JPH0827227B2 - Surface hardness measuring instrument for fruits and vegetables and method for measuring surface hardness of fruits and vegetables - Google Patents

Surface hardness measuring instrument for fruits and vegetables and method for measuring surface hardness of fruits and vegetables

Info

Publication number
JPH0827227B2
JPH0827227B2 JP19698293A JP19698293A JPH0827227B2 JP H0827227 B2 JPH0827227 B2 JP H0827227B2 JP 19698293 A JP19698293 A JP 19698293A JP 19698293 A JP19698293 A JP 19698293A JP H0827227 B2 JPH0827227 B2 JP H0827227B2
Authority
JP
Japan
Prior art keywords
vegetables
fruits
surface hardness
displacement
fruit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19698293A
Other languages
Japanese (ja)
Other versions
JPH0727689A (en
Inventor
和紀 乙部
純一 杉山
佑二 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NORINSUISANSHO SHOKUHIN SOGO KENKYUSHOCHO
Original Assignee
NORINSUISANSHO SHOKUHIN SOGO KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NORINSUISANSHO SHOKUHIN SOGO KENKYUSHOCHO filed Critical NORINSUISANSHO SHOKUHIN SOGO KENKYUSHOCHO
Priority to JP19698293A priority Critical patent/JPH0827227B2/en
Publication of JPH0727689A publication Critical patent/JPH0727689A/en
Publication of JPH0827227B2 publication Critical patent/JPH0827227B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、青果物の表面硬度測定
器に関し、特に押せ傷のつきやすい柔らかい青果物の表
面硬度を、傷をつけずに測定するための青果物の表面硬
度測定器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface hardness measuring device for fruits and vegetables, and more particularly to a surface hardness measuring device for fruits and vegetables for measuring the surface hardness of soft fruits and vegetables which are easily scratched by being pressed. is there.

【0002】[0002]

【従来の技術】従来、押せ傷のつきやすい柔らかい青果
物の表面硬度を測定するために、振動励起法による青果
物の力学的特性測定法が用いられる。
2. Description of the Related Art Conventionally, in order to measure the surface hardness of soft fruits and vegetables which tend to be pressed and scratched, a method for measuring mechanical characteristics of fruits and vegetables by a vibration excitation method has been used.

【0003】この振動励起法による青果物の力学的特性
測定法では、青果物に振動を加える加振部と、その加振
部による振動を検出する検出部とが分離されていて、青
果物ともいう青果物の波動伝搬特性を測定するようにな
っている。
In this method of measuring the mechanical characteristics of fruits and vegetables by the vibration excitation method, a vibrating section for vibrating the fruits and vegetables and a detecting section for detecting the vibrations by the vibrating section are separated, and It is designed to measure the wave propagation characteristics.

【0004】この表面振動特性は、主にパワースペクト
ルのピーク周波数またはスペクトル全体のシフト量で評
価され、青果物の成熟に伴う軟化の指標として用いられ
ている。この測定されたパワースペクトルと青果物の表
面硬度との対応関係は、次の通りである。 (i)測定されたパワースペクトルのピーク周波数が大
きいほど、青果物の表面硬度が高い(硬い)と評価され
る。 (ii)同一の青果物の追熟に伴う表面硬度の変化を観
察した場合、ピーク周波数が徐々に低周波数側にシフト
することから、追熟に伴って表面硬度が低下、すなわち
柔らかくなることが確認されている。
This surface vibration characteristic is evaluated mainly by the peak frequency of the power spectrum or the shift amount of the entire spectrum, and is used as an index of softening accompanying the maturity of fruits and vegetables. The correspondence between the measured power spectrum and the surface hardness of fruits and vegetables is as follows. (I) The higher the peak frequency of the measured power spectrum is, the higher the surface hardness of fruits and vegetables is (harder). (Ii) When observing the change in surface hardness with ripening of the same fruits and vegetables, it was confirmed that the peak hardness gradually shifts to the lower frequency side, and thus the surface hardness decreases, that is, becomes softer with ripening. Has been done.

