JPH08274326A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH08274326A
JPH08274326A JP7751595A JP7751595A JPH08274326A JP H08274326 A JPH08274326 A JP H08274326A JP 7751595 A JP7751595 A JP 7751595A JP 7751595 A JP7751595 A JP 7751595A JP H08274326 A JPH08274326 A JP H08274326A
Authority
JP
Japan
Prior art keywords
semiconductor device
substrate
convex portion
semiconductor
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7751595A
Other languages
Japanese (ja)
Inventor
Junko Tanaka
順子 田中
Akiyoshi Sawada
明美 佐和田
Akio Nishida
彰男 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7751595A priority Critical patent/JPH08274326A/en
Publication of JPH08274326A publication Critical patent/JPH08274326A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a semiconductor device whose speed is high and which is minute by a method wherein conduction carriers are confined in a one- dimensional slender line. CONSTITUTION: The surface of a silicon substrate 11 has a bend structure in which every bend angle θ12 and every cycle Wp 13 are set, and the width Wc of every channel 16 formed on every protrusion 14 on the surface of the substrate 11 is set at Wp/100<=Wc<=Wp with reference to every bend cycle Wp 13. Since the scattering of conduction carriers is suppressed, it is possible to realize a high-speed and high-gain transistor. In addition, since a drop in a threshold voltage due to a short channel effect is suppressed, the transistor can be subjected to micromachining and integrated highly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,半導体装置に関し,特
にキャリアの一次元伝導を利用した半導体装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a semiconductor device utilizing one-dimensional conduction of carriers.

【0002】[0002]

【従来の技術】超微細加工技術の進歩により,原子のス
ケールよりは大きいが巨視的なスケールに比べると小さ
い系(メソスコピック系)において人工的に制御された
様々な構造が実現できるようになってきた。このような
微細な領域では,デバイスの寸法が電子の波長と同程度
に近づいてくるため,量子力学的性質が現われ始める可
能性がある。そのため,この量子力学的効果を生かした
超高速・省電力な新しいデバイスの実現が期待されてい
る。その代表的な構造に,一次元系に電子を閉じ込める
量子細線がある。量子細線中では,電子運動のうちの横
方向の自由度が消滅するため,不純物散乱などの弾性散
乱が抑制され,電子移動度が増大することが理論的に導
き出されている。この量子細線中での電子移動度の増大
については,ジャパニーズ・ジャーナル・オブ・アプラ
イド・フィジックス,ボリューム19 ナンバー12
(1980年) 第L735頁から第L738頁(Japan
ese Journal of Applied Physics, Vol. 19, No. 12 (1
980) PP. L735-L738)において論じられている。
2. Description of the Related Art Advances in hyperfine processing technology have made it possible to realize various artificially controlled structures in a system (mesoscopic system) that is larger than the atomic scale but smaller than the macroscopic scale. It was In such a fine region, the device size approaches the wavelength of the electron, and quantum mechanical properties may start to appear. Therefore, it is expected that a new device will be realized that makes use of this quantum mechanical effect and is ultra-high speed and power saving. A typical structure is a quantum wire that confines electrons in a one-dimensional system. It has been theoretically deduced that in a quantum wire, the degree of freedom in the lateral direction of electron motion disappears, so that elastic scattering such as impurity scattering is suppressed and electron mobility increases. Regarding the increase of electron mobility in this quantum wire, Japanese Journal of Applied Physics, Volume 19 No. 12
(1980) L735 to L738 (Japan
ese Journal of Applied Physics, Vol. 19, No. 12 (1
980) PP. L735-L738).

【0003】このような量子細線を実現する方法とし
て,従来の装置は,特開平2―174268号公報記載
のように,半導体基板の表面に断面三角状の凸部を形成
し,該凸部を二酸化膜シリコンなどの不活性膜によって
覆うとともに,上記凸部の頂に一次元電子を発生させた
装置が知られていた。図14にその構造を示す。このよ
うに半導体基板11の表面の断面三角状凸部14の頂に
絶縁膜17を介してゲート電極18を形成することによ
って,凸部14の頂の界面に極めて幅の狭いチャネルが
形成されるので,ここに発生する電子は一次元電子とな
り,凸部14の頂に沿って高速な移動が可能になる。
As a method for realizing such a quantum wire, a conventional device is to form a convex portion having a triangular cross section on the surface of a semiconductor substrate and to form the convex portion as described in Japanese Patent Application Laid-Open No. 2-174268. A device has been known in which a one-dimensional electron is generated at the top of the convex portion while being covered with an inactive film such as a silicon dioxide film. The structure is shown in FIG. Thus, by forming the gate electrode 18 on the top of the triangular convex section 14 on the surface of the semiconductor substrate 11 via the insulating film 17, an extremely narrow channel is formed at the interface of the top of the convex section 14. Therefore, the electrons generated here become one-dimensional electrons and can move at high speed along the top of the convex portion 14.

【0004】また,特開平5―29613号公報記載の
ように,レジストのエッチバック量を制御することによ
り,上記従来技術によるフォトリソグラフィー技術を用
いて製造された装置よりも,微細なゲート幅を有するゲ
ート電極を稜線部に形成する量子細線素子の製造方法が
知られていた。
Further, as described in Japanese Patent Application Laid-Open No. 5-29613, by controlling the amount of resist etch back, a finer gate width can be obtained as compared with a device manufactured by using the above-mentioned photolithography technique. A method for manufacturing a quantum wire device has been known in which the gate electrode is formed on the ridge portion.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術における
半導体装置では,ゲート電極と同程度の幅に電子を閉じ
込めているため,形成されるチャネル幅はゲート加工技
術により制約される問題があった。
In the semiconductor device of the above-mentioned prior art, since the electrons are confined in a width similar to that of the gate electrode, there is a problem that the channel width to be formed is restricted by the gate processing technique.

【0006】また,電子の一次元効果により,極めて高
い電子移動度が得られるが,電流に寄与するキャリアの
総量が減少するため,図15に示すような従来の平面構
造MOSトランジスタに比べ,電流量が減ってしまう恐れ
があった。
Further, although an extremely high electron mobility can be obtained due to the one-dimensional effect of electrons, the total amount of carriers contributing to the current is reduced, so that the current is higher than that of the conventional planar structure MOS transistor as shown in FIG. There was a fear that the amount would decrease.

【0007】また,上記従来技術による量子細線構造を
持つMOSトランジスタは,従来の平面構造MOSトランジス
タと比較して,どのようなドレイン電流特性を示すかは
明らかではなかった。さらに,短チャネル特性も明らか
となっていなかった。
Further, it was not clear what kind of drain current characteristic the MOS transistor having the quantum wire structure according to the above-mentioned prior art shows as compared with the conventional planar structure MOS transistor. Furthermore, the short channel characteristics have not been clarified.

