JPH08273899A - High-frequency quadrupole accelerator - Google Patents

High-frequency quadrupole accelerator

Info

Publication number
JPH08273899A
JPH08273899A JP7875995A JP7875995A JPH08273899A JP H08273899 A JPH08273899 A JP H08273899A JP 7875995 A JP7875995 A JP 7875995A JP 7875995 A JP7875995 A JP 7875995A JP H08273899 A JPH08273899 A JP H08273899A
Authority
JP
Japan
Prior art keywords
inductance
resonance
changed
cavity
accelerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7875995A
Other languages
Japanese (ja)
Inventor
Hirobumi Imanaka
博文 今中
Kenichi Inoue
憲一 井上
Chikara Ichihara
主税 一原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP7875995A priority Critical patent/JPH08273899A/en
Publication of JPH08273899A publication Critical patent/JPH08273899A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide an RFQ accelerator constituting a resonance frequency variable structure by changing the inductance of an resonance circuit formed in a resonance cavity. CONSTITUTION: An L adjustment conductor 7 is provided in a space forming the inductance of a high frequency quadrupole accelerator 10 equipped with the internal resonance circuit of the inductance and a capacitance formed in a resonance cavity 16. The length or the position of the L adjustment conductor 7 is disposed in the center axis direction of the resonance cavity 16 so as to be adjustable. When a conductive body exists in the space forming the inductance in the resonance cavity 16, the cross-sectional area of the coil forming the inductance becomes small so that the inductance becomes small. Therefore, when the length of the L adjustment conductor 7 is changed, the degree of effect on the inductance change is changed so that the resonance frequency of the internal resonance circuit can be changed. Accordingly, the resonance frequency of the high frequency quadrupole accelerator 10 is changed so as to be adapted to the kind of accelerated charged particles, and at the same time the acceleration energy can be changed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,半導体プロセス,医
療,バイオ技術等の分野に利用される荷電粒子加速器に
係り,詳しくは,高周波四重極電極により荷電粒子を高
エネルギービームに加速して,イオン注入,組成分析,
表面改質等の用に供する高周波四重極加速装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charged particle accelerator used in the fields of semiconductor processing, medical treatment, biotechnology and the like, and more specifically, it accelerates charged particles into a high energy beam by a high frequency quadrupole electrode. , Ion implantation, composition analysis,
The present invention relates to a high-frequency quadrupole accelerator used for surface modification and the like.

【0002】[0002]

【従来の技術】上記高周波四重極加速装置は,高周波電
界を発生する4個のベイン電極(四重極電極)の間に入
射された荷電粒子を上記高周波電界により加速させるよ
うに構成された加速器である。この高周波四重極(Radi
o Frequency Quadrupole)加速装置(以下RFQ加速器
と呼称する)の従来技術について以下に説明する。図1
0に示すRFQ加速器50は,筒状の金属筐体により形
成された加速空洞5の中心軸方向に四重極電極を形成す
る電極1,2,3,4が配設され,各電極1,2,3,
4は互いに向き合った面が凹凸状に波打った形状に形成
され,互いに向かい合った電極では凹凸形状が同位相に
形成されており,互いに隣合った電極では凹凸形状が逆
位相に形成されている。このように形成された四重極電
極に,互いに向かい合った電極には同位相,互いに隣合
った電極には逆位相の高周波電圧を印加すると,4個の
電極1,2,3,4が向かい合う中心軸付近では四重極
電界が発生する。更に,電極1,2,3,4の凹凸形状
が垂直,水平に180度ずれて形成されていることか
ら,例えば,電極1,3がプラス,電極2,4がマイナ
スのとき,中心軸上に軸方向の電界が生じることにな
る。電極1,2,3,4の電圧極性が逆になったとき
は,この電界の方向も逆になる。上記RFQ加速器50
により荷電粒子の一種であるイオンを加速する場合を考
えると,中心軸に沿って四重極電極の中に入射されたイ
オンが常に左右方向への加速電界を受けるような速度及
び位相をもつと,電極1,2,3,4の凹凸形状の部分
を通過する毎に加速され,単調にエネルギーが増加す
る。他方,最初に減速を受けるような位相で入ってきた
イオンも,次の加速電界のときに後続のイオンの中に徐
々にバンチングされていき,後は単調に加速される。ま
た,軸に直交する平面に存在する強い高周波電界によっ
て垂直,水平方向には強い集束力が生じているため,非
常に高い透過率でイオンを加速させることができる。
2. Description of the Related Art The high frequency quadrupole accelerator is configured to accelerate charged particles, which are injected between four vane electrodes (quadrupole electrodes) which generate a high frequency electric field, by the high frequency electric field. It is an accelerator. This high frequency quadrupole (Radi
A conventional technique of a frequency quadrupole (according to an RFQ accelerator) will be described below. FIG.
In the RFQ accelerator 50 shown in FIG. 0, electrodes 1, 2, 3, 4 forming a quadrupole electrode are arranged in the central axis direction of an acceleration cavity 5 formed by a cylindrical metal housing. 2, 3,
Reference numeral 4 indicates that the surfaces facing each other are corrugated in an uneven shape, and the electrodes facing each other have the uneven shapes formed in the same phase, and the electrodes adjacent to each other have the uneven shapes formed in the opposite phase. . When a high-frequency voltage of the same phase is applied to the electrodes facing each other and the opposite phase is applied to the electrodes adjacent to each other, the four electrodes 1, 2, 3, 4 face each other. A quadrupole electric field is generated near the central axis. Furthermore, since the concavo-convex shapes of the electrodes 1, 2, 3 and 4 are vertically and horizontally shifted by 180 degrees, for example, when the electrodes 1 and 3 are positive and the electrodes 2 and 4 are negative, on the central axis. An electric field is generated in the axial direction. When the voltage polarities of the electrodes 1, 2, 3, 4 are reversed, the direction of this electric field is also reversed. The RFQ accelerator 50
Considering the case of accelerating an ion, which is a type of charged particle, due to , The energy is monotonically increased each time the electrodes 1, 2, 3 and 4 pass through the uneven portions. On the other hand, the ions that first enter the phase that undergoes deceleration are gradually bunched into the subsequent ions at the time of the next acceleration electric field, and are then monotonically accelerated. In addition, since the strong high-frequency electric field existing in the plane orthogonal to the axis produces a strong focusing force in the vertical and horizontal directions, the ions can be accelerated with a very high transmittance.