【0005】[0005]

【発明が解決しようとする課題】ところが、このような
従来の振動励起法による青果物の表面硬度測定器では、
次のような問題がある。 (1)青果物のサイズを加味しなければ正しい伝搬特性
を得ることはできない。 (2)加振部や検出部を、青果物の広い部分に対して密
着させる必要があるために、加振部や検出部を青果物に
対して強く押しつけ過ぎて、組織を傷つけることがあ
る。 (3)青果物全体の振動を観察する必要があるために、
表面硬度測定器への青果物の固定の仕方により、波動伝
搬特性が変化し易い、よって表面硬度測定値が変化し易
い。 (4)加振部や検出部の機械的特性もデータに含まれて
しまうので、特性の揃った機器を使用する必要がある。
However, in such a conventional surface hardness measuring instrument for fruits and vegetables by the vibration excitation method,
There are the following problems. (1) Correct propagation characteristics cannot be obtained without considering the size of fruits and vegetables. (2) Since the vibrating section and the detecting section need to be brought into close contact with a wide portion of the fruit and vegetables, the vibrating section and the detecting section may be pressed too strongly against the fruit and vegetables, and the tissue may be damaged. (3) Since it is necessary to observe the vibration of the whole fruits and vegetables,
The wave propagation characteristics are likely to change depending on how the fruits and vegetables are fixed to the surface hardness measuring instrument, and thus the surface hardness measurement value is likely to change. (4) Since the mechanical characteristics of the vibration unit and the detection unit are also included in the data, it is necessary to use equipment with uniform characteristics.

【0006】本発明の目的は、上記課題を解消するため
になされたものであり、青果物に押せ傷をつけずに青果
物を保護し、青果物のサイズに影響を受けず、簡単な構
成により正確に青果物の表面硬度を測定することができ
る、青果物の表面硬度測定器と青果物の表面硬度測定方
法を提供することを目的としている。
[0006] The object of the present invention is to solve the above problems, and protects fruits and vegetables without pressing and scratching the fruits and vegetables, without being influenced by the size of the fruits and vegetables, and accurately by a simple structure. An object of the present invention is to provide a surface hardness measuring instrument for fruits and vegetables and a method for measuring the surface hardness of fruits and vegetables, which can measure the surface hardness of fruits and vegetables.

【0007】[0007]

【課題を解決するための手段】上記課題を解決るため
に、請求項1に記載の表面硬度測定器の発明は、測定対
象の青果物の局所に変位(x)を与える変位付与手段
(5)と、前記変位(xi)を検出する変位検出手段
(3)と、前記与えられた変位(xi)により発生する
前記青果物の局所の反力(p)を検出する反力検出手
段(17)と、前記検出変位(x)および検出反力
(p)を入力とし、前記青果物の局所の力学的伝達関
数(H(s)=P(s)/X(s))のゲイン特性
上の反共振周波数(fn)を演算し、この反共振周波数
(fn)と青果物の表面硬度との相関関係より当該青果
物の表面硬度を解析する解析手段(23)と、を備えて
構成される。
In order to solve the above-mentioned problems, the invention of a surface hardness measuring instrument according to claim 1 provides a displacement imparting means (5) for locally displacing (x i ) the fruit or vegetable to be measured. ), A displacement detecting means (3) for detecting the displacement (xi), and a reaction force detecting means (17) for detecting a local reaction force (p 0 ) of the fruits and vegetables caused by the given displacement (xi). ) And the detected displacement (x i ) and the detected reaction force (p 0 ) as inputs, the local mechanical transfer function (H (s) = P 0 (s) / X i (s)) of the fruit and vegetables An anti-resonance frequency (fn) on the gain characteristic is calculated, and an analyzing means (23) for analyzing the surface hardness of the fruit or vegetables based on the correlation between the anti-resonance frequency (fn) and the surface hardness of the fruit or vegetables. To be done.

【0008】本発明においては、好ましくは前記変位付
与手段は、前記青果物に接触する接触子を有し、この接
触子の先端は球状である。
In the present invention, preferably, the displacement applying means has a contactor for contacting the fruit and vegetables, and the tip of the contactor is spherical.

【0009】請求項2に記載の表面硬度測定方法の発明
は、測定対象の青果物の局所に変位(x)を与え、当
該与えられた変位(xi)により発生する前記青果物の
局所の反力(p)を検出し、前記変位(x)および
反力(p)に基づいて、前記青果物の局所の力学的伝
達関数(H(s)=P(s)/X(s))のゲイン
特性上の反共振周波数(fn)を演算し、この反共振周
波数(fn)と青果物の表面硬度との相関関係より当該
青果物の表面硬度を解析するよう構成される。
[0009] invention the surface hardness measurement method according to claim 2 gives a displacement (x i) in the local measurement target fruits or vegetables, the reaction force of the fruits or vegetables of the local generated by the given displacement (xi) (P 0 ), and based on the displacement (x i ) and the reaction force (p 0 ), the local mechanical transfer function (H (s) = P 0 (s) / X i (s) of the fruits and vegetables. )) The antiresonance frequency (fn) on the gain characteristic is calculated, and the surface hardness of the fruit and vegetables is analyzed from the correlation between the antiresonance frequency (fn) and the surface hardness of the fruit and vegetables.