【0008】本発明の目的は,伝導キャリアの一次元効
果により高速な半導体装置を実現すると共に,かつ,電
流駆動力に優れた半導体装置を提供することにある。
An object of the present invention is to realize a high-speed semiconductor device by the one-dimensional effect of conduction carriers and to provide a semiconductor device excellent in current driving force.

【0009】また,短チャネル効果によるしきい電圧の
低下を抑制した微細素子を可能とすることも含まれる。
It also includes enabling a fine element in which a decrease in threshold voltage due to the short channel effect is suppressed.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に,本発明の半導体装置では,半導体基板表面が周期的
に折曲げられた構造を持ち,かつ,基板表面の凸部に形
成されるチャネルの幅Wcが,基板表面の折曲げ周期Wpに
対して,Wp/100≦Wc≦Wpであることを特徴とするもの
である。
In order to achieve the above object, in a semiconductor device of the present invention, a semiconductor substrate surface has a structure in which it is periodically bent, and is formed on a convex portion of the substrate surface. The channel width Wc is Wp / 100 ≦ Wc ≦ Wp with respect to the bending period Wp of the substrate surface.

【0011】または,半導体基板表面が周期的に折曲げ
られた構造を持ち,かつ,基板表面の凸部に形成される
チャネルの幅Wcが,1折曲げ周期あたりのゲート電極幅
Wgに対して,Wg/100≦Wc≦Wgであることを特徴とする
ものである。
Alternatively, the semiconductor substrate surface has a structure in which the surface is periodically bent, and the width Wc of the channel formed in the convex portion of the substrate surface is the gate electrode width per bending cycle.
It is characterized in that Wg / 100 ≦ Wc ≦ Wg with respect to Wg.

【0012】または,半導体基板表面が周期的に折曲げ
られている構造を持ち,かつ,その基板表面の凸部の上
面に形成された絶縁膜の厚さが,凹部の上面の絶縁膜の
厚さよりも薄いことを特徴とするものである。
Alternatively, the surface of the semiconductor substrate is periodically bent, and the thickness of the insulating film formed on the upper surface of the convex portion of the substrate surface is equal to the thickness of the insulating film on the upper surface of the concave portion. It is characterized by being thinner than Sa.

【0013】または,半導体基板表面が周期的に折曲げ
られた構造を持ち,かつ,その基板表面の凹部に基板不
純物と同型の高濃度不純物領域が形成されていることを
特徴とするものである。
Alternatively, the semiconductor substrate has a structure in which the surface thereof is periodically bent, and a high-concentration impurity region of the same type as the substrate impurities is formed in the concave portion of the substrate surface. .

【0014】または,絶縁基板の上面に半導体層が形成
され,かつ,その半導体層は周期Wpの凸部を有し,その
凸部に形成されるチャネルの幅Wcが,周期Wpに対して,
Wp/100≦Wc≦Wpであることを特徴とするものである。
Alternatively, a semiconductor layer is formed on the upper surface of the insulating substrate, and the semiconductor layer has a convex portion with a period Wp, and the width Wc of the channel formed in the convex portion is
The feature is that Wp / 100 ≦ Wc ≦ Wp.

【0015】[0015]

【作用】本発明によれば,半導体/絶縁膜界面の折曲げ
構造により,伝導キャリアが半導体基板の界面凸部に一
次元細線状に閉じ込められる。それにより,キャリア散
乱が抑制され,伝導キャリアの移動度が向上するので,
高速かつ電流駆動力に優れたトランジスタが実現でき
る。
According to the present invention, the conductive carrier is confined in the convex portion of the interface of the semiconductor substrate in a one-dimensional thin line shape by the bent structure of the interface between the semiconductor and the insulating film. As a result, carrier scattering is suppressed and the mobility of conductive carriers is improved.
It is possible to realize a transistor that has high speed and excellent current driving force.

【0016】また,半導体/絶縁膜界面の折曲げ構造に
より,短チャネルにおいてドレインポテンシャルの影響
がソースに及びにくくなるので,短チャネル効果による
しきい電圧の低下が抑制できる。そのため,トランジス
タの微細化・高集積化が図れる。
Further, due to the bent structure of the semiconductor / insulating film interface, the influence of the drain potential is less likely to reach the source in the short channel, so that the reduction of the threshold voltage due to the short channel effect can be suppressed. Therefore, miniaturization and high integration of transistors can be achieved.

【0017】[0017]

【実施例】以下,本発明の一実施例を,図面を参照して
説明する。図1は,本発明の一実施例による半導体装置
の断面図とそのポテンシャル分布を示す図である。p型
シリコン基板11の表面は,折曲げ角度θ12,周期W
p13の折曲げ構造を持つ。また,ポテンシャルは,シ
リコン基板11の界面凸部14で断面三角状に局所的に
高くなっており,凹部15では低くなっている。電流の
流れるチャネル16は,ポテンシャルが局所的に高い凸
部14に形成されている。17はゲート酸化膜,18は
ゲート電極,19はチャネル幅Wcである。本実施例の特
徴は,シリコン基板11の界面凸部14に伝導キャリア
の誘起を集中させ,かつ,基板表面の凸部14に形成さ
れたチャネル16の幅Wc19が,折曲げ周期Wp13に
対し,Wp/100≦Wc≦Wpであるところにある。このよう
に伝導キャリアを基板表面の凸部14に一次元細線状に
閉じ込めることにより,キャリアの散乱が抑制されるの
で,高速かつ電流駆動力に優れたトランジスタを実現す
ることができる。また,短チャネル効果によるしきい電
圧の低下が抑制されるので,微細なトランジスタを実現
することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a semiconductor device according to an embodiment of the present invention and a diagram showing its potential distribution. The surface of the p-type silicon substrate 11 has a bending angle θ12 and a period W.
It has a bent structure of p13. Further, the potential is locally high at the interface convex portion 14 of the silicon substrate 11 in a triangular cross section, and is low at the concave portion 15. The channel 16 through which the current flows is formed in the convex portion 14 having a locally high potential. Reference numeral 17 is a gate oxide film, 18 is a gate electrode, and 19 is a channel width Wc. The feature of this embodiment is that the induction of conduction carriers is concentrated on the interface convex portion 14 of the silicon substrate 11, and the width Wc19 of the channel 16 formed in the convex portion 14 on the substrate surface is different from the bending period Wp13. Wp / 100 ≦ Wc ≦ Wp. In this way, by confining the conductive carriers in the convex portions 14 on the surface of the substrate in a one-dimensional thin line, carrier scattering is suppressed, so that a transistor having high speed and excellent current driving capability can be realized. Further, since the threshold voltage is prevented from lowering due to the short channel effect, a fine transistor can be realized.