【0003】しかし,上記のように構成されたRFQ加
速器50では,加速空洞5の共振周波数が固定であるた
め,加速できるイオン種が限定され,加速エネルギーも
決定されてしまう。そのため,このようなRFQ加速器
を半導体へのイオン注入の用に供するときには,イオン
種や取得エネルギーに応じて共振周波数を変化させ得る
構造を設ける必要がある。この共振周波数の可変構造と
して,図11に示すように加速空洞47の外部に共振回
路48を設ける方式が知られている(特開昭60−11
5199号,特開平3−245499号等)。これらは
外部共振回路のインダクタンス又はキャパシタンスを変
化させることにより,共振周波数可変のRFQ加速器を
実現している。しかしながら,外部共振回路ではQ値の
低下や外部擾乱を受ける度合いが高いため,これを解決
すべく加速空洞内に共振回路を構成する方式が様々に提
案されている。加速空洞内に共振回路を構成し,更に共
振周波数を変化できる構成を実現させるためには,内部
共振回路のインダクタンス又はキャパシタンス,もしく
は両方を変化させる必要がある。例えば,内部共振回路
のインダクタンスを可変とした従来技術として,特開昭
63−228598号,特開平5−21199号,特開
平5−82298号等に示された構成が知られている。
例えば,特開平5−21199号公報に開示された構成
は,図12に示すように真空容器43内に配設された四
重極電極を構成する電極1,3と電極2,4とにそれぞ
れ接続された平行導体40,41と,該平行導体40と
41との間を短絡する短絡導体42とによりワンターン
コイル(インダクタンス)が形成されている。上記短絡
導体42の位置を移動させることにより上記ワンターン
コイルの断面積が変化し,インダクタンスを変化させる
ことができる。又,特開昭63−228598号公報に
開示された構成は,図13に示すように四重極電極1,
2,3,4が配設された共振空洞44そのものを変形可
能な構造としている。共振空洞44に取り付けた移動棒
45,45…を駆動させることにより共振空洞44の直
径が変わるので,四重極電極1,2,3,4と共振空洞
44とによって形成されるインダクタンスが変化する。
However, in the RFQ accelerator 50 configured as described above, since the resonance frequency of the acceleration cavity 5 is fixed, the ion species that can be accelerated are limited and the acceleration energy is also determined. Therefore, when such an RFQ accelerator is used for ion implantation into a semiconductor, it is necessary to provide a structure capable of changing the resonance frequency according to the ion species and the acquired energy. As a variable structure of this resonance frequency, there is known a method of providing a resonance circuit 48 outside the acceleration cavity 47 as shown in FIG. 11 (Japanese Patent Laid-Open No. 60-11).
5199, JP-A-3-245499, etc.). By changing the inductance or capacitance of the external resonance circuit, these realize an RFQ accelerator with variable resonance frequency. However, since the external resonance circuit is highly susceptible to a decrease in Q value and external disturbance, various methods of forming a resonance circuit in the acceleration cavity have been proposed to solve this. In order to configure a resonance circuit in the acceleration cavity and realize a configuration in which the resonance frequency can be changed, it is necessary to change the inductance and / or the capacitance of the internal resonance circuit. For example, as the prior arts in which the inductance of the internal resonance circuit is variable, the configurations shown in JP-A-63-228598, JP-A-5-21199, and JP-A-5-82298 are known.
For example, as shown in FIG. 12, the configuration disclosed in Japanese Patent Laid-Open No. 5-211199 has electrodes 1 and 3 and electrodes 2 and 4 constituting a quadrupole electrode arranged in a vacuum container 43, respectively. A one-turn coil (inductance) is formed by the connected parallel conductors 40 and 41 and the short-circuit conductor 42 that short-circuits the parallel conductors 40 and 41. By moving the position of the short-circuit conductor 42, the cross-sectional area of the one-turn coil changes and the inductance can be changed. Further, the configuration disclosed in Japanese Patent Laid-Open No. 63-228598 has a quadrupole electrode 1 as shown in FIG.
The resonance cavity 44 itself in which 2, 3, 4 are arranged has a deformable structure. The diameter of the resonance cavity 44 is changed by driving the moving rods 45, 45 ... Attached to the resonance cavity 44, so that the inductance formed by the quadrupole electrodes 1, 2, 3, 4 and the resonance cavity 44 is changed. .