【0010】[0010]

【作用】請求項1乃至3に記載の表面硬度測定器の発明
によれば、変位付与手段(5)により、測定対象の青果
物(13)に対して局所的に変位(x)が与えられ、
この変位(x)は変位検出手段(3)により検出され
る。変位(x)が与えられると、青果物(13)の局
所には反力(p)が生じる。この反力(P)は、反
力検出手段(17)により検出される。検出された変位
(x)および反力(p)は、解析手段(23)に入
力される。解析手段(23)は、入力された変位
(x)および反力(p)に基づいて、青果物(1
3)の局所の力学的伝達関数(H(s)=P(s)/
(s))のゲイン特性上の反共振周波数(fn)を
演算し、この反共振周波数(fn)と青果物の表面硬度
との相関関係より当該青果物の表面硬度を解析する。こ
こで、本発明における測定原理を説明すると、次の通り
である。測定対象の青果物(13)の局所に正弦波状の
変位(x)を周波数掃引しながら加えると、測定対象
の青果物(13)の局所を含む振動系の各要素の定数に
よって決まる周波数において、質量mに加わる力の振幅
が増大したり減衰したりする。ここに、kは弾性定数、
cは粘性定数を表し、それぞれ弾性率、粘性率に対応す
るパラメータである。kは測定器側の力学的要素、k
およびcは試料側の要素を表している。mは、荷重検
出器の検出部および試料の振動に関与する部分の質量を
合わせたものである。xは加えた変位、xは質量の変
位、pは荷重検出器の出力(すなわち、青果物の反
力)を表しており、それぞれ時間を変数とする関数であ
る。この力学系の質量mに関する運動方程式は次式のよ
うに表される。 m・dx/dt=k(x−x)−kx−c・dx/dt ……(1) p=k(x−x) ……(2) 次に(1)、(2)式について、初期値ゼロとした場合
のラプラス変換をほどこすと、 と表される。ただし、s=jω(ωは角周波数、jは虚
数単位)であり、P、Xはp、xをラプラス変
換したものである。H(s)は力学系に与えた変位X
を入力、その結果生じたバネkの伸縮力すなわち青果
物(13)の反力Pを出力したときの力学系の伝達関
数と呼ばれる。伝達関数H(s)は振動性2次要素を分
母と分子に組み合わせた形をしており、T、ζはそれぞ
れ添字で示された要素の時定数および減衰率と呼ばれ
る。伝達関数H(s)は、変位xを入力、反力p
出力として入出力の比率を計算して導かれる。伝達関数
H(s)の導出方法にはいろいろな方法があるが、直接
関数を求めるのではなく、入出力信号のFFT(高速フ
ーリエ変換)を行い、周波数の入出力の周波数成分を演
算して、周波数特性を求めるのが一般的である。これら
の演算を行う解析手段にはサーボアナライザ23が用い
られ、サーボアナライザ23は伝達関数H(s)の周波
数特性を簡単に求めることができる。なお、サーボアナ
ライザ23は制御系の入出力関係を周波数領域で解析す
るのに一般的に用いられている。ここでは、伝達関数を
求める作業自体が重要なのではなく、伝達関数の周波数
特性からわかること(すなわち硬さ指標)が重要である
ことを理解されたい。この伝達関数H(s)は、s=j
ωを代入して極座標表示に書き換えることにより、増幅
率を表す関数と入出力位相差を表す関数の積で表され、
一般的に増幅率の常用対数をとったものをゲイン、入出
力位相差を角度で表したものを位相と呼び、Bode線
図において周波数特性を表す際に用いられる。伝達関数
H(s)のゲインは、ωT=Ω、ωT=Ωと置
き、常用対数をLogで表すと、次式のように表され
る: Log|H(ω)|=Log{1−Ω +(2ζΩ} −Log {1−Ω +(2ζΩ} ……(6) したがって、Bode線図上では、 で極小になり、ω=T −1で極大となる。Tは力の
振幅が極大を示す通常の共振点であるのに対して、T
は振幅の極小点であることから反共振点と呼ばれる。
(4)の式のζはω=T −1、T −1における共振
の鋭さを表しており、ζが1より小さいほど、共振の幅
が狭く、ゲインの大きな鋭い共振が得られる。(7)式
より明らかなように、青果物(13)の弾性定数k2と
反共振周波数fの2乗は比例することから、反共振周
波数fを青果物(13)の硬さ指標に用いることがで
きる。反共振周波数fnとは、制御工学における定義上
は伝達関数の強度、すなわちパワースペクトルが理論上
はゼロになる周波数と定義される。反共振周波数fnは
青果物13の力学系と測定器の力学系によって決まるの
で、測定器の力学系が一定であれば、反共振周波数fn
は青果物13の力学特性を反映した値が得られる。青果
物13の局所をゆっくり押したとき(すなわち変位速度
が遅いとき)に感じる反力(すなわち硬さ)は弾性定数
に依存すると考えることができる。この場合の「ゆっく
り」とは、ふつうに人間がものを触るときの速度と考え
ても問題ない。さらには、弾性定数に相当するのは青果
物13の果肉を局所的に圧縮した際の力−変形曲線の勾
配(すなわち、破断勾配)であるが、硬さ感覚に関する
官能検査と上記の勾配との関連性を報告した文献が多数
存在することからも、硬さは弾性定数に関連することが
明らかである。したがって、弾性定数と反共振周波数f
nとの関連から、反共振周波数fnと硬さ感覚には相関
があると見なすことができる。ただし、反共振周波数の
絶対量と感覚的な硬さの絶対量が1対1で対応するとは
限らない。その理由は、感覚の絶対量を定義することは
現時点では不可能であり、学術的に感覚を絶対量で表す
ことは未だに成し遂げられていないからである。反共振
周波数fnは、あくまでも硬さの相対比較に対応する指
標である。次に、動的弾性率と反共振周波数との関連に
ついて、弾性定数とは力学系の静的な特性を表現する際
に用いられる用語であり、動的な系(振動系)で弾性定
数に相当するのが動的弾性率であると定義される。反共
振周波数と弾性定数(青果物の場合は破断勾配)との関
係は、図2に示すように、動的弾性率が既知のモデル試
料を用いて反共振周波数と動的弾性率との関係であらわ
される。実際の果肉の弾性定数((破断強度)と反共振
周波数との関係は、破断強度と反共振周波数に関する図
4に示される。以上のように、反共振周波数fnと硬さ
感覚には相関があり、反共振周波数fを青果物(1
3)の表面硬度硬の指標に用いることができる。
According to the invention of the surface hardness measuring instrument described in claims 1 to 3, the displacement imparting means (5) locally applies a displacement (x i ) to the fruit or vegetable (13) to be measured. ,
This displacement (x i ) is detected by the displacement detecting means (3). When the displacement (x i ) is given, a reaction force (p 0 ) is locally generated in the fruits and vegetables (13). This reaction force (P 0 ) is detected by the reaction force detection means (17). The detected displacement (x i ) and reaction force (p 0 ) are input to the analysis means (23). The analysis means (23), based on the input displacement (x i ) and reaction force (p 0 ), produces fruits and vegetables (1
3) Local mechanical transfer function (H (s) = P 0 (s) /