【0018】図2に,本発明の一実施例による半導体装
置の外観図を示す。シリコン基板11の表面は,デバイ
ス寸法幅21方向に対し,角度θ12,周期Wp13の折
曲げ構造を持つ。この基板表面の折曲げ構造により,基
板表面に沿った実効幅 Weff22は,デバイス寸法幅2
1をWとすると, W/(sin(θ/2))で表わされ,1/
(sin(θ/2))倍広くなる。17はゲート酸化膜,1
8はゲート電極,23は実効チャネル長,24はソース
拡散層,25はドレイン拡散層である。
FIG. 2 shows an external view of a semiconductor device according to an embodiment of the present invention. The surface of the silicon substrate 11 has a bending structure with an angle θ12 and a period Wp13 with respect to the device dimension width 21 direction. Due to this bent structure on the substrate surface, the effective width Weff22 along the substrate surface is 2
When 1 is W, it is expressed by W / (sin (θ / 2)), and 1 /
(sin (θ / 2)) times wider. 17 is a gate oxide film, 1
8 is a gate electrode, 23 is an effective channel length, 24 is a source diffusion layer, and 25 is a drain diffusion layer.

【0019】ここで,本実施例を詳しく説明するため
に,図8から図13に,図2の構造を持つ半導体装置の
特性図を示す。図8は,ゲート中央部での深さ方向の一
次元ポテンシャル分布を示す図である。折曲げ角度θ1
2は90°,折曲げ周期Wp13は0.1μm,ゲート酸化膜
17の厚さは4nm,実効チャネル長23は0.3μm,p形
基板濃度は3.0×1017cm-3 ,温度は300Kとした。比較の
ために,図15に示す平面構造MOSトランジスタの一次
元ポテンシャル分布も示した。ゲート電圧が0.1 Vのと
き,折曲げ構造のポテンシャルは,凸部14基板表面の
点Aで0.47V,凹部15の点Bでは0.13Vとなり,基板1
1表面の折曲げ効果により,凸部14の点Aの方が0.34
V高くなる。この値は,平面構造MOSトランジスタの表面
ポテンシャルと比較すると,凸部14で 0.20 V 高く,
また,凹部15では 0.15 V 低くなっている。この折曲
げ効果による凸部14でのポテンシャルの上昇は,同様
に電子密度にも反映される。電子密度は,凸部14の点
Aで6.2×1017cm-3 ,凹部15の点Bで1.3×1012cm-3
となり,凸部14の方が5.0×105倍高密度になる。この
凸部14での電子密度は,平面構造MOSトランジスタの
電子密度 4.2×1014cm-3よりも1.5×103倍高密度であ
る。図9に,ゲート中央部におけるシリコン/酸化膜界
面に沿った幅方向の電子密度分布を示す。電子密度が1.
0×1017cm-3以上の部分をチャネル反転層とみなすと,
チャネル反転層は凸部14に一周期(Wp=100nm)あたり
幅13nmの厚さで形成されていることがわかる。このよう
に,折曲げ構造では,局所的に凸部14でポテンシャル
が高くなり,その結果,加工寸法よりも非常に幅の狭い
領域に電子が閉じ込められ,微小な細線チャネルを実現
することができる。そのため,電子の散乱が抑制され,
トランジスタの高速化が図れる。
Here, in order to explain this embodiment in detail, FIGS. 8 to 13 show characteristic diagrams of the semiconductor device having the structure of FIG. FIG. 8 is a diagram showing a one-dimensional potential distribution in the depth direction at the center of the gate. Bending angle θ1
2 was 90 °, the bending period Wp13 was 0.1 μm, the thickness of the gate oxide film 17 was 4 nm, the effective channel length 23 was 0.3 μm, the p-type substrate concentration was 3.0 × 10 17 cm −3, and the temperature was 300K. For comparison, the one-dimensional potential distribution of the planar structure MOS transistor shown in FIG. 15 is also shown. When the gate voltage is 0.1 V, the potential of the bent structure is 0.47 V at the point A on the substrate surface of the convex portion 14 and 0.13 V at the point B of the concave portion 15.
1 Due to the bending effect of the surface, the point A of the convex portion 14 is 0.34
V becomes higher. This value is 0.20 V higher in the convex portion 14 than the surface potential of the planar structure MOS transistor,
In addition, the concave portion 15 is lowered by 0.15 V. The increase in the potential at the convex portion 14 due to this bending effect is also reflected in the electron density. The electron density is 6.2 × 1017 cm-3 at the point A on the convex portion 14 and 1.3 × 1012 cm-3 at the point B on the concave portion 15.
The density of the convex portions 14 is 5.0 × 10 5 times higher. The electron density at the convex portion 14 is 1.5 × 10 3 times higher than the electron density of the planar structure MOS transistor of 4.2 × 10 14 cm −3. FIG. 9 shows the electron density distribution in the width direction along the silicon / oxide film interface at the center of the gate. Electron density is 1.
If we consider the part of 0 × 1017 cm-3 or more as the channel inversion layer,
It can be seen that the channel inversion layer is formed in the convex portion 14 with a thickness of 13 nm per cycle (Wp = 100 nm). As described above, in the bent structure, the potential is locally increased in the convex portion 14, and as a result, electrons are confined in a region extremely narrower than the processing size, and a minute fine line channel can be realized. . Therefore, the scattering of electrons is suppressed,
The transistor speed can be increased.

【0020】また,基板濃度が高くなるにつれ,凸部1
4と凹部15のポテンシャル差は大きくなるため,電子
の閉じ込め効果は高まる。例えば,基板濃度が7.0×101
7cm-3 のときの表面ポテンシャルは,凸部14の点Aで
0.53V,凹部15の点Bでは0.09Vとなり,凸部14と凹
部15のポテンシャル差は0.44Vとなる。この凸部14
と凹部15のポテンシャル差は,基板濃度が3.0×1017c
m-3のときよりも0.10V大きい。また,電子密度は,凸部
14の点Aで3.5×1018cm-3,凹部15の点Bで1.6×10
11cm-3となり,凸部14の方が凹部15よりも2.2×106
倍高密度になる。
As the substrate concentration increases, the convex portion 1
Since the potential difference between 4 and the recess 15 becomes large, the effect of confining electrons is enhanced. For example, the substrate concentration is 7.0 × 101
The surface potential at 7 cm-3 is at point A on the convex portion 14.
0.53V, 0.09V at the point B of the concave portion 15, and the potential difference between the convex portion 14 and the concave portion 15 is 0.44V. This convex portion 14
And the potential difference between the concave portion 15 and the substrate concentration is 3.0 × 1017c
0.10V larger than when m-3. The electron density is 3.5 × 10 18 cm −3 at point A on the convex portion 14 and 1.6 × 10 at point B on the concave portion 15.
It becomes 11 cm-3, and the convex portion 14 is 2.2 × 10 6 more than the concave portion 15.
Double the density.