【0004】[0004]

【発明が解決しようとする課題】RFQ加速器における
内部共振回路の共振周波数をQ値を低下させることな
く,安定した構造で実施することは容易でなく,上記従
来例に示した構成でもQ値の低下と構造的な欠陥があっ
て実用的でない。具体的に示すと,図12に示した構成
では,短絡導体42と平行導体40,41との接触点で
高周波抵抗が大きくなりQ値が低下することや,多数の
棒状に形成された平行導体40,41のいずれかの僅か
な歪みにより短絡導体42の移動に支障をきたす可能性
が高い問題点がある。又,図13に示した構成では,真
空排気される共振空洞44を変形可能な構造とすること
は強度的に無理があり,変形させるための波打ち構造は
高周波抵抗の増加をまねいてQ値が低下してしまう問題
点がある。上記のようにRFQ加速器に内部共振回路を
構成して,その共振周波数を変化可能に構成することに
よって,RFQ加速器を用いたイオン注入等に有効に利
用できるが,その構成を性能を低下させることなく実現
することは従来技術においては多々の課題を有してい
た。そこで,本発明が目的とするところは,共振空洞内
に形成された共振回路のインダクタンスをQ値の低下を
まねくことなく変化させ得る構成により共振周波数可変
構造のRFQ加速装置を提供することにある。
It is not easy to implement the resonance frequency of the internal resonance circuit in the RFQ accelerator with a stable structure without lowering the Q value. Impractical due to deterioration and structural defects. More specifically, in the configuration shown in FIG. 12, the high frequency resistance increases and the Q value decreases at the contact point between the short-circuit conductor 42 and the parallel conductors 40 and 41, and the parallel conductors formed in a large number of rods are used. There is a problem that the movement of the short-circuit conductor 42 is likely to be hindered by the slight distortion of either 40 or 41. Further, in the configuration shown in FIG. 13, it is not possible to make the resonant cavity 44 to be evacuated into a deformable structure in terms of strength, and the corrugated structure for deforming leads to an increase in high-frequency resistance and a Q value There is a problem that it decreases. By constructing the internal resonant circuit in the RFQ accelerator and making the resonant frequency variable as described above, it can be effectively used for ion implantation etc. using the RFQ accelerator, but the performance is degraded. In order to realize without, there were many problems in the prior art. Therefore, an object of the present invention is to provide an RFQ accelerating device having a variable resonance frequency structure by a structure that can change the inductance of a resonance circuit formed in a resonance cavity without lowering the Q value. .

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明が採用する手段は,筒状に形成された共振空洞
の中心軸方向に四重極電極を配設すると共に,上記共振
空洞内にインダクタンスとキャパシタンスとを形成して
内部共振回路を構成し,該共振空洞内に高周波電力を導
入することにより共振空洞を共振させ,上記四重極電極
の中心軸に入射された荷電粒子ビームを加速する高周波
四重極加速装置において,上記共振空洞内の上記インダ
クタンスを形成する空間内に,共振空洞の中心軸方向の
長さ又は位置の調整が可能な導電体を配設したことを特
徴とする高周波四重極加速装置として構成されている。
上記構成において,上記導電体を共振空洞内に複数個配
設して構成することができる。
In order to achieve the above object, the means adopted by the present invention is to arrange a quadrupole electrode in the direction of the central axis of a resonance cavity formed in a cylindrical shape, and A charged particle beam incident on the central axis of the quadrupole electrode by forming an internal resonance circuit by forming an inductance and a capacitance therein and introducing high frequency power into the resonance cavity to resonate the resonance cavity. In a high-frequency quadrupole accelerator for accelerating a magnetic field, a conductor whose length or position in the central axis direction of the resonant cavity can be adjusted is arranged in a space forming the inductance in the resonant cavity. It is configured as a high frequency quadrupole accelerator.
In the above structure, a plurality of the conductors may be arranged in the resonance cavity.

【0006】[0006]