The anti-resonance frequency (fn) on the gain characteristic of X i (s) is calculated, and the surface hardness of the fruit or vegetable is analyzed from the correlation between the anti-resonance frequency (fn) and the surface hardness of the fruit or vegetable. Here, the measurement principle in the present invention will be described as follows. When a sinusoidal displacement (x i ) is applied to the local area of the vegetable or fruit (13) to be measured while sweeping the frequency, the mass at the frequency determined by the constants of each element of the vibration system including the local area of the vegetable or fruit (13) to be measured is measured. The amplitude of the force applied to m increases or decreases. Where k is the elastic constant,
c represents a viscosity constant and is a parameter corresponding to the elastic modulus and the viscosity, respectively. k 1 is a mechanical element on the measuring instrument side, k
2 and c represent elements on the sample side. m is the sum of the masses of the detection part of the load detector and the part related to the vibration of the sample. x i is the applied displacement, x is the displacement of the mass, p 0 is the output of the load detector (that is, the reaction force of the fruit and vegetables), and each is a function with time as a variable. The equation of motion for the mass m of this dynamic system is expressed as the following equation. m · d 2 x / dt 2 = k 1 (x i -x) -k 2 x-c · dx / dt ...... (1) p 0 = k 1 (x i -x) ...... (2) then With respect to the equations (1) and (2), when Laplace transform is performed when the initial value is zero, It is expressed as However, s = jω (ω is an angular frequency and j is an imaginary unit), and P 0 and X i are Laplace transforms of p 0 and x i . H (s) is the displacement X i given to the dynamic system
Is called, and the resulting expansion / contraction force of the spring k 1 , that is, the reaction force P 0 of the fruit (13) is output, and is called the transfer function of the dynamic system. The transfer function H (s) has a form in which the oscillating quadratic element is combined with the denominator and the numerator, and T and ζ are called the time constant and damping rate of the element indicated by the subscripts, respectively. The transfer function H (s) is derived by calculating the input / output ratio using the displacement x i as an input and the reaction force p 0 as an output. There are various methods for deriving the transfer function H (s), but instead of directly obtaining the function, FFT (Fast Fourier Transform) of the input / output signal is performed to calculate the frequency component of the input / output of the frequency. Generally, the frequency characteristic is obtained. The servo analyzer 23 is used as the analysis means for performing these calculations, and the servo analyzer 23 can easily obtain the frequency characteristic of the transfer function H (s). The servo analyzer 23 is generally used to analyze the input / output relationship of the control system in the frequency domain. Here, it should be understood that the task of obtaining the transfer function itself is not important, but what is known from the frequency characteristic of the transfer function (that is, the hardness index) is important. This transfer function H (s) is s = j
By substituting ω and rewriting it in polar coordinates, it is expressed by the product of the function representing the amplification factor and the function representing the input / output phase difference,
