc. have been proposed.

【0009】[0009]

【発明が解決しようとする課題】しかし、上記のような
方法を適用し、既存の鋼用の熱延設備によりチタンクラ
ッド鋼板、特にその薄板を製造する場合には、それぞれ
次の問題がある。
However, when the titanium clad steel plate, especially the thin plate thereof, is manufactured by the existing hot rolling equipment for steel by applying the above method, there are the following problems.

【0010】たとえば、鋼の既存熱延設備では、鋼材ス
ラブを1000℃以上の高温に加熱し、連続した圧延ミ
ルにより、総圧下比10以上の高圧下比により、多量の
薄鋼板を低コストで製造することができる。しかし、こ
の設備と方法をチタンクラッド鋼板の製造に適用した場
合、前記の中間材を用いる方法では、圧延による圧下比
が大きいため、圧延中に中間材と母材(鋼)、合わせ材
(チタン)との変形抵抗の違いから、中間材が切断さ
れ、鋼とチタンが直接接触して界面にTi−Fe系金属
間化合物やTiC炭化物が形成されることとなり、安定
した高い接合強度を得ることが難しい。
For example, in the existing hot rolling equipment for steel, a steel material slab is heated to a high temperature of 1000 ° C. or more and a continuous rolling mill is used to produce a large amount of thin steel sheets at a low cost by a high pressure reduction ratio of 10 or more. It can be manufactured. However, when this equipment and method is applied to the production of titanium clad steel sheet, the method using the intermediate material described above has a large reduction ratio by rolling, so that the intermediate material, the base material (steel), and the composite material (titanium) are rolled during rolling. ) And the difference in deformation resistance, the intermediate material is cut and the steel and titanium come into direct contact with each other to form a Ti-Fe intermetallic compound or TiC carbide at the interface, thereby obtaining stable and high bonding strength. Is difficult.

【0011】前記特開昭56−163005号公報に示
される中間材を使わない方法には、その熱延加熱温度条
件が低いことから、1000℃以上の加熱を必要とする
既存の鋼用熱延設備を適用することが難しい。前記特開
昭60−213378号公報に示されような熱処理を中
間に用いる方法では、製造能率が低下し、クラッド鋼板
のコストが高くなる。
The method using no intermediate material disclosed in Japanese Patent Laid-Open No. 56-163005 described above has a low hot rolling heating temperature condition. Therefore, the existing hot rolling for steel requiring heating at 1000 ° C. or higher is required. It is difficult to apply the equipment. In the method of intermediately using the heat treatment as disclosed in JP-A-60-213378, the production efficiency is lowered and the cost of the clad steel plate is increased.

【0012】特開平4−123883号公報に示される
ように、単に750℃以上の圧延のパス間隔だけを定め
る方法では、圧下比が小さい場合には新生面による接合
面積が小さいため、高い接合強度が得られない。また、
高い温度(900℃以上)で圧延を終了した場合には、
圧延時に接合界面に金属間化合物が形成されていない界
面でも圧延終了時の温度が高いため、冷却中に界面に金
属間化合物が生じる。
As disclosed in Japanese Patent Application Laid-Open No. 4-123883, in the method of simply determining only the pass interval of rolling at 750 ° C. or higher, the bonding area due to the new surface is small when the reduction ratio is small, so that high bonding strength is obtained. I can't get it. Also,
When rolling is finished at a high temperature (900 ° C or higher),
Since the temperature at the end of rolling is high even at the interface where no intermetallic compound is formed at the joint interface during rolling, an intermetallic compound is produced at the interface during cooling.

【0013】このため、高い接合強度が得られなくな
る。
Therefore, high bonding strength cannot be obtained.

【0014】この冷却中に金属間化合物が界面に生じる
のを防止するには、前記特公平6−61629号公報に
示されるように、圧延開始から2分以内に2℃/秒以上
で500℃以下まで冷却する方法が有効である。しか
し、この方法では、既存の鋼用の熱延延設備で安価なク
ラッド鋼を多量に製造しようとする場合には圧延コイル
の長さが著しく長くなる。しかも、圧延用組立スラブを
900〜1100℃の高温に加熱して連続圧延すると、
最終仕上げ圧延後のスラブの温度が800℃程度にな
り、これを圧延開始から2分以内に2℃/秒以上の冷却
速度で500℃以下まで冷却することが不可能なため、
チタンクラッド鋼板を製造することができない。
In order to prevent the formation of intermetallic compounds at the interface during this cooling, as shown in the above-mentioned Japanese Patent Publication No. 6-61629, within 2 minutes from the start of rolling, 2 ° C./second or more and 500 ° C. The method of cooling to the following is effective. However, according to this method, the length of the rolling coil becomes extremely long when a large amount of inexpensive clad steel is to be produced by the existing hot rolling equipment for steel. Moreover, when the assembly slab for rolling is heated to a high temperature of 900 to 1100 ° C. and continuously rolled,
The temperature of the slab after the final finish rolling becomes about 800 ° C., and it is impossible to cool this to 500 ° C. or less within 2 minutes from the start of rolling at a cooling rate of 2 ° C./sec or more.
Titanium clad steel sheet cannot be manufactured.