【作用】本発明によれば,共振空洞内にインダクタンス
とキャパシタンスとを形成した内部共振回路を備えた高
周波四重極加速装置の上記インダクタンスを形成する空
間内に導電体が配設されている。この導電体の長さ又は
位置は,共振空洞の中心軸方向に調整可能に配設され
る。共振空洞内のインダクタンスを形成する空間内に導
電体を存在させると,等価的にインダクタンスを形成し
ているコイルの断面積が小さくなり,インダクタンスは
小さくなる。この導電体の長さを変化させると,インダ
クタンス変化に及ぼす影響度が変わるので,内部共振回
路の共振周波数を変えることができ,高周波四重極加速
装置の共振周波数を変えて加速する荷電粒子の種類に適
合させると同時に,加速エネルギーを変化させることが
できる。又,上記導電体の配設位置を変化させることに
よっても,インダクタンスを形成する空間内の磁束密度
が異なる場所に導電体が配設されることになり,インダ
クタンス変化に及ぼす影響度を変えることができ,長さ
変化と同様の作用を与えることができる。上記導電体は
内部共振回路のインダクタンス成分を形成せず,インダ
クタンス成分形成に及ぼす影響度を変えるものなので,
高周波抵抗の増加は抑えられ,Q値の低下を引き起こす
ことなく共振周波数調整可能な高周波四重極加速装置が
実現される。共振周波数変化の範囲に応じた数の導電体
を共振空洞内に配設することができる。
According to the present invention, the conductor is arranged in the space for forming the inductance of the high-frequency quadrupole accelerator having the internal resonance circuit in which the inductance and the capacitance are formed in the resonance cavity. The length or position of the conductor is arranged so as to be adjustable in the central axis direction of the resonance cavity. When a conductor is present in the space that forms the inductance in the resonance cavity, the cross-sectional area of the coil that forms the inductance equivalently becomes smaller and the inductance becomes smaller. When the length of this conductor is changed, the degree of influence on the change in inductance is changed, so that the resonance frequency of the internal resonance circuit can be changed, and the resonance frequency of the high-frequency quadrupole accelerator can be changed to accelerate the acceleration of charged particles. The acceleration energy can be changed at the same time as the type is adapted. Also, by changing the arrangement position of the conductors, the conductors are arranged at different magnetic flux densities in the space forming the inductance, and the degree of influence on the inductance change can be changed. It is possible to give the same effect as changing the length. The above conductor does not form the inductance component of the internal resonance circuit, but changes the degree of influence on the formation of the inductance component.
An increase in high-frequency resistance is suppressed, and a high-frequency quadrupole accelerator capable of adjusting the resonance frequency without reducing the Q value is realized. A number of conductors corresponding to the range of resonance frequency change can be arranged in the resonance cavity.

【0007】[0007]

【実施例】以下,添付図面を参照して,本発明を具体化
した実施例につき説明し,本発明の理解に供する。尚,
以下の実施例は本発明を具体化した一例であって,本発
明の技術的範囲を限定するものではない。ここに,図1
は本発明の第1実施例に係るRFQ加速器の構成を示す
側面構成図(a)とA−A線矢視断面図(b),図2は
実施例に係るRFQ加速器の電極構造を示す斜視図,図
3は第1実施例に係るL調整導体の斜視図,図4,5,
6は第1実施例構成の別態様を示す側面構成図(a)と
A−A線矢視断面図(b),図7は本発明の第2実施例
に係るRFQ加速装置の構成を示す側面構成図(a)と
A−A線矢視断面図(b),図8は第2実施例に係るL
調整導体の構成を示す斜視図,図9は第2実施例構成の
別態様を示す側面構成図(a)とA−A線矢視断面図
(b)である。図1において,実施例に係るRFQ加速
器10は,イオン加速器として構成されており,共振空
洞を構成する筒状の金属筐体16の中心軸方向に,四重
極電極を構成する電極11,13と電極12,14とを
それぞれ対向させて十字方向に配置している。各電極1
1,12,13,14は,中心軸方向に交互に配設され
た電極固定具21aに電極11,13,電極固定具21
bに電極12,14がそれぞれ支持される。この電極支
持具21a,21bは,図2に示すように金属筐体16
の上下に固定された二股状の平板電極22a,22bに
よってそれぞれ支持され,平板電極22a,22bの二
股形状により形成された中央空間には,平板電極22a
側から中間電極23aが,平板電極22b側から中間電
極23bが介在するように構成されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. still,
The following example is an example embodying the present invention and does not limit the technical scope of the present invention. Figure 1
1 is a side view showing a structure of an RFQ accelerator according to a first embodiment of the present invention (a) and a sectional view taken along the line AA of FIG. 3 and 4 are perspective views of the L adjusting conductor according to the first embodiment, FIGS.
FIG. 6 is a side view (a) showing another aspect of the configuration of the first embodiment and a sectional view (b) taken along the line AA of FIG. 7, and FIG. 7 shows the configuration of the RFQ accelerator according to the second embodiment of the present invention. A side view (a) and a sectional view taken along the line AA (b) of FIG.
FIG. 9 is a perspective view showing the configuration of the adjusting conductor, and FIG. 9 is a side view (a) showing another aspect of the configuration of the second embodiment and a sectional view (b) taken along the line AA of FIG. In FIG. 1, an RFQ accelerator 10 according to an embodiment is configured as an ion accelerator, and electrodes 11, 13 forming a quadrupole electrode are arranged in the central axis direction of a cylindrical metal casing 16 forming a resonance cavity. And electrodes 12 and 14 are arranged to face each other in a cross direction. Each electrode 1
Electrodes 11, 13 and electrode fixtures 21 are provided on electrode fixtures 21a alternately arranged in the central axis direction.
The electrodes 12 and 14 are respectively supported by b. As shown in FIG. 2, the electrode supporting members 21a and 21b are provided with a metal housing 16a.
Are supported by bifurcated plate electrodes 22a and 22b fixed above and below, respectively, and the plate electrode 22a is provided in the central space formed by the bifurcated shape of the plate electrodes 22a and 22b.
The intermediate electrode 23a is arranged from the side, and the intermediate electrode 23b is arranged from the plate electrode 22b side.