Generally, the common logarithm of the amplification factor is called a gain, and the input / output phase difference expressed by an angle is called a phase, which is used when expressing frequency characteristics in the Bode diagram. The gain of the transfer function H (s) is set as ωT 1 = Ω 1 and ωT 2 = Ω 2 , and the common logarithm is represented by Log as follows: Log | H (ω) | = Log {1-Ω 1 2 ) 2 + (2ζ 1 Ω 1 ) 2 } -Log {1-Ω 2 2 ) 2 + (2ζ 2 Ω 2 ) 2 } (6) Therefore, on the Bode diagram, At ω = T 2 −1 and at ω = T 2 −1 . T 2 is a normal resonance point where the force amplitude shows a maximum, whereas T 1
Is called the anti-resonance point because it is the minimum point of the amplitude.
Ζ in the equation (4) represents the sharpness of resonance at ω = T 1 −1 and T 2 −1. The smaller ζ is, the narrower the width of the resonance is, and the sharper the resonance is, the larger the gain is obtained. (7) As is apparent from equation is the square of the elastic constant k2 antiresonance frequency f n of the fruits or vegetables (13) from the proportional, the use of anti-resonance frequency f n to the hardness index of the fruit or vegetable (13) You can The anti-resonance frequency fn is defined as the strength of the transfer function, that is, the frequency at which the power spectrum theoretically becomes zero in the definition in control engineering. The anti-resonance frequency fn is determined by the dynamic system of the fruit and vegetables 13 and the dynamic system of the measuring instrument.
Is a value that reflects the mechanical characteristics of the fruits and vegetables 13. It can be considered that the reaction force (that is, hardness) that is felt when the local portion of the fruits and vegetables 13 is pushed slowly (that is, when the displacement speed is slow) depends on the elastic constant. In this case, "slowly" can be thought of as the speed at which humans normally touch objects. Furthermore, what corresponds to the elastic constant is the gradient of the force-deformation curve (that is, the breaking gradient) when the pulp of the fruit and vegetables 13 is locally compressed. It is clear that hardness is related to the elastic constant because there are many documents that report the relationship. Therefore, the elastic constant and the anti-resonance frequency f
From the relationship with n, it can be considered that there is a correlation between the anti-resonance frequency fn and the sense of hardness. However, the absolute amount of anti-resonance frequency and the absolute amount of perceptual hardness do not always have a one-to-one correspondence. The reason is that it is not possible at present to define the absolute amount of sensation, and academically it has not been achieved yet. The anti-resonance frequency fn is merely an index corresponding to the relative comparison of hardness. Next, regarding the relationship between the dynamic elastic modulus and the anti-resonance frequency, the elastic constant is a term used when expressing the static characteristics of a dynamic system. The equivalent is defined as the dynamic modulus. As shown in FIG. 2, the relationship between the anti-resonance frequency and the elastic constant (the breaking gradient in the case of fruits and vegetables) is the relationship between the anti-resonance frequency and the dynamic elastic modulus using a model sample whose dynamic elastic modulus is known. Is represented. The relationship between the actual elastic constant of the pulp ((breaking strength) and the anti-resonance frequency is shown in Fig. 4 regarding the breaking strength and the anti-resonance frequency. As described above, there is a correlation between the anti-resonance frequency fn and the hardness sensation. The anti-resonance frequency f n
The surface hardness of 3) can be used as an index of hardness.