【0015】本発明は、上記の問題点を解決するために
なされたものであり、本発明の目的は安定した高い接合
強度を有するチタンクラッド鋼板を既存の鋼用の熱延設
備を用いて多量、安価に製造し得る方法を提供すること
にある。
The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to produce a titanium clad steel sheet having stable and high joint strength in a large amount by using existing hot rolling equipment for steel. , To provide a method that can be manufactured at low cost.

【0016】[0016]

【課題を解決するための手段】本発明の要旨は、次の
(1)および(2)のチタンクラッド鋼板の製造方法に
ある。
The gist of the present invention resides in the following methods (1) and (2) for producing a titanium clad steel sheet.

【0017】(1)母材として鋼材、合わせ材としてチ
タンまたはチタン合金を用い、母材と合わせ材とを溶接
して組み立てた圧延用組立スラブを、熱間圧延により接
合するチタンクラッド鋼板の製造方法において、圧延用
組立スラブを900〜1100℃に加熱して後、総圧下
比10以上で熱間圧延を施して750℃以下で圧延を終
了するチタンクラッド鋼板の製造方法。
(1) Manufacture of a titanium clad steel plate in which a steel assembly is used as a base material and titanium or a titanium alloy is used as a laminating material, and an assembled slab for rolling is assembled by welding the base material and the laminating material by hot rolling. A method for producing a titanium clad steel sheet, which comprises heating an assembling slab for rolling to 900 to 1100 ° C., then hot rolling at a total reduction ratio of 10 or more, and ending rolling at 750 ° C. or less.

【0018】(2)母材として鋼材、合わせ材としてチ
タンまたはチタン合金を用い、母材と合わせ材とを溶接
して組み立てた圧延用組立スラブを、熱間圧延により接
合するチタンクラッド鋼板の製造方法において、圧延用
組立スラブを900〜1100℃に加熱して後、総圧下
比10以上で熱間圧延を施して880℃以下、750℃
超の温度域で圧延を終了し、直ちに2℃/秒以上の冷却
速度で冷却するチタンクラッド鋼板の製造方法。
(2) Manufacture of a titanium clad steel plate in which a steel assembly is used as a base material and titanium or a titanium alloy is used as a composite material, and the assembly slab for rolling is assembled by welding the base material and the composite material by hot rolling. In the method, the assembly slab for rolling is heated to 900 to 1100 ° C., and then hot rolled at a total reduction ratio of 10 or more to 880 ° C. or less and 750 ° C.
A method for producing a titanium clad steel sheet, wherein rolling is completed in the super temperature range and immediately cooled at a cooling rate of 2 ° C / sec or more.

【0019】上記(1)および(2)の方法において、
母材は炭素含有量が0.3mass%以下の低炭素鋼とする
のが望ましい。
In the above methods (1) and (2),
The base material is preferably a low carbon steel having a carbon content of 0.3 mass% or less.

【0020】また、上記(2)の方法において、仕上げ
スラブの厚さを20mm以下とする場合には、圧延終了
後の冷却を放冷に代えることができる。
Further, in the above method (2), when the thickness of the finishing slab is 20 mm or less, cooling after completion of rolling can be replaced with standing cooling.