【0008】上記構成によって,図1(b)に示すよう
に共振空洞を構成する金属筐体16の内部に,平板電極
22aと中間電極23b,平板電極22bと中間電極2
3aとが近接対面することによるキャパシタンスが形成
されると共に,平板電極22a,金属筐体16,平板電
極22bにより左右2つのワンターンコイルが形成され
ることによるインダクタンスが形成され,共振空洞内に
内部共振回路が構成される。上記構成における内部共振
回路のインダクタンスを変化させることにより,RFQ
加速器10の共振周波数を変更させ,加速するイオン種
に適合させて任意のエネルギーに加速することができ
る。上記インダクタンスを変化させるための実施例構成
を以下に説明する。上記インダクタンス変化の第1実施
例構成は,図1(b)に示すように共振空洞内のインダ
クタンス形成空間L1 2 に,L調整導体(導電体)7
a,7bを配設して構成されている。上記L調整導体7
a,7bは,図3の斜視図に示すように形成されてい
る。同図に示すように固定導体18に対して可動導体1
9,19を出し入れすることによって全体の長さが伸縮
できるように構成されている。このL調整導体7は高周
波抵抗の増加を抑えるため無酸素銅により形成されてい
るが,アルミニウム等を用いることもできる。上記L調
整導体7は,図1に示すように金属筐体16の中心軸方
向の中心位置に,絶縁物15によりインダクタンス形成
材(金属筐体16,平板電極22b)から電気的に絶縁
して固定される。上記可動導体19,19を出し入れし
て長さ調整する構造は省略しているが,筒状体の内部に
可動導体19,19を駆動させるモータ等を装備するこ
とによって作動させることができる。
With the above structure, the flat plate electrode 22a and the intermediate electrode 23b, and the flat plate electrode 22b and the intermediate electrode 2 are provided inside the metal casing 16 forming the resonance cavity as shown in FIG. 1 (b).
A capacitance is formed due to the close contact with 3a, and an inductance is formed due to the two left and right one-turn coils formed by the plate electrode 22a, the metal casing 16, and the plate electrode 22b, and internal resonance occurs in the resonance cavity. The circuit is constructed. By changing the inductance of the internal resonance circuit in the above configuration, the RFQ
The resonance frequency of the accelerator 10 can be changed and adapted to the accelerating ion species to accelerate to an arbitrary energy. An example configuration for changing the inductance will be described below. As shown in FIG. 1B, the configuration of the first embodiment of the above-mentioned inductance change is such that the L adjusting conductor (conductor) 7 is placed in the inductance forming space L 1 L 2 in the resonance cavity.
a and 7b are arranged. The L adjustment conductor 7
The a and 7b are formed as shown in the perspective view of FIG. As shown in FIG.
The entire length can be expanded / contracted by inserting / removing 9 and 19. The L adjusting conductor 7 is made of oxygen-free copper in order to suppress an increase in high frequency resistance, but aluminum or the like can be used. As shown in FIG. 1, the L adjusting conductor 7 is electrically insulated from the inductance forming material (the metal casing 16 and the plate electrode 22b) by the insulator 15 at the center position of the metal casing 16 in the central axis direction. Fixed. Although the structure for moving the movable conductors 19, 19 in and out to adjust the length is omitted, it can be operated by equipping the inside of the cylindrical body with a motor or the like for driving the movable conductors 19, 19.