【0021】図10は,図2の構造を持つ半導体装置の
ゲート中央部におけるシリコン/酸化膜界面に沿った幅
方向の表面ポテンシャル分布のゲート電圧依存性を示す
図である。比較のために,図15に示す平面構造MOSト
ランジスタの表面ポテンシャルを波線に示した。ゲート
電圧Vgが0.0V以下では,ゲート電圧が高くなるにつれ,
折曲げ構造の凸部14と凹部15のポテンシャル差は大
きくなるが,ゲート電圧が0.0V以上になると,ゲート電
圧の上昇とともに,凸部14での局所的なポテンシャル
の増大は緩やかになってくる。このように,折曲げ構造
による電子の閉じ込め効果は,ゲート電圧が低いときに
顕著であり,ゲート電圧の上昇と共に効果は減少する。
ここでは,ゲート電圧0.0V付近でその効果が最も高くな
ることがわかる。
FIG. 10 is a diagram showing the gate voltage dependence of the surface potential distribution in the width direction along the silicon / oxide film interface in the gate central part of the semiconductor device having the structure of FIG. For comparison, the surface potential of the planar structure MOS transistor shown in FIG. 15 is shown by a wavy line. When the gate voltage Vg is 0.0V or less, as the gate voltage increases,
The potential difference between the convex portion 14 and the concave portion 15 of the bent structure becomes large, but when the gate voltage becomes 0.0 V or more, the local potential increase at the convex portion 14 becomes gentle as the gate voltage increases. . Thus, the electron confinement effect due to the bent structure is remarkable when the gate voltage is low, and the effect decreases as the gate voltage rises.
Here, it can be seen that the effect is highest near the gate voltage of 0.0V.

【0022】図11は,図2の折曲げ構造を持つトラン
ジスタと図15の従来の平面構造を持つトランジスタの
ドレイン電流比を示す特性図である。ここで,ソース電
圧は0V,ドレイン電圧は1.5Vとした。平面構造に対する
折曲げ構造のドレイン電流は,ゲート電圧0.05Vのとき2
70倍と最も大きくなる。すなわち,ゲート電圧0.05Vの
ときに折曲げ構造の一次元効果が最も顕著になってい
る。ゲート電圧を上昇させていくと,チャネル反転層の
幅は広がり,電子の伝導は2次元的になるため,ドレイ
ン電流比は小さくなっていくが,飽和領域であるゲート
電圧0.8V時でも,折曲げ構造のドレイン電流は平面構造
よりも1.5倍大きな電流値となる(W=10mm)。このゲー
ト電圧0.8V時の折曲げ構造の電流値は,実効幅Weff22
で規格化しても,平面構造よりも約1.2倍増大してい
る。このように,折曲げ構造では,実効幅22が大きく
なることにより電流値が増大するのみならず,それ以上
に,凸部14に誘起される非常に高密度な電子が電流値
の増大に有効に働く。そのため,従来よりも電流駆動力
に優れたトランジスタを実現することができる。さらに
ゲート電圧を上昇させていくと,ドレイン電流比は,基
板表面を折曲げたことによる幾何学的な形状効果である
ヨ2に近づいていく。
FIG. 11 is a characteristic diagram showing the drain current ratio of the transistor having the bent structure of FIG. 2 and the transistor having the conventional planar structure of FIG. Here, the source voltage was 0V and the drain voltage was 1.5V. The drain current of the folded structure with respect to the planar structure is 2 when the gate voltage is 0.05V.
70 times the largest. In other words, the one-dimensional effect of the bent structure is most prominent when the gate voltage is 0.05V. As the gate voltage is increased, the width of the channel inversion layer widens and the conduction of electrons becomes two-dimensional, so the drain current ratio decreases, but even when the gate voltage is 0.8V, which is the saturation region, The drain current of the bent structure is 1.5 times larger than that of the planar structure (W = 10 mm). The current value of the bent structure when the gate voltage is 0.8 V is the effective width Weff22.
Even if it is standardized by, it is about 1.2 times larger than the planar structure. As described above, in the folded structure, not only the current value increases due to the increase in the effective width 22, but also the very high density electrons induced in the convex portion 14 are effective for increasing the current value. To work. Therefore, it is possible to realize a transistor having a better current driving force than ever before. When the gate voltage is further increased, the drain current ratio approaches Yo2, which is a geometrical shape effect caused by bending the substrate surface.

【0023】図12にサブスレッショルド特性を示す。
折曲げ構造では,図8で示したように,同じゲート電圧
でも,凸部14でのポテンシャルの上昇が従来の平面構
造よりも大きいため,ゲート電圧の変化に対して電流が
早く流れ始める。その結果,折曲げ構造のしきい電圧
は,平面構造MOSFETより約0.2V低くなっている。また,
電流の立ち上がり特性を表わすサブスレッショルドスイ
ングは,折曲げ構造では64mV/decade,従来の平面構造
では74mV/decadeとなり,折曲げ構造の方が立ち上がり
特性が良い。これは,ゲート電圧が0.05V以下では,ゲ
ート電圧を変化させたときの凸部14におけるポテンシ
ャルの上昇が,平面構造でのポテンシャル上昇よりも大
きくなるためである。(例えば,図10に示すように,
ゲート電圧Vgをー0.3Vから0.0Vに上昇させたとき,凸部
14でのポテンシャル上昇は0.29V,平面構造では0.24V
となり,凸部14の方が0.05V大きい。)このように,
折曲げ構造では,電流の立ち上がり特性が向上するた
め,スイッチングスピードの速い高速なトランジスタを
実現することができる。
FIG. 12 shows the subthreshold characteristic.
In the bent structure, as shown in FIG. 8, even if the gate voltage is the same, the increase in the potential at the convex portion 14 is larger than that in the conventional planar structure, so that the current starts to flow earlier with respect to the change in the gate voltage. As a result, the threshold voltage of the folded structure is about 0.2V lower than that of the planar structure MOSFET. Also,
The subthreshold swing, which represents the rising characteristics of the current, is 64 mV / decade in the bent structure and 74 mV / decade in the conventional planar structure, and the bent structure has better rising characteristics. This is because when the gate voltage is 0.05 V or less, the potential increase in the convex portion 14 when the gate voltage is changed is larger than the potential increase in the planar structure. (For example, as shown in Figure 10,
When the gate voltage Vg is increased from -0.3V to 0.0V, the potential increase in the convex portion 14 is 0.29V, and the planar structure is 0.24V.
Therefore, the convex portion 14 is larger by 0.05V. )in this way,
In the folded structure, the current rising characteristics are improved, so a high-speed transistor with a high switching speed can be realized.