【0021】本発明者らは、既存の鋼用の熱延設備を用
い、チタンと鋼の接合に適正とされる温度よりも高い9
00℃以上の温度に圧延用組立スラブを加熱し、チタン
クラッド鋼板を高能率に製造するに際し、前記の問題点
を解決すべく、チタンクラッド鋼板の接合界面接合強度
低下の要因となる界面の金属間化合物および炭化物の形
成、成長について検討した。その結果、圧延用組立スラ
ブの加熱温度を900〜1100℃、熱延の総圧下比を
10以上となし、750℃以下の温度で圧延を終了する
か、もしくは880℃以下、750℃超の温度域で圧延
を終了し、直ちに2℃/秒以上の冷却速度ですることに
より、圧延時にチタンと鋼の接合界面に形成される金属
間化合物および炭化物を破壊し、その厚さを接合強度に
影響を与えない程度に小さくなるとともに、圧延での塑
性変形により新たに形成されたチタンと鋼の新生面によ
ってチタンと鋼との接合をなさし、この新生面での金属
間化合物および炭化物の成長を抑制することができ、高
い接合強度を有するチタンクラッド鋼板が得られるいう
知見を得て、本発明をなすに至った。
The inventors of the present invention used the existing hot rolling equipment for steel to raise the temperature higher than the temperature suitable for joining titanium and steel.
At the time of heating the assembly slab for rolling to a temperature of 00 ° C or higher to manufacture the titanium-clad steel plate with high efficiency, in order to solve the above-mentioned problems, the joining interface of the titanium-clad steel plate The formation and growth of intermetallic compounds and carbides were investigated. As a result, the heating temperature of the assembly slab for rolling is set to 900 to 1100 ° C., the total rolling reduction ratio of hot rolling is set to 10 or more, and the rolling is finished at a temperature of 750 ° C. or lower, or a temperature of 880 ° C. or lower and 750 ° C. or higher. By ending the rolling in the zone and immediately cooling at a cooling rate of 2 ° C / sec or more, the intermetallic compounds and carbides formed at the joint interface between titanium and steel during rolling are destroyed, and the thickness affects the joint strength. The new surface of titanium and steel newly formed by plastic deformation during rolling forms a bond between titanium and steel and suppresses the growth of intermetallic compounds and carbides on this new surface. The present invention has been accomplished on the basis of the finding that a titanium clad steel sheet that can be manufactured and has a high bonding strength can be obtained.

【0022】[0022]

【作用】まず、本発明方法の対象となる圧延用スラブの
組立方法の例を、図1に基づいて説明する。
First, an example of the method of assembling the rolling slab which is the object of the method of the present invention will be described with reference to FIG.

【0023】図1は、圧延用スラブの組立後の断面を示
す図であり、同図(a)は非対称型スラブ、同図(b)
は対象型スラブの場合である。
FIG. 1 is a view showing a cross section of a rolling slab after assembly. FIG. 1 (a) is an asymmetric type slab, and FIG. 1 (b) is the same.
Is for a target slab.

【0024】図1(a)に示すように、非対称型スラブ
では、母材(鋼)1上の4辺全周部にスペーサー(鋼)
5および6、中心部に合わせ材(チタン)2を配置し、
合わせ材(チタン)2の表面に剥離剤4を塗布し、スペ
ーサー(鋼)5、6と剥離剤4との全表面をダミー材
(鋼)3で覆い、その後、溶接により組み立てる。
As shown in FIG. 1 (a), in the asymmetric type slab, spacers (steel) are provided on the base material (steel) 1 on all four sides.
5 and 6, the mating material (titanium) 2 is arranged in the center,
The release agent 4 is applied to the surface of the laminated material (titanium) 2, the entire surfaces of the spacers (steel) 5, 6 and the release agent 4 are covered with the dummy material (steel) 3, and then assembled by welding.

【0025】図1(b)に示すように、対称型スラブの
場合では、剥離剤4に対して、母材(鋼)1と合わせ材
(チタン)2とが対称(図では上下)となり、スペーサ
ー(鋼)5、6の厚さ内に2枚の合わせ材(チタン)
2、2と剥離剤4が入るように配置し、溶接により組み
立てる。この場合にはダミー材は用いない。
As shown in FIG. 1 (b), in the case of a symmetrical slab, the base material (steel) 1 and the laminated material (titanium) 2 are symmetrical (upper and lower in the figure) with respect to the release agent 4, Two pieces of mating material (titanium) within the thickness of spacers (steel) 5 and 6
It arrange | positions so that 2 and 2 and the release agent 4 may enter, and it assembles by welding. In this case, no dummy material is used.

【0026】さらに、いずれの場合も、母材(鋼)と合
わせ材(チタン)との接合面には、いかなる中間材も介
在させない。ただし、上記接合面は、研削等の通常の方
法により清浄化処理を施しておく。
Furthermore, in any case, no intermediate material is interposed on the joint surface between the base material (steel) and the laminated material (titanium). However, the joint surface is cleaned by a usual method such as grinding.

【0027】合わせ材2としてはチタンまたはチタン合
金(例えば、Ti−8mass%Mn、Ti−3mass%Cr
など)を、剥離剤4としてはAl2 3 を、ダミー材3
とスペーサー5、6としては母材と同じ鋼材を、それぞ
れ使用すればよい。また、母材としては炭素鋼であれば
どのようなものでもよいが、接合界面でのTiC炭化物
の形成を抑制する観点からはC含有量の少ないものがよ
く、0.3mass%C以下の低炭素鋼を用いるのが好まし
い。
As the composite material 2, titanium or a titanium alloy (for example, Ti-8 mass% Mn, Ti-3 mass% Cr) is used.
Etc.), Al 2 O 3 as the release agent 4, and the dummy material 3
As the spacers 5 and 6, the same steel material as the base material may be used. The base material may be any carbon steel as long as it is carbon steel, but from the viewpoint of suppressing the formation of TiC carbides at the joint interface, a material having a low C content is preferable, and a low content of 0.3 mass% C or less. It is preferable to use carbon steel.