【0011】[0011]

【実施例】以下、本発明の好適な実施例を、添付図面に
基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the accompanying drawings.

【0012】本発明者らは、加振器により、20Hzな
いし200Hzまでの周波数成分を含んだ局所的で微小
なランダム振動を変位として、試料である青果物の表面
に与えた。これにより、青果物における変位・接触圧力
特性を検出して、力学系の伝達関数を計算することによ
り、青果物の表面の局所的な力学的特性を、反共振周波
数で表すことができることを見いだした。このように力
学系の伝達関数を計算することにより、加振部や検出部
の機械的特性の影響を除去する。
The inventors of the present invention applied a local minute random vibration containing a frequency component of 20 Hz to 200 Hz to a surface of a fruit or vegetable as a sample by a vibration exciter. By this, it was found that the local mechanical characteristics of the surface of fruits and vegetables can be represented by anti-resonance frequency by detecting the displacement / contact pressure characteristics of fruits and vegetables and calculating the transfer function of the dynamic system. By calculating the transfer function of the dynamic system in this way, the influence of the mechanical characteristics of the vibration unit and the detection unit is eliminated.

【0013】それと共に、本発明者らは、青果物、特に
たとえばトマトのような果皮が薄くて柔らかい青果物の
熟度や鮮度と、表面の力学的特性と、の相関を見いだし
て、本発明に至った。
At the same time, the inventors of the present invention found a correlation between the ripeness and freshness of fruits and vegetables, in particular fruits and vegetables such as tomatoes having a thin and soft skin, and the mechanical properties of the surface, and arrived at the present invention. It was

【0014】本発明では、微小な接触圧力で青果物の表
面の力学的特性を測定することにより、押せ傷のできや
すいトマトのような柔らかい青果物でも、傷を付けずに
硬さ指標を得ることができる、いわゆる非破壊的品質評
価法を行える青果物の表面硬度測定器と青果物の表面硬
度測定方法を提供する。
In the present invention, by measuring the mechanical properties of the surface of fruits and vegetables with a minute contact pressure, it is possible to obtain an index of hardness without scratching even soft fruits and vegetables such as tomatoes that are apt to be pressed and scratched. Provided is a surface hardness measuring instrument for fruits and vegetables capable of performing a so-called non-destructive quality evaluation method, and a method for measuring the surface hardness of fruits and vegetables.

【0015】青果物では、その硬さが熟度や鮮度の指標
となることから、簡便性などの点を考えて、本発明の青
果物の表面硬度測定器と青果物の表面硬度測定方法は、
青果物の収穫、流通、加工のあらゆる段階で利用価値が
高い。
Since the hardness of fruits and vegetables is an index of ripeness and freshness, the surface hardness measuring instrument for fruits and vegetables according to the present invention and the method for measuring surface hardness of fruits and vegetables are
High utility value at all stages of harvesting, distribution and processing of fruits and vegetables.

【0016】そこで、図1を参照して、本発明の青果物
の表面硬度測定器と青果物の表面硬度測定方法の好まし
い実施例を説明する。
A preferred embodiment of the surface hardness measuring instrument for fruits and vegetables and the surface hardness measuring method for fruits and vegetables according to the present invention will be described with reference to FIG.

【0017】図1には、青果物の表面硬度測定システム
ともいうべき青果物の表面硬度測定器を示している。
FIG. 1 shows a surface hardness measuring instrument for fruits and vegetables which should be called a surface hardness measuring system for fruits and vegetables.