【0024】図13に,実効チャネル長 Leff23とし
きい電圧の関係を示す。ここで,しきい電圧はドレイン
電流が10nA流れる時のゲート電圧とし,折曲げ構造およ
び平面構造のしきい電圧のシフト量は実効チャネル長 L
eff23が0.5μmのときのそれぞれのしきい電圧を基準
とした。実効チャネル長23が0.1μmのときのしきい
電圧のシフト量は,平面構造がー0.22Vであるのに比
べ,折曲げ構造はー0.11Vであり,折曲げ構造の方がし
きい電圧の低下が抑えられている。これは,長チャネル
では,図8で示したように,凸部14と平面構造のポテ
ンシャルの差は凹部15と平面構造のポテンシャル差よ
りも大きいが,短チャネルになると,凸部14と平面構
造のポテンシャルの差よりも凹部15と平面構造のポテ
ンシャル差の方が大きくなり,その結果,折曲げ構造全
体として,平面構造よりも短チャネルにおいてドレイン
ポテンシャルの影響がソースに及びにくくなるためであ
る。このように,折曲げ構造を持つ本発明のトランジス
タは,従来の平面構造を持つMOSトランジスタよりも,
短チャネル効果によるしきい電圧の低下を抑制すること
ができるので,従来よりも微細かつ高速なトランジスタ
を実現することができる。
FIG. 13 shows the relationship between the effective channel length Leff23 and the threshold voltage. Here, the threshold voltage is the gate voltage when the drain current flows 10 nA, and the shift amount of the threshold voltage of the bent structure and the planar structure is the effective channel length L
Each threshold voltage when eff23 was 0.5 μm was used as a reference. The amount of shift of the threshold voltage when the effective channel length 23 is 0.1 μm is −0.11 V in the bent structure compared to −0.22 V in the planar structure, and the threshold voltage of the bent structure is The decrease is suppressed. In the long channel, the potential difference between the convex portion 14 and the planar structure is larger than the potential difference between the concave portion 15 and the planar structure in the long channel, as shown in FIG. This is because the potential difference between the concave portion 15 and the planar structure is larger than the potential difference of 1), and as a result, the influence of the drain potential is less likely to reach the source in the short channel than the planar structure in the entire bent structure. As described above, the transistor of the present invention having the bent structure has
Since it is possible to suppress the decrease in the threshold voltage due to the short channel effect, it is possible to realize a finer and faster transistor than the conventional one.

【0025】以上,図8から図13を用いて,図1,図
2の実施例の説明を行なった。図8から図13では,シ
リコン基板11表面の折曲げ角度θ12は90°とした
が,折曲げ角度θ12が小さくなるほど,凸部14に電
界が集中しやすくなり,伝導キャリアの閉じ込め効果は
高まる。最も効果的な閉じ込め効果は,折曲げ角度θ1
2が0°<θ<180°であるときに得られる。また,基板
表面11の折曲げ周期Wp13は0.1μmとしたが,0.01
μm≦Wp≦1.0μmであれば,凸部14と凹部15のポ
テンシャル差は大きくなり,伝導キャリアの閉じ込め効
果によるトランジスタの高速化が得られる。
The embodiments of FIGS. 1 and 2 have been described above with reference to FIGS. 8 to 13. In FIGS. 8 to 13, the bending angle θ12 on the surface of the silicon substrate 11 is 90 °, but as the bending angle θ12 becomes smaller, the electric field is more likely to concentrate on the convex portions 14 and the effect of confining the conduction carriers is enhanced. The most effective confinement effect is the bending angle θ1
It is obtained when 2 is 0 ° <θ <180 °. The bending period Wp13 of the substrate surface 11 is set to 0.1 μm, but 0.01
If .mu.m.ltoreq.Wp.ltoreq.1.0 .mu.m, the potential difference between the convex portion 14 and the concave portion 15 becomes large, and the transistor can be speeded up due to the effect of confining conduction carriers.

【0026】以上では,nチャネル型を例にとり説明し
たが,pチャネル型でも同様なことが言える。
Although the n-channel type has been described above as an example, the same can be said for the p-channel type.

【0027】次に,図1,2の実施例による半導体装置
の製造方法の一例について説明する。p型シリコン基板
11にレジストでパターニングし,異方性エッチングを
行なって,断面三角状の折曲げ構造を形成し,レジスト
を除去する。ここで,シリコン基板11の表面の面方位
を(100)とすれば,折曲げ構造の稜線の面方位は
(111)となり,この時,折曲げ角度θ12は約70
°となる。次に,この折曲げ構造を持ったシリコン基板
11表面を熱酸化し,基板11表面にゲート酸化膜17
を成長させ,この上に,ゲート電極18となる,例えば
不純物を含んだ多結晶シリコンを導電層として堆積す
る。そして,ゲート多結晶シリコンをエッチング除去
し,ゲート酸化膜17をエッチング除去する。次に,半
導体装置の拡散層24,25となる不純物層を,イオン
打ち込みで注入する。その結果,拡散層24,25の接
合は,基板表面の折曲げに沿って形成される。以上のよ
うにして,本発明の半導体装置を完成する。
Next, an example of a method of manufacturing a semiconductor device according to the embodiment shown in FIGS. The p-type silicon substrate 11 is patterned with a resist and anisotropically etched to form a bent structure having a triangular cross section, and the resist is removed. Here, if the surface orientation of the surface of the silicon substrate 11 is (100), the surface orientation of the ridgeline of the bending structure is (111), and at this time, the bending angle θ12 is about 70.
It becomes °. Next, the surface of the silicon substrate 11 having this bent structure is thermally oxidized to form a gate oxide film 17 on the surface of the substrate 11.
Is grown, and polycrystalline silicon containing impurities, for example, which becomes the gate electrode 18, is deposited as a conductive layer thereon. Then, the gate polycrystalline silicon is removed by etching, and the gate oxide film 17 is removed by etching. Next, the impurity layers to be the diffusion layers 24 and 25 of the semiconductor device are implanted by ion implantation. As a result, the diffusion layers 24 and 25 are joined along the bending of the substrate surface. As described above, the semiconductor device of the present invention is completed.

【0028】ここで,ソース,ドレインの拡散層24,
25は,シリコン基板11の表面の凸部14のみに形成
してもよい。拡散層24,25を凸部14のみに形成す
れば,ゲート電圧の上昇によって誘起される電子は,凸
部14に極めて狭い幅19を持つ一次元電子となるた
め,高速なトランジスタが可能となる。
Here, the source / drain diffusion layers 24,
25 may be formed only on the convex portion 14 on the surface of the silicon substrate 11. If the diffusion layers 24 and 25 are formed only in the convex portion 14, the electrons induced by the rise of the gate voltage become one-dimensional electrons having an extremely narrow width 19 in the convex portion 14, so that a high speed transistor can be realized. .