【0028】本発明の方法は、上記のように組み立てた
圧延用スラブを900〜1100℃の温度に加熱し、総
圧下比10以上の連続圧延を施し、750℃以下の温度
で圧延を終了するか、もしくは880℃以下、750℃
超の温度域で圧延を終了し、直ちに2℃/秒以上の冷却
速度で冷却する連続圧延方法である。これにより、接合
強度の高いチタンクラッド鋼板を得ることができる。
In the method of the present invention, the rolling slab assembled as described above is heated to a temperature of 900 to 1100 ° C., continuously rolled at a total reduction ratio of 10 or more, and rolled at a temperature of 750 ° C. or less. Or 880 ℃ or less, 750 ℃
This is a continuous rolling method in which rolling is finished in the super temperature range and immediately cooled at a cooling rate of 2 ° C./sec or more. This makes it possible to obtain a titanium clad steel plate with high bonding strength.

【0029】上記の限定理由を次に述べる。The reason for the above limitation will be described below.

【0030】《圧延用スラブの加熱温度》既存の鋼用の
熱延設備をチタンクラッド鋼板の製造にそのまま使用す
るには、圧延ミルのパワーの観点から、圧延用組立スラ
ブを900℃以上に加熱する必要がある。すなわち、圧
延用組立スラブの加熱温度が900℃未満であると、総
圧下比10以上の圧延を行うことができない。一方、圧
延用組立スラブの加熱温度が1100℃を超えるとチタ
ンと鋼が共晶反応を起こして溶融し、連続圧延時の第1
パス圧延後にチタンと鋼の界面に両者の溶融合金層が形
成され、その接合界面にTi−Fe系金属間化合物が多
量に生成するため、接合強度が著しく低下する。従っ
て、圧延用スラブの加熱温度温度は900〜1100℃
とする。
<< Heating Temperature of Rolling Slab >> In order to use the existing hot rolling equipment for steel as it is for the production of titanium clad steel plate, from the viewpoint of the power of the rolling mill, the assembly slab for rolling is heated to 900 ° C. or higher. There is a need to. That is, if the heating temperature of the rolling slab is less than 900 ° C., rolling with a total reduction ratio of 10 or more cannot be performed. On the other hand, when the heating temperature of the assembly slab for rolling exceeds 1100 ° C., titanium and steel undergo a eutectic reaction to melt and melt the first slab during continuous rolling.
After pass rolling, a molten alloy layer of both is formed at the interface between titanium and steel, and a large amount of Ti—Fe based intermetallic compound is generated at the joint interface, so that the joint strength is significantly reduced. Therefore, the heating temperature of the rolling slab is 900 to 1100 ° C.
And

【0031】《総圧下比》本発明の方法では、圧延での
塑性変形により、チタンと鋼との接合表面の酸化膜等の
接合性を阻害する膜を破壊するとともに、圧延時に形成
される金属間化合物および炭化物を破壊して新生面を積
極的に形成させ、この新生面同士の接合を行う。しか
し、総圧下比が10未満では、形成される新生面が少な
くその接合面積が小さく、所望の界面接合強度が得られ
ない。従って、総圧下比は10以上とする。
<< Total Reduction Ratio >> In the method of the present invention, the plastic deformation during rolling destroys a film that impairs the bonding property such as an oxide film on the bonding surface between titanium and steel, and the metal formed during rolling. The intermetallic compounds and carbides are destroyed to form new surfaces positively, and the new surfaces are joined together. However, if the total reduction ratio is less than 10, the newly formed surface is small and the bonding area is small, so that the desired interfacial bonding strength cannot be obtained. Therefore, the total reduction ratio is 10 or more.

【0032】総圧下比の上限は、特に限定されず、高け
れば高いほどよい。しかし、その上限は、圧延ミルのパ
ワーおよび圧延用組立スラブの組立強度(圧延中にこの
スラブの溶接部が剥離しないこと)によって決まるた
め、連続的な圧下が可能な範囲で適宜定めればよい。な
お、望ましい圧下条件としては、1パス当たりの圧下率
および全圧延パス数が、それぞれ10〜20%程度およ
び6〜20パス程度とするのが好ましい。
The upper limit of the total reduction ratio is not particularly limited, and the higher the better. However, the upper limit thereof is determined by the power of the rolling mill and the assembly strength of the assembly slab for rolling (that the welded part of this slab does not separate during rolling), so it may be appropriately determined within the range where continuous reduction is possible. . As a desirable rolling reduction condition, the rolling reduction per pass and the total number of rolling passes are preferably about 10 to 20% and about 6 to 20 passes, respectively.