【0009】上記のようにインダクタンス形成空間
1 ,L2 にL調整導体7a,7bが配設されることに
よって,各インダクタンス形成空間L1 ,L2 のそれぞ
れが形成するワンターンコイルの断面積が変化する。ワ
ンターンコイルのインダクタンスLは,真空の透磁率を
μ,ワンターンコイルの断面積をSとすると,L=μS
で示される。このワンターンコイル内にL調整導体7が
配設されると,等価的に断面積Sが小さくなってインダ
クタンスLが変化する。このL調整導体7の長さを変化
させると断面積Sが変わるため,インダクタンスLを変
化させることができる。従って,L調整導体7の長さ調
整を行うことによって,内部共振回路のインダクタンス
を変化させることができ,RFQ加速器10の共振周波
数が変更できるので,加速させるイオン種を任意のエネ
ルギーで加速させることができる。上記RFQ加速器1
0の共振周波数を調整する構成は,その調整範囲に応じ
てL調整導体7をインダクタンス形成空間L1 ,L2
それぞれ複数個配設し,図4,図5,図6に示すように
構成することができる。図4に示す構成では,L調整導
体7がインダクタンス形成空間L1 ,L2 の上下にそれ
ぞれ配設され,計4個のL調整導体7a,7b,7c,
7dが用いられている。又,図5に示す構成では,L調
整導体7がインダクタンス形成空間L1 ,L2 の中心軸
方向に対称的に配設され,計4個のL調整導体7a,7
b,7c,7dが用いられている。更に,図6に示す構
成では,L調整導体7がインダクタンス形成空間L1
2 の上下及び中心軸方向に対称的に配設され,計8個
のL調整導体7a〜7hが用いられている。上記インダ
クタンス変化の第2実施例構成は,図7(b)に示すよ
うに共振空洞内のインダクタンス形成空間L1 2 に,
L調整導体(導電体)8a,8bを配設して構成されて
いる。上記L調整導体8は,図8の斜視図に示すように
無酸素銅により形成された筒状体で,図7(a)に示す
ように金属筐体16の中心軸方向に,その配設位置の位
置移動が自在に配置される。上記L調整導体8は絶縁物
15によりインダクタンス形成材(金属筐体16,平板
電極22b)から絶縁物24により電気的に絶縁すると
共に,中心軸方向に所定距離範囲で移動できるように配
設される。L調整導体8を移動させる構造は省略してい
るが,筒状体の内部にモータ等を装備することによって
図示しないレール上を走行移動させることができる。
By disposing the L adjusting conductors 7a and 7b in the inductance forming spaces L 1 and L 2 as described above, the cross-sectional area of the one- turn coil formed by each of the inductance forming spaces L 1 and L 2 is reduced. Change. The inductance L of the one-turn coil is L = μS, where μ is the permeability of the vacuum and S is the cross-sectional area of the one-turn coil.
Indicated by. When the L adjusting conductor 7 is arranged in this one-turn coil, the cross-sectional area S is equivalently reduced and the inductance L changes. When the length of the L adjusting conductor 7 is changed, the cross-sectional area S is changed, so that the inductance L can be changed. Therefore, by adjusting the length of the L adjusting conductor 7, the inductance of the internal resonance circuit can be changed, and the resonance frequency of the RFQ accelerator 10 can be changed. Therefore, the ion species to be accelerated can be accelerated with arbitrary energy. You can The RFQ accelerator 1
The resonance frequency of 0 is adjusted by arranging a plurality of L adjustment conductors 7 in the inductance forming spaces L 1 and L 2 according to the adjustment range, as shown in FIGS. 4, 5 and 6. can do. In the configuration shown in FIG. 4, the L adjustment conductors 7 are arranged above and below the inductance forming spaces L 1 and L 2 , respectively, and a total of four L adjustment conductors 7a, 7b, 7c,
7d is used. Further, in the configuration shown in FIG. 5, the L adjustment conductors 7 are symmetrically arranged in the central axis direction of the inductance forming spaces L 1 and L 2 , and a total of four L adjustment conductors 7a and 7 are provided.
b, 7c, 7d are used. Further, in the configuration shown in FIG. 6, the L adjustment conductor 7 has the inductance forming space L 1 ,
They are symmetrically arranged up and down and the center axis of the L 2, a total of eight L adjusting conductor 7a~7h is used. As shown in FIG. 7B, the configuration of the second embodiment of the above-mentioned inductance change is such that the inductance forming space L 1 L 2 in the resonance cavity is
The L adjusting conductors (conductors) 8a and 8b are arranged. The L adjusting conductor 8 is a cylindrical body made of oxygen-free copper as shown in the perspective view of FIG. 8, and is arranged in the central axis direction of the metal casing 16 as shown in FIG. 7A. The position can be freely moved. The L adjusting conductor 8 is electrically insulated from the inductance forming material (the metal casing 16 and the plate electrode 22b) by the insulator 15 by the insulator 15, and is arranged so as to be movable in the predetermined distance range in the central axis direction. It Although the structure for moving the L adjusting conductor 8 is omitted, it is possible to move the L adjusting conductor 8 on a rail (not shown) by installing a motor or the like inside the tubular body.

【0010】上記構成によってインダクタンス形成空間
1 ,L2 が形成するワンターンコイルの断面積を変化
させ,インダクタンスLを変化させることができる。図
7(a)に示す金属筐体16の両端部に近づくほど磁束
密度が高いため,L調整導体8a,8bを端部側に移動
させるほどインダクタンスが変化する度合いが大きくな
る。従って,L調整導体8の位置の調整を行うことによ
って,内部共振回路のインダクタンスを変化させること
ができ,RFQ加速器10の共振周波数が変更できるの
で,加速させるイオン種を任意のエネルギーで加速させ
ることができる。上記L調整導体8の金属筐体16内の
配設位置を変化させてRFQ加速器10の共振周波数を
調整する構成は,その調整範囲に応じて図9に示すよう
に構成することができる。図9に示す構成では,L調整
導体8がインダクタンス形成空間L1 ,L2 の左右に対
称的に配設され,計4個のL調整導体8a,8b,8
c,8dそれぞれの位置移動ができるように構成されて
いる。以上説明した各実施例構成において,L調整導体
7又は8は内部共振回路のインダクタンス成分を形成す
るものでなく,インダクタンス成分形成に及ぼす影響度
を変えるものなので,高周波抵抗の増加は少なく,従っ
てQ値の低下を引き起こすことなく内部共振回路のイン
ダクタンスを変化させることができる。
With the above configuration, the inductance L can be changed by changing the cross-sectional area of the one-turn coil formed by the inductance forming spaces L 1 and L 2 . Since the magnetic flux density is higher toward both ends of the metal housing 16 shown in FIG. 7A, the degree of change in the inductance increases as the L adjustment conductors 8a and 8b are moved toward the ends. Therefore, by adjusting the position of the L adjusting conductor 8, the inductance of the internal resonance circuit can be changed, and the resonance frequency of the RFQ accelerator 10 can be changed. Therefore, the ion species to be accelerated can be accelerated with arbitrary energy. You can The arrangement for adjusting the resonance frequency of the RFQ accelerator 10 by changing the arrangement position of the L adjustment conductor 8 in the metal housing 16 can be configured as shown in FIG. 9 according to the adjustment range. In the configuration shown in FIG. 9, the L adjusting conductors 8 are symmetrically arranged on the left and right sides of the inductance forming spaces L 1 and L 2 , and a total of four L adjusting conductors 8a, 8b, 8 are provided.
The positions c and 8d can be moved. In the configurations of the respective embodiments described above, the L adjusting conductor 7 or 8 does not form the inductance component of the internal resonance circuit but changes the degree of influence on the formation of the inductance component. The inductance of the internal resonant circuit can be changed without causing a decrease in the value.