【0029】また,本発明のトランジスタは,DRA
M,SRAM等のメモリセルに組み込まれることが可能
である。本発明のトランジスタをメモリセルに適用すれ
ば,高速化が実現されると共に,高集積化が得られる。
The transistor of the present invention is a DRA.
It can be incorporated into memory cells such as M and SRAM. When the transistor of the present invention is applied to a memory cell, high speed operation and high integration can be achieved.

【0030】図3は,本発明の他の実施例における半導
体装置の断面を示す図である。折曲げ角度θ12,周期
Wp13の折曲げ構造を持ったシリコン基板11の凸部
14に,酸化膜17を介して1折曲げ周期あたり幅Wg3
1を持つゲート電極18が形成されている。電流の流れ
るチャネル16は,基板11表面の凸部14に,幅Wc1
9の厚さで形成されている。本実施例の特徴は,シリコ
ン基板11の界面凸部14に伝導キャリアの誘起を集中
させ,かつ,基板表面の凸部14に形成されたチャネル
16の幅Wc19が,ゲート電極幅Wg31に対し,Wg/
100≦Wc≦Wgであるところにある。このように伝導キャ
リアを基板表面の凸部14に一次元細線状に閉じ込める
ことにより,キャリアの散乱が抑制されるので,高速な
トランジスタを実現することができると共に,電流駆動
力が向上する。また,図1,2の実施例と同様に,短チ
ャネル効果によるしきい電圧の低下も抑さえられるの
で,微細かつ高集積なデバイスを実現することができ
る。
FIG. 3 is a diagram showing a cross section of a semiconductor device according to another embodiment of the present invention. A width Wg3 per bending cycle is provided on the convex portion 14 of the silicon substrate 11 having a bending structure with a bending angle θ12 and a cycle Wp13 via an oxide film 17.
The gate electrode 18 having 1 is formed. The channel 16 through which the current flows has a width Wc1 on the convex portion 14 on the surface of the substrate 11.
It is formed with a thickness of 9. The feature of the present embodiment is that the induction of conduction carriers is concentrated on the interface protrusion 14 of the silicon substrate 11, and the width Wc19 of the channel 16 formed in the protrusion 14 on the substrate surface is different from the gate electrode width Wg31. Wg /
It lies where 100 ≦ Wc ≦ Wg. By thus confining the conductive carriers in the convex portions 14 on the surface of the substrate in a one-dimensional thin line, carrier scattering is suppressed, so that a high-speed transistor can be realized and the current driving force is improved. Further, similarly to the embodiments of FIGS. 1 and 2, the reduction of the threshold voltage due to the short channel effect can be suppressed, so that a fine and highly integrated device can be realized.

【0031】図4および図5は,本発明の他の実施例に
おける半導体装置の断面を示す図である。折曲げ角度θ
12,周期Wp13の折曲げ構造を持ったシリコン基板
11表面に,厚さの不均一な酸化膜14が堆積されてい
る。ここで,酸化膜14は凸部14で薄く,凹部15で
厚くなっている。本実施例の特徴は,折曲げ構造を持っ
たシリコン基板11の凸部14の上面に形成された酸化
膜16の厚さが,凹部15の上面の酸化膜16の厚さよ
りも薄いところにある。これによって,シリコン基板1
1の凸部14で電界が集中しやすくなるので,伝導キャ
リアが凸部14に一次元状に閉じ込められ,高速なトラ
ンジスタを実現することができると共に,電流駆動力が
向上する。また,図1,2の実施例と同様に,短チャネ
ル効果によるしきい電圧の低下も抑さえられるので,微
細かつ高集積なデバイスを実現することができる。
4 and 5 are sectional views showing a semiconductor device according to another embodiment of the present invention. Bending angle θ
12, an oxide film 14 having a non-uniform thickness is deposited on the surface of a silicon substrate 11 having a bent structure with a period Wp13. Here, the oxide film 14 is thin in the convex portion 14 and thick in the concave portion 15. The feature of this embodiment lies in that the thickness of the oxide film 16 formed on the upper surface of the convex portion 14 of the silicon substrate 11 having the bent structure is thinner than the thickness of the oxide film 16 on the upper surface of the concave portion 15. . As a result, the silicon substrate 1
Since the electric field is easily concentrated in the convex portion 14 of No. 1, conduction carriers are confined in the convex portion 14 in a one-dimensional manner, a high-speed transistor can be realized, and the current driving force is improved. Further, similarly to the embodiments of FIGS. 1 and 2, the reduction of the threshold voltage due to the short channel effect can be suppressed, so that a fine and highly integrated device can be realized.

【0032】図6は,本発明の他の実施例における半導
体装置の断面を示す図である。シリコン基板11の表面
は,折曲げ角度θ12,周期Wp13の折曲げ構造を持
ち,この基板11の表面凹部15に基板不純物と同型の
高濃度不純物61が打ち込まれている。本実施例の特徴
は,シリコン基板11上の凹部15で局所的に高濃度不
純物61が打ち込まれているところにある。これによっ
て,シリコン基板11の凸部14で電界が集中しやすく
なるため,凸部14に伝導キャリアが一次元状に誘起さ
れやすくなり,高速なトランジスタを実現することがで
きると共に,電流駆動力が向上する。また,図1,2の
実施例と同様に,短チャネル効果によるしきい電圧の低
下も抑えられるので,微細かつ高集積なデバイスを実現
することができる。
FIG. 6 is a diagram showing a cross section of a semiconductor device according to another embodiment of the present invention. The surface of the silicon substrate 11 has a bending structure with a bending angle θ12 and a period Wp13, and a high-concentration impurity 61 of the same type as the substrate impurities is implanted into the surface recess 15 of the substrate 11. The feature of this embodiment is that the high-concentration impurity 61 is locally implanted in the recess 15 on the silicon substrate 11. As a result, the electric field is easily concentrated on the convex portions 14 of the silicon substrate 11, so that the conductive carriers are easily induced in the convex portions 14 in a one-dimensional manner, and a high-speed transistor can be realized and the current driving force can be increased. improves. Further, similarly to the embodiments of FIGS. 1 and 2, the reduction of the threshold voltage due to the short channel effect can be suppressed, so that a fine and highly integrated device can be realized.