【0033】「総圧下比」および「圧下率」は、圧延前
のスラブ厚さを「T」、圧延後のスラブ厚さを「t」と
したとき、それぞれ下記式で定義される値である。
The "total reduction ratio" and the "reduction ratio" are values defined by the following formulas, where "T" is the slab thickness before rolling and "t" is the slab thickness after rolling. .

【0034】総圧下比=T/t 圧下率(%)={(T−t)/T}×100 《圧延終了温度および冷却》チタンまたはチタン合金
は、昇温すると約900℃でα相からβ相に変態し、原
子の充填率の高い六方晶系から、原子の充填率の低い立
方晶系の結晶構造に変化する。そして、α−チタン中の
Feの拡散速度は、β−チタン中の拡散速度の約1/1
0と遅い。このため、組立スラブを構成するチタンまた
はチタン合金のα相温度域で圧延を行う場合には、α−
チタンと鋼との接合界面でのTi−Fe系金属間化合物
の形成を抑制することができ、安定した高い界面の接合
強度を得ることができる。しかし、この効果は、仕上げ
終了温度が880℃を超えると安定して得られないの
で、仕上げ終了温度は880℃以下、好ましくは750
℃以下とする必要がある。
Total reduction ratio = T / t Reduction ratio (%) = {(T-t) / T} × 100 << Temperature of rolling and cooling >> Titanium or a titanium alloy is heated from about α phase at about 900 ° C. It transforms into the β phase and changes from a hexagonal system with a high atomic packing rate to a cubic crystal structure with a low atomic packing rate. The diffusion rate of Fe in α-titanium is about 1/1 of the diffusion rate in β-titanium.
0 and slow. Therefore, when rolling is performed in the α phase temperature range of titanium or titanium alloy that constitutes the assembled slab, α-
It is possible to suppress the formation of a Ti—Fe based intermetallic compound at the joint interface between titanium and steel, and to obtain a stable and high joint strength at the interface. However, this effect cannot be obtained stably when the finishing end temperature exceeds 880 ° C., so the finishing end temperature is 880 ° C. or less, preferably 750 ° C.
It must be below ℃.

【0035】すなわち、その仕上げ終了温度が880℃
以下であっても750℃を超える温度の場合、仕上げ圧
延後、その温度から室温まで放冷すると、チタンと鋼と
の界面でのFeの拡散が進行し、前記新生接合界面を含
む界面に新たなTi−Fe系金属間化合物が形成して界
面の接合強度が低下する。ところが、圧延終了温度が7
50℃以下であれば、750℃以下の温度域でのチタン
中のFeの拡散速度が極めて遅い(拡散距離が1μm以
下となる)ため、界面に金属間化合物が形成したとして
もその接合強度に影響を及ぼすことがなく、接合強度が
低下するのを防止することができる。また、880℃以
下、750℃超の温度域で圧延を終了する場合には、圧
延終了後直ちに2℃/秒以上の冷却速度で冷却すると、
新生接合界面を含む界面に新たなTi−Fe系金属間化
合物がほとんど形成することはなく、形成したとしても
その接合強度に影響を及ぼすことがなく、接合強度が低
下するのを防止することができる。
That is, the finishing temperature is 880 ° C.
Even if the temperature is less than 750 ° C., if the temperature is higher than 750 ° C. and then left to cool from that temperature to room temperature after finish rolling, diffusion of Fe at the interface between titanium and steel proceeds, and a new interface is formed at the interface including the newly formed bonding interface. Ti-Fe-based intermetallic compound is formed, and the joint strength at the interface decreases. However, the rolling end temperature was 7
If the temperature is 50 ° C. or lower, the diffusion rate of Fe in titanium in the temperature range of 750 ° C. or lower is extremely slow (diffusion distance is 1 μm or less). Therefore, even if an intermetallic compound is formed at the interface, the bonding strength is low. It is possible to prevent the bonding strength from being lowered without affecting. Further, when rolling is finished in a temperature range of 880 ° C. or lower and higher than 750 ° C., if cooling is performed at a cooling rate of 2 ° C./sec or more immediately after the rolling is finished,
Almost no new Ti-Fe-based intermetallic compound is formed at the interface including the newly-formed bonding interface, and even if it is formed, it does not affect the bonding strength and prevents the bonding strength from decreasing. it can.

【0036】従って、本発明では圧延終了温度を750
℃以下、もしくは880℃以下、750℃超で圧延終了
後、直ちに2℃/秒以上の冷却速度で冷却することとし
た。
Therefore, in the present invention, the rolling end temperature is set to 750.
It was decided to immediately cool at a cooling rate of 2 ° C./sec or more after the completion of rolling at ° C. or less, or 880 ° C. or less, or more than 750 ° C.