【0011】[0011]

【発明の効果】以上の説明の通り本発明によれば,共振
空洞内にインダクタンスとキャパシタンスとが形成され
た内部共振回路を備えた高周波四重極加速装置の上記イ
ンダクタンスを形成する形成する空間内に導電体が配設
されている。この導電体の長さ又は位置は,共振空洞の
中心軸方向に調整可能に配設される。共振空洞内のイン
ダクタンスを形成する空間内に導電体を存在させると,
等価的にインダクタンスを形成しているコイルの断面積
が小さくなり,インダクタンスは小さくなる。この導電
体の長さを変化させると,インダクタンス変化に及ぼす
影響度が変わるので,内部共振回路の共振周波数を変え
ることができ,高周波四重極加速装置の共振周波数を変
えて加速する荷電粒子の種類に適合させると同時に,加
速エネルギーを変化させることができる。又,上記導電
体の配設位置を変化させることによっても,インダクタ
ンスを形成する空間内の磁束密度が異なる場所に導電体
が配設されることになり,インダクタンス変化に及ぼす
影響度を変えることができ,長さ変化と同様の作用を与
えることができる。上記導電体は内部共振回路のインダ
クタンス成分を形成せず,インダクタンス成分形成に及
ぼす影響度を変えるものなので,高周波抵抗の増加は抑
えられ,Q値の低下を引き起こすことなく共振周波数調
整可能な高周波四重極加速装置が実現される。
As described above, according to the present invention, in the space for forming the inductance of the high frequency quadrupole accelerator having the internal resonance circuit having the inductance and the capacitance formed in the resonance cavity. A conductor is disposed on the. The length or position of the conductor is arranged so as to be adjustable in the central axis direction of the resonance cavity. When a conductor is present in the space that forms the inductance in the resonant cavity,
The cross-sectional area of the coil that equivalently forms the inductance becomes smaller, and the inductance becomes smaller. When the length of this conductor is changed, the degree of influence on the change in inductance is changed, so that the resonance frequency of the internal resonance circuit can be changed, and the resonance frequency of the high-frequency quadrupole accelerator can be changed to accelerate the acceleration of charged particles. The acceleration energy can be changed at the same time as the type is adapted. Also, by changing the arrangement position of the conductors, the conductors are arranged at different magnetic flux densities in the space forming the inductance, and the degree of influence on the inductance change can be changed. It is possible to give the same effect as changing the length. Since the conductor does not form the inductance component of the internal resonance circuit but changes the degree of influence on the formation of the inductance component, the increase of the high frequency resistance is suppressed, and the resonance frequency can be adjusted without decreasing the Q value. A heavy pole accelerator is realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1実施例に係るRFQ加速器の構
成を示す側面構成図(a)とA−A線矢視断面図
(b)。
FIG. 1 is a side view (a) showing a structure of an RFQ accelerator according to a first embodiment of the present invention and a sectional view (b) taken along the line AA.

【図2】 実施例に係るRFQ加速器の電極構造を示す
斜視図。
FIG. 2 is a perspective view showing an electrode structure of an RFQ accelerator according to an embodiment.

【図3】 第1実施例に係るL調整導体の構成を示す斜
視図。
FIG. 3 is a perspective view showing a configuration of an L adjustment conductor according to the first embodiment.

【図4】 第1実施例構成の変化態様を示す側面構成図
(a)とA−A線矢視断面図(b)。
FIG. 4 is a side view (a) showing a variation of the structure of the first embodiment and a sectional view (b) taken along the line AA of FIG.

【図5】 同上[FIG. 5] Same as above

【図6】 同上FIG. 6 Same as above

【図7】 本発明の第2実施例に係るRFQ加速器の構
成を示す側面構成図(a)とA−A線矢視断面図
(b)。
FIG. 7 is a side view (a) showing a structure of an RFQ accelerator according to a second embodiment of the present invention and a sectional view (b) taken along the line AA.

【図8】 第2実施例に係るL調整導体の構成を示す斜
視図。
FIG. 8 is a perspective view showing a configuration of an L adjustment conductor according to a second embodiment.

【図9】 第2実施例構成の変化態様を示す側面構成図
(a)とA−A線矢視断面図(b)。
FIG. 9 is a side view (a) showing a variation of the structure of the second embodiment and a sectional view (b) taken along the line AA of FIG.

【図10】 RFQ加速器の基本的構成を示す斜視図。FIG. 10 is a perspective view showing a basic configuration of an RFQ accelerator.