【0033】図7は,本発明の他の実施例における半導
体装置の断面を示す図である。絶縁基板71の上面に半
導体層72が形成され,その半導体層72は角度θ1
2,周期Wp13の凸形状を持つ。本実施例の特徴は,半
導体層72の凸部14に伝導キャリアの誘起を集中さ
せ,かつ,凸部14に形成されたチャネル16の幅Wc
が,凸形状の周期Wp13に対し,Wp/100≦Wc≦Wpであ
るところにある。このように伝導キャリアを基板表面の
凸部14に一次元細線状に閉じ込めることにより,キャ
リアの散乱が抑制されるので,高速なトランジスタを実
現することができると共に,電流駆動力が向上する。ま
た,図1,2の実施例と同様に,短チャネル効果による
しきい電圧の低下も抑さえられるので,微細かつ高集積
なデバイスを実現することができる。
FIG. 7 is a diagram showing a cross section of a semiconductor device according to another embodiment of the present invention. A semiconductor layer 72 is formed on the upper surface of the insulating substrate 71, and the semiconductor layer 72 has an angle θ1.
2, it has a convex shape with a period Wp13. The feature of this embodiment is that the induction of conduction carriers is concentrated in the convex portion 14 of the semiconductor layer 72 and the width Wc of the channel 16 formed in the convex portion 14 is increased.
Is Wp / 100 ≦ Wc ≦ Wp for the convex period Wp13. By thus confining the conductive carriers in the convex portions 14 on the surface of the substrate in a one-dimensional thin line, carrier scattering is suppressed, so that a high-speed transistor can be realized and the current driving force is improved. Further, similarly to the embodiments of FIGS. 1 and 2, the reduction of the threshold voltage due to the short channel effect can be suppressed, so that a fine and highly integrated device can be realized.

【0034】[0034]

【発明の効果】本発明によれば,伝導キャリアを一次元
細線状に閉じ込めることにより,キャリア散乱が抑制さ
れ,伝導キャリアの移動度が向上するので,高速なトラ
ンジスタが実現できると共に,電流駆動力を向上させる
ことができる。また,半導体/絶縁膜界面の折曲げ構造
により,短チャネル効果によるしきい電圧の低下が抑制
されるので,トランジスタの微細化,高集積化が可能と
なる。
According to the present invention, by confining the conductive carriers in a one-dimensional thin line, carrier scattering is suppressed and the mobility of the conductive carriers is improved, so that a high-speed transistor can be realized and the current driving force can be realized. Can be improved. Further, the bent structure of the interface between the semiconductor and the insulating film suppresses the decrease in the threshold voltage due to the short channel effect, which enables miniaturization and high integration of the transistor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による半導体装置の一実施例を示す図。FIG. 1 is a diagram showing an embodiment of a semiconductor device according to the present invention.

【図2】本発明による半導体装置の一実施例を示す外観
図。
FIG. 2 is an external view showing an embodiment of a semiconductor device according to the present invention.

【図3】本発明による半導体装置の他の実施例を示す
図。
FIG. 3 is a diagram showing another embodiment of the semiconductor device according to the present invention.

【図4】本発明による半導体装置の他の実施例を示す
図。
FIG. 4 is a diagram showing another embodiment of the semiconductor device according to the present invention.

【図5】本発明による半導体装置の他の実施例を示す
図。
FIG. 5 is a diagram showing another embodiment of the semiconductor device according to the present invention.

【図6】本発明による半導体装置の他の実施例を示す
図。
FIG. 6 is a diagram showing another embodiment of the semiconductor device according to the present invention.

【図7】本発明による半導体装置の他の実施例を示す
図。
FIG. 7 is a diagram showing another embodiment of the semiconductor device according to the present invention.

【図8】本発明を説明するための深さ方向の一次元ポテ
ンシャル分布を示す特性図。
FIG. 8 is a characteristic diagram showing a one-dimensional potential distribution in the depth direction for explaining the present invention.

【図9】本発明を説明するためのゲート中央部における
シリコン基板表面に沿った幅方向の電子密度分布を示す
特性図。
FIG. 9 is a characteristic diagram showing the electron density distribution in the width direction along the surface of the silicon substrate at the center of the gate for explaining the present invention.

【図10】本発明を説明するための幅方向のポテンシャ
ル分布を示す特性図。
FIG. 10 is a characteristic diagram showing a potential distribution in the width direction for explaining the present invention.

【図11】ドレイン電流のゲート電圧依存性を示す特性
図。
FIG. 11 is a characteristic diagram showing gate voltage dependence of drain current.

【図12】従来の平面構造MOSトランジスタのドレイン
電流に対する本発明のトランジスタのドレイン電流比を
示す特性図。
FIG. 12 is a characteristic diagram showing the drain current ratio of the transistor of the present invention to the drain current of a conventional planar structure MOS transistor.

【図13】しきい電圧の実効チャネル長依存性を示す特
性図。
FIG. 13 is a characteristic diagram showing the effective channel length dependence of the threshold voltage.

【図14】従来の量子細線トランジスタを示す外観図。FIG. 14 is an external view showing a conventional quantum wire transistor.

【図15】従来の平面構造MOSトランジスタを示す外
観図。
FIG. 15 is an external view showing a conventional planar structure MOS transistor.

【符号の説明】[Explanation of symbols]