【0037】なお、冷却速度の上限は特に限定されな
い。すなわち、冷却速度が2℃/秒以上であれば上記の
効果が得られるからである。しかし、20℃/秒を超え
る冷却速度を得るためには、水冷などの強制冷却手段を
用いる必要があり、設備費が嵩むので、20℃/秒以下
とするのが経済的である。
The upper limit of the cooling rate is not particularly limited. That is, if the cooling rate is 2 ° C./second or more, the above effect can be obtained. However, in order to obtain a cooling rate of more than 20 ° C./second, it is necessary to use a forced cooling means such as water cooling, which increases equipment costs. Therefore, it is economical to set it to 20 ° C./second or less.

【0038】また、圧延終了後における鋼板の冷却速度
は、仕上げるスラブの厚さに大きく影響され、圧延終了
後の仕上げスラブ厚さが厚いと温度が下がり難くなり、
上記2℃/秒以上の冷却速度を確保するには、水冷等の
特別な強制冷却手段を採用する必要がある。しかし、仕
上げスラブ厚さを20mm以下とする場合には、通常の
放冷により、上記2℃/秒以上の冷却速度を確保するこ
とができる。従って、本発明(上記(2)の発明)にお
いては、仕上げスラブ厚さを20mm以下にすることに
より、強制冷却装置等を用いることなく、2℃/秒以上
の冷却速度を確保するようにしてもよい。
Further, the cooling rate of the steel sheet after the rolling is greatly influenced by the thickness of the slab to be finished, and if the thickness of the finishing slab after the rolling is large, it becomes difficult to lower the temperature.
In order to secure the cooling rate of 2 ° C./second or more, it is necessary to adopt a special forced cooling means such as water cooling. However, when the thickness of the finished slab is set to 20 mm or less, the cooling rate of 2 ° C./second or more can be secured by ordinary cooling. Therefore, in the present invention (the invention of (2) above), by setting the thickness of the finishing slab to 20 mm or less, a cooling rate of 2 ° C./second or more is ensured without using a forced cooling device or the like. Good.

【0039】本発明の方法では、圧延用スラブを溶接に
より組み立てる雰囲気を特に限定していないが、大気中
で溶接組立した場合にも十分な高い接合強度をえること
ができる。ただし、真空中での溶接組立を行った場合に
は、さらに高い接合強度を得ることができるので、真空
中で溶接組立を行ってもよいことは言うまでもない。
In the method of the present invention, the atmosphere for assembling the rolling slab by welding is not particularly limited, but a sufficiently high joint strength can be obtained even when the assembly is performed by welding in the atmosphere. However, it is needless to say that the welding and assembling may be performed in a vacuum, because higher joining strength can be obtained when the welding and assembling is performed in a vacuum.

【0040】[0040]

【実施例】母材として板厚80mmと160mmのC:
0.3mass%の低炭素鋼、合わせ材として板厚20mm
と40mmの純チタン(JIS−H4600、1種)、
ダミー材として板厚30mmと60mmの母材鋼と同様
の低炭素鋼を用いて、全厚が130mmと160mmの
2種類の図1(a)に示す非対称型の圧延用スラブを、
溶接で組み立てた。また、母材として板厚60mmと1
20mmの上記同様組成の低炭素鋼、合わせ材として板
厚15mmと30mmの上記同様組成の純チタンを用い
て、全厚が150mmと300mmの2種類の図1
(b)に示す対称型の圧延用スラブを、溶接で組み立て
た。
[Example] C having a thickness of 80 mm and 160 mm as a base material:
0.3mass% low carbon steel, plate thickness 20mm as a laminated material
And 40 mm pure titanium (JIS-H4600, 1 type),
Using a low carbon steel similar to the base steel having a plate thickness of 30 mm and 60 mm as a dummy material, two types of asymmetric rolling slabs having a total thickness of 130 mm and 160 mm shown in FIG.
Assembled by welding. Also, as the base material, the plate thickness is 60 mm and 1
Using 20 mm of low carbon steel having the same composition as above, and using pure titanium having a plate thickness of 15 mm and 30 mm and having the same composition as described above, there are two types of total thicknesses of 150 mm and 300 mm.
The symmetrical rolling slab shown in (b) was assembled by welding.

【0041】組立に先立ち、母材と合わせ材の接合面を
それぞれ機械研削により仕上げた。
Prior to assembly, the joint surfaces of the base material and the laminated material were each finished by mechanical grinding.

【0042】また、剥離剤としてAl2 3 を塗布し、
スペーサーとしては母材およびダミー材と同じ低炭素鋼
を使用した。さらに、No. 1〜4、No. 12〜15、N
o. 26〜30およびNo. 35〜38は真空中(真空
度:10-2torr)で組み立て、その他は大気中で組
み立てた。
Al 2 O 3 is applied as a release agent,
As the spacer, the same low carbon steel as the base material and the dummy material was used. Furthermore, No. 1-4, No. 12-15, N
Nos. 26 to 30 and Nos. 35 to 38 were assembled in a vacuum (degree of vacuum: 10 -2 torr), and others were assembled in the atmosphere.