【図11】 外部共振回路による共振周波数可変の構成
を示す回路図。
FIG. 11 is a circuit diagram showing a configuration in which a resonance frequency is variable by an external resonance circuit.

【図12】 共振周波数可変のRFQ加速器の従来例構
成を示す斜視図。
FIG. 12 is a perspective view showing the configuration of a conventional example of an RFQ accelerator having a variable resonance frequency.

【図13】 同上FIG. 13 Same as above

【符号の説明】[Explanation of symbols]

7,8…L調整導体(導電体) 10,30〜34…RFQ加速器(高周波四重極加速装
置) 11,12,13,14…四重極電極 16…金属筐体(共振空洞) L1 ,L2 …インダクタンス形成空間
7, 8 ... L adjusting conductor (conductor) 10, 30-34 ... RFQ accelerator (high-frequency quadrupole accelerator) 11, 12, 13, 14 ... Quadrupole electrode 16 ... Metal casing (resonant cavity) L 1 , L 2 ... Inductance forming space

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 筒状に形成された共振空洞の中心軸方向
に四重極電極を配設すると共に,上記共振空洞内にイン
ダクタンスとキャパシタンスとを形成して内部共振回路
を構成し,該共振空洞内に高周波電力を導入することに
より共振空洞を共振させ,上記四重極電極の中心軸に入
射された荷電粒子ビームを加速する高周波四重極加速装
置において,上記共振空洞内の上記インダクタンスを形
成する空間内に,共振空洞の中心軸方向の長さ又は位置
の調整が可能な導電体を配設したことを特徴とする高周
波四重極加速装置。
1. An internal resonance circuit is formed by arranging a quadrupole electrode in a central axis direction of a cylindrical resonance cavity and forming an inductance and a capacitance in the resonance cavity to form an internal resonance circuit. In a high-frequency quadrupole accelerator that resonates the resonant cavity by introducing high-frequency power into the cavity and accelerates the charged particle beam incident on the central axis of the quadrupole electrode, the inductance in the resonant cavity is A high-frequency quadrupole accelerator characterized in that a conductor whose length or position in the central axis direction of the resonance cavity can be adjusted is provided in the space formed.
【請求項2】 上記導電体が共振空洞内に複数個配設さ
れてなる請求項1記載の高周波四重極加速装置。
2. The high frequency quadrupole accelerator according to claim 1, wherein a plurality of said conductors are arranged in a resonance cavity.
JP7875995A 1995-04-04 1995-04-04 High-frequency quadrupole accelerator Pending JPH08273899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7875995A JPH08273899A (en) 1995-04-04 1995-04-04 High-frequency quadrupole accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7875995A JPH08273899A (en) 1995-04-04 1995-04-04 High-frequency quadrupole accelerator

Publications (1)

Publication Number Publication Date
JPH08273899A true JPH08273899A (en) 1996-10-18

Family

ID=13670836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7875995A Pending JPH08273899A (en) 1995-04-04 1995-04-04 High-frequency quadrupole accelerator

Country Status (1)

Country Link
JP (1) JPH08273899A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115226285A (en) * 2022-08-24 2022-10-21 迈胜医疗设备有限公司 Rotating capacitor for synchrocyclotron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115226285A (en) * 2022-08-24 2022-10-21 迈胜医疗设备有限公司 Rotating capacitor for synchrocyclotron
CN115226285B (en) * 2022-08-24 2024-01-26 迈胜医疗设备有限公司 Rotary capacitor for synchrocyclotron

Similar Documents

Publication Publication Date Title
US8067747B2 (en) Parallel plate electrode arrangement apparatus and method
US5113141A (en) Four-fingers RFQ linac structure
CA2574349A1 (en) Mass spectrometer
GB2473689A (en) A converging RF multipole ion guide for ion beam shaping
JP2023553359A (en) Ion implantation systems with resonators, linear accelerator configurations, and toroidal resonators
US6239541B1 (en) RFQ accelerator and ion implanter to guide beam through electrode-defined passage using radio frequency electric fields
US3013173A (en) Magnetic beam focusing method and apparatus
JPH08273899A (en) High-frequency quadrupole accelerator
US7989765B2 (en) Method and apparatus for trapping ions
US7638766B1 (en) Compact quadrupole mass spectrometer
JP2020518994A (en) Ion guide device and related method
US7470900B2 (en) Compensating for field imperfections in linear ion processing apparatus
JP2835951B2 (en) Variable energy RFQ accelerator and ion implanter
JPH07302700A (en) High frequency quadrupole accelerator
JP3633359B2 (en) High frequency quadrupole accelerator
JPH0810638B2 (en) Charged particle accelerator
JPH0787118B2 (en) Quadrupole particle accelerator
JPH07111198A (en) Rfq linear accelerator
JPH0758639B2 (en) Ion beam acceleration / deceleration device
JPH07201493A (en) Magnetic field generating device for magnetron plasma etching
RU2431213C2 (en) Device for directing ion beam, having electrodes on parallel plates
JPH02201855A (en) Wien filter
Odera et al. Field characteristics of an alvarez-type linac structure having chain-like electrode array
JPH06290899A (en) High frequency quadri-polar accelerating device
Yavor Radiofrequency Mass Analyzers