11…シリコン基板,12…折曲げ角度θ,13…折曲
げ構造の周期Wp,14…凸部,15…凹部,16…チ
ャネル,17…酸化膜,18…ゲート電極,19…チャ
ネル幅Wc,21…デバイス寸法幅W,22…実効幅Wef
f,23…実効チャネル長,24…ソース拡散層,25
…ドレイン拡散層,31…1折曲げ周期あたりのゲート
電極幅Wg,61…基板不純物と同型の高濃度不純物,7
1…絶縁基板,72…半導体層,141…ソース電極,
142…ドレイン電極。
11 ... Silicon substrate, 12 ... Bending angle θ, 13 ... Bending structure period Wp, 14 ... Convex portion, 15 ... Recessed portion, 16 ... Channel, 17 ... Oxide film, 18 ... Gate electrode, 19 ... Channel width Wc, 21 ... Device width W, 22 ... Effective width Wef
f, 23 ... Effective channel length, 24 ... Source diffusion layer, 25
... Drain diffusion layer, 31 ... Gate electrode width Wg per bending cycle, 61 ... High concentration impurity of the same type as the substrate impurity, 7
1 ... Insulating substrate, 72 ... Semiconductor layer, 141 ... Source electrode,
142 ... Drain electrode.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】半導体基板表面が周期的に折曲げられてい
る構造を持ち,かつ,基板表面の凸部に形成されるチャ
ネルの幅Wcが,基板表面の折曲げ周期Wpに対して,Wp/
100≦Wc≦Wpであることを特徴とする半導体装置。
1. The semiconductor substrate has a structure in which the surface is bent periodically, and the width Wc of the channel formed in the convex portion of the substrate surface is Wp with respect to the bending cycle Wp of the substrate surface. /
A semiconductor device characterized in that 100 ≦ Wc ≦ Wp.
【請求項2】半導体基板表面が周期的に折曲げられてい
る構造を持ち,かつ,基板表面の凸部に形成されるチャ
ネルの幅Wcが,1折曲げ周期あたりのゲート電極幅Wgに
対して,Wg/100≦Wc≦Wgであることを特徴とする半導
体装置。
2. The semiconductor substrate has a structure in which the surface is periodically bent, and the width Wc of the channel formed in the convex portion of the substrate surface is relative to the gate electrode width Wg per bending cycle. And Wg / 100 ≦ Wc ≦ Wg.
【請求項3】半導体基板表面が周期的に折曲げられてい
る構造を持ち,かつ,その基板表面の凸部の上面に形成
された絶縁膜の厚さが,凹部の上面の絶縁膜の厚さより
も薄いことを特徴とする半導体装置。
3. The semiconductor substrate has a structure in which the surface is periodically bent, and the thickness of the insulating film formed on the upper surface of the convex portion of the substrate surface is the thickness of the insulating film on the upper surface of the concave portion. A semiconductor device characterized by being thinner than the thickness.
【請求項4】半導体基板表面が周期的に折曲げられてい
る構造を持ち,かつ,その基板表面の凹部に基板不純物
と同型の高濃度不純物領域が形成されていることを特徴
とする半導体装置。
4. A semiconductor device having a structure in which a surface of a semiconductor substrate is periodically bent, and a high-concentration impurity region of the same type as a substrate impurity is formed in a concave portion of the substrate surface. .
【請求項5】請求項1乃至4に記載の半導体装置におい
て,半導体基板表面の凸部の稜線のなす角度θが0°<
θ<180°であることを特徴とする半導体装置。
5. The semiconductor device according to claim 1, wherein an angle θ formed by a ridgeline of a convex portion on the surface of the semiconductor substrate is 0 ° <
A semiconductor device characterized in that θ <180 °.
【請求項6】請求項1乃至5に記載の半導体装置におい
て,半導体基板表面の折曲げ周期Wpが0.01μm≦Wp≦1.
0μmであることを特徴とする半導体装置。
6. The semiconductor device according to claim 1, wherein the bending period Wp of the semiconductor substrate surface is 0.01 μm ≦ Wp ≦ 1.
A semiconductor device having a thickness of 0 μm.
【請求項7】絶縁基板の上面に半導体層が形成され,か
つ,その半導体層は周期Wpの凸部を有し,その凸部に形
成されるチャネルの幅Wcが,周期Wpに対して,Wp/100
≦Wc≦Wpであることを特徴とする半導体装置。
7. A semiconductor layer is formed on an upper surface of an insulating substrate, and the semiconductor layer has a convex portion having a period Wp, and a width Wc of a channel formed in the convex portion is equal to a period Wp. Wp / 100
A semiconductor device characterized in that ≦ Wc ≦ Wp.
【請求項8】請求項7に記載の半導体装置において,絶
縁基板上の半導体層の凸部の稜線のなす角度θが0°<
θ<180°であることを特徴とする半導体装置。
8. The semiconductor device according to claim 7, wherein the angle θ formed by the ridgelines of the protrusions of the semiconductor layer on the insulating substrate is 0 ° <
A semiconductor device characterized in that θ <180 °.
【請求項9】請求項7,8に記載の半導体装置におい
て,絶縁基板上の半導体層の折曲げ周期Wpが0.01μm≦
Wp≦1.0μmであることを特徴とする半導体装置。
9. The semiconductor device according to claim 7, wherein the bending period Wp of the semiconductor layer on the insulating substrate is 0.01 μm ≦.
A semiconductor device characterized in that Wp ≦ 1.0 μm.
【請求項10】請求項1乃至9に記載の半導体装置と電
荷蓄積用キャパシタとの組み合わせからなる半導体装
置。
10. A semiconductor device comprising a combination of the semiconductor device according to claim 1 and a charge storage capacitor.
JP7751595A 1995-04-03 1995-04-03 Semiconductor device Pending JPH08274326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7751595A JPH08274326A (en) 1995-04-03 1995-04-03 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7751595A JPH08274326A (en) 1995-04-03 1995-04-03 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH08274326A true JPH08274326A (en) 1996-10-18

Family

ID=13636108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7751595A Pending JPH08274326A (en) 1995-04-03 1995-04-03 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH08274326A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7391068B2 (en) 2005-06-23 2008-06-24 Kabushiki Kaisha Toshiba Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7391068B2 (en) 2005-06-23 2008-06-24 Kabushiki Kaisha Toshiba Semiconductor device

Similar Documents

Publication Publication Date Title
US6885055B2 (en) Double-gate FinFET device and fabricating method thereof
US6313487B1 (en) Vertical channel floating gate transistor having silicon germanium channel layer
KR100647173B1 (en) Novel field effect transistor and method of fabrication
US6306691B1 (en) Body driven SOI-MOS field effect transistor and method of forming the same
US5365083A (en) Semiconductor device of band-to-band tunneling type
US6184553B1 (en) Nonvolatile semiconductor memory device and method for fabricating the same, and semiconductor integrated circuit device
US5739057A (en) Method of making self-aligned dual gate MOSFET with an ultranarrow channel
US6432829B2 (en) Process for making planarized silicon fin device
KR0170468B1 (en) Semiconductor device
JP4216676B2 (en) Semiconductor device
JP2005521258A (en) Strained FinFET Structure and Method
EP0718894B1 (en) Coulomb-blockade element and method of manufacturing the same
US6894352B2 (en) Single-electron transistor and fabrication method thereof
US5972744A (en) Quantum effect device, method of manufacturing the same
KR100444270B1 (en) Method for manufacturing semiconductor device with negative differential conductance or transconductance
Saitoh et al. Large Coulomb blockade oscillations at room temperature in ultranarrow wire channel MOSFETs formed by slight oxidation process
JPH06101566B2 (en) Vertical field effect transistor
KR100676133B1 (en) Fabrication of single-electron transistor
Hu et al. A dual-gate-controlled single-electron transistor using self-aligned polysilicon sidewall spacer gates on silicon-on-insulator nanowire
JPH08274326A (en) Semiconductor device
JPH03160761A (en) Semiconductor device
JP2006147861A (en) Semiconductor element and semiconductor device
US20090146222A1 (en) Method for fabrication of single electron transistors
KR20060027440A (en) Capacitively coupled junction finfet(fin field effect transistor), method of manufacturing for the same and cmos(complementary metal oxide semiconductor) transistor employing the same
KR100823874B1 (en) High density fin field effect transistor having low leakage current and method of manufacturing the finfet