【0043】次いで、表1および表2に示す圧延条件に
従い、既存の鋼用の熱延設備を用いて表1および表2に
示す種々の板厚に仕上げ、得られたチタンクラッド鋼板
からJIS−Z0601に準拠してせん断試験片を採取
し、せん断強度を測定して評価した。これらの結果を表
1および表2に併せて示す。
Then, in accordance with the rolling conditions shown in Tables 1 and 2, the existing hot rolling equipment for steel was used to finish various thicknesses shown in Tables 1 and 2, and the obtained titanium clad steel sheet was JIS-formed. A shear test piece was sampled according to Z0601, and the shear strength was measured and evaluated. The results are also shown in Tables 1 and 2.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】表1および表2に示すように、スラブの加
熱温度が1100℃超の場合(No.12、31)、最終
仕上げ終了温度が880℃超の場合(No. 13、3
2)、総圧下比が10未満の場合(No. 14、17、3
3、36)、冷却速度が2℃/秒未満の場合(No. 1
5、16、19、34、35、38)、冷却終了温度が
750℃超の場合(No. 18、37)には、いずれもせ
ん断強度が150N/mm2以下で接合強度が低い。こ
れに対し、本発明による場合(No. 1〜11、20〜3
0)には、200N/mm2 以上のせん断強度が得られ
ており、比較例に比べて3割強以上の高い接合強度を有
するチタンクラッド鋼板が得られた。
As shown in Tables 1 and 2, when the heating temperature of the slab is over 1100 ° C (No. 12, 31), when the final finishing finish temperature is over 880 ° C (No. 13, 3).
2) When the total reduction ratio is less than 10 (No. 14, 17, 3)
3, 36), if the cooling rate is less than 2 ° C / sec (No. 1)
5, 16, 19, 34, 35, 38) and when the cooling end temperature is higher than 750 ° C. (No. 18, 37), the shear strength is 150 N / mm 2 or less and the joint strength is low. On the other hand, in the case of the present invention (No. 1-11, 20-3
In 0), a shear strength of 200 N / mm 2 or more was obtained, and a titanium clad steel sheet having a high joint strength of 30% or more compared to the comparative example was obtained.

【0047】[0047]

【発明の効果】本発明の方法により、既存の鋼用の熱延
設備を用いてチタンクラッド鋼板の多量生産を達成する
ことが可能である。本発明法では、総圧下比が大きく、
歩留まりと接合強度が大幅に改善される。従って、得ら
れるチタンクラッド鋼板は低コストであるとともに高い
接合強度を有するものである。
Industrial Applicability According to the method of the present invention, it is possible to achieve mass production of titanium clad steel sheet using existing hot rolling equipment for steel. In the method of the present invention, the total reduction ratio is large,
The yield and bonding strength are greatly improved. Therefore, the obtained titanium clad steel plate has low bonding cost and high bonding strength.

【図面の簡単な説明】[Brief description of drawings]

【図1】圧延用スラブ組立後の断面を示す図であり、同
図(a)は非対称型組立スラブ、同図(b)は対称型組
立スラブを示す図である。
FIG. 1 is a view showing a cross section after assembly of a rolling slab, wherein FIG. 1 (a) is an asymmetric type assembly slab and FIG. 1 (b) is a symmetrical type assembly slab.

【符号の説明】[Explanation of symbols]

1:母材(鋼)、 2:合わせ材(チタンまたはチタン
合金)、3:ダミー材、 4:剥離剤、 5、
6:スペーサー。
1: base material (steel), 2: laminated material (titanium or titanium alloy), 3: dummy material, 4: release agent, 5,
6: Spacer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C21D 8/02 9270−4K C21D 8/02 Z 9/00 9352−4K 9/00 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number for FI Technical indication C21D 8/02 9270-4K C21D 8/02 Z 9/00 9352-4K 9/00 Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】母材として鋼材、合わせ材としてチタンま
たはチタン合金を用い、母材と合わせ材とを溶接して組
み立てた圧延用組立スラブを、熱間圧延により接合する
チタンクラッド鋼板の製造方法において、圧延用組立ス
ラブを900〜1100℃に加熱して後、総圧下比10
以上で熱間圧延を施して750℃以下で圧延を終了する
ことを特徴とするチタンクラッド鋼板の製造方法。
1. A method for producing a titanium clad steel sheet, wherein a steel material is used as a base material, titanium or a titanium alloy is used as a laminated material, and an assembled slab for rolling, which is assembled by welding the base material and the laminated material, is joined by hot rolling. After heating the rolling slab to 900 to 1100 ° C., the total rolling ratio is 10
A method for producing a titanium clad steel sheet, which is characterized in that hot rolling is performed as described above and rolling is completed at 750 ° C. or lower.
【請求項2】母材として鋼材、合わせ材としてチタンま
たはチタン合金を用い、母材と合わせ材とを溶接して組
み立てた圧延用組立スラブを、熱間圧延により接合する
チタンクラッド鋼板の製造方法において、圧延用組立ス
ラブを900〜1100℃に加熱して後、総圧下比10
以上で熱間圧延を施して880℃以下、750℃超の温
度域で圧延を終了し、直ちに2℃/秒以上の冷却速度で
冷却することを特徴とするチタンクラッド鋼板の製造方
法。
2. A method for producing a titanium clad steel plate, wherein a steel material is used as a base material, titanium or a titanium alloy is used as a laminated material, and an assembled slab for rolling, which is assembled by welding the base material and the laminated material, is joined by hot rolling. After heating the rolling slab to 900 to 1100 ° C., the total rolling ratio is 10
A method for producing a titanium clad steel sheet, characterized in that hot rolling is performed as described above, the rolling is finished in a temperature range of 880 ° C. or less and 750 ° C. or more, and immediately cooled at a cooling rate of 2 ° C./second or more.
【請求項3】冷却速度2℃/秒以上の冷却に代えて、仕
上げスラブ厚さを20mm以下とすることを特徴とする
請求項2に記載のチタンクラッド鋼板の製造方法。
3. The method for producing a titanium clad steel sheet according to claim 2, wherein the thickness of the finished slab is set to 20 mm or less instead of cooling at a cooling rate of 2 ° C./second or more.
JP8001495A 1995-04-05 1995-04-05 Manufacture of titanium clad steel sheet Pending JPH08276283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8001495A JPH08276283A (en) 1995-04-05 1995-04-05 Manufacture of titanium clad steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8001495A JPH08276283A (en) 1995-04-05 1995-04-05 Manufacture of titanium clad steel sheet

Publications (1)

Publication Number Publication Date
JPH08276283A true JPH08276283A (en) 1996-10-22

Family

ID=13706468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8001495A Pending JPH08276283A (en) 1995-04-05 1995-04-05 Manufacture of titanium clad steel sheet

Country Status (1)

Country Link
JP (1) JPH08276283A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016113641A (en) * 2014-12-11 2016-06-23 Jfeスチール株式会社 Method for production of clad steel sheet, production facility, and clad steel sheet produced thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016113641A (en) * 2014-12-11 2016-06-23 Jfeスチール株式会社 Method for production of clad steel sheet, production facility, and clad steel sheet produced thereby

Similar Documents

Publication Publication Date Title
US7776454B2 (en) Ti brazing strips or foils
EP0671240A1 (en) Heat exchanger assemblies - material for use therein, and a method of making the material
JP4256018B2 (en) Aluminum / stainless steel clad material and manufacturing method thereof
US5060845A (en) Method for manufacture titanium clad steel plate
JPH08141754A (en) Manufacture of titanium clad steel plate and titanium clad steel plate
JPH08276283A (en) Manufacture of titanium clad steel sheet
JPH08187581A (en) Production of titanium clad steel sheet
JPS6350112B2 (en)
JPH0780061B2 (en) Method for producing titanium clad steel sheet with excellent bondability
JP2003117679A (en) Composite brazing filler metal and composite material for brazing and brazing method
JP2541415B2 (en) Titanium clad steel manufacturing method
JPH0661629B2 (en) Method for manufacturing titanium clad steel
JP2002294376A (en) Aluminum-dissimilar metal clad plate and production method therefor
JPH0669630B2 (en) Method for producing titanium clad steel sheet using nickel as an intermediate contact material
JPH0813522B2 (en) Titanium-based metal clad steel and its manufacturing method
JP2000042758A (en) Manufacture of titanium-clad steel plate excellent in workability and joining strength of welded part
JPH02251386A (en) Production of titanium clad steel plate formed with copper or copper alloy as intermediate joining medium material
JPH03198987A (en) Manufacture of clad steel plate
JPH06155050A (en) Manufacture of titanium clad steel sheet by continuous hot rolling
JPH02187282A (en) Manufacture of cladded plate at both surfaces
JPH03204185A (en) Manufacture of aluminum clad steel plate
JPS63186821A (en) Method for annealing clad material
CN117301651A (en) Light high-strength Fe-Al composite board for finned tube radiator and preparation method and application thereof
CN114571827A (en) Method for preparing titanium/steel laminated composite material by regulating and controlling interface intermetallic compound
JPH05169283A (en) Manufacture of clad steel sheet