【0018】ベース1の上には、変位計3と加振器5が
設定されている。さらにベース1の上には、微動装置7
の支持部材9が固定されている。
A displacement gauge 3 and a vibrator 5 are set on the base 1. Further on the base 1, there is a fine movement device 7
The support member 9 is fixed.

【0019】この支持部材9には、試料である青果物1
3を載せるかもしくは設定するための試料設置台11が
設けられている。試料設置台11は、簡単な構成であ
り、好ましくは断面L字型となっていて、その上に青果
物13を載せる。図1では、この青果物13はたとえば
トマトを示している。
The support member 9 has a sample of fruits and vegetables 1
A sample installation table 11 for mounting or setting 3 is provided. The sample setting table 11 has a simple structure, and preferably has an L-shaped cross section, on which the fruits and vegetables 13 are placed. In FIG. 1, this vegetable 13 is, for example, a tomato.

【0020】微動装置7は、試料設置台11に載せられ
た青果物13を矢印X方向に沿って、水平方向に微小量
移動して、青果物13を精密に位置決めすることができ
るようになっている。
The fine movement device 7 can precisely position the fruits and vegetables 13 by moving the fruits and vegetables 13 placed on the sample installation table 11 in the horizontal direction along the arrow X direction by a small amount. .

【0021】変位計3は、加振器5を貫通する加振棒1
5に対して機械的に接続され、この加振棒15が青果物
13の局所に与える振動に伴う水平方向の微小な変位量
を測定するようになっている。
The displacement meter 3 includes a vibrating rod 1 which penetrates the vibrating device 5.
5 is mechanically connected to the vibrating bar 15, and a small amount of horizontal displacement caused by the vibration locally applied to the fruit 13 is measured.

【0022】また、加振器5を貫通する加振棒15は、
加振器振動子ともいい、青果物13に対して変位を付与
するための変位付与手段である。この加振棒15には、
荷重計17が取り付けられている。この荷重計17の先
には、接触子33が設けられている。
The vibrating rod 15 penetrating the vibration exciter 5 is
Also referred to as a vibrator oscillator, it is a displacement imparting means for imparting a displacement to the fruits and vegetables 13. This exciting rod 15 has
A load cell 17 is attached. A contact 33 is provided at the tip of the load meter 17.

【0023】この接触子33の先端は、好ましくは球状
もしくは半球状である。このように接触子33の先端を
球状もしくは半球状に形成するのは、上述したように青
果物13の局所に対して、微小な接触圧力で微小な振動
を与えるためである。
The tip of the contact 33 is preferably spherical or hemispherical. The reason why the tip of the contactor 33 is formed into a spherical shape or a hemispherical shape in this way is to give a minute vibration to a local portion of the fruit and vegetables 13 by a minute contact pressure as described above.

【0024】この微小な振動は、好ましくは20ないし
200Hzまでの周波数成分を含んだ局所的で微小なラ
ンダム振動であり、加振器5により、青果物13の皮も
しくは表面に与えられる。この微小なランダム振動は、
一定範囲の周波数の正弦波を、一定の割合で重ね合わせ
たものである。
The minute vibrations are local and minute random vibrations that preferably include frequency components up to 20 to 200 Hz, and are applied to the skin or surface of the fruits and vegetables 13 by the vibrator 5. This small random vibration
It is a combination of sine waves with a certain range of frequencies at a certain ratio.

【0025】このように青果物13の局所に対して、微
小な接触圧力で微小な振動を与えることにより、青果物
13を試料設置台11に固定する仕方により、伝搬特性
が変わってしまうといった、従来の欠点を解消すること
ができる。また、微動装置7により、青果物13の設定
位置をX方向に調整することにより、青果物13のサイ
ズに関係なく青果物13の表面硬度を測定することがで
きる。
As described above, the propagation characteristic is changed depending on how the fruits and vegetables 13 are fixed to the sample setting table 11 by giving a slight vibration to the local portion of the fruits and vegetables 13 with a minute contact pressure. The drawbacks can be eliminated. In addition, by adjusting the setting position of the fruits and vegetables 13 in the X direction by the fine movement device 7, the surface hardness of the fruits and vegetables 13 can be measured regardless of the size of the fruits and vegetables 13.

【0026】また、荷重計17は、荷重検出器ともい
う。この荷重計17は、青果物13の局所に対して、微
小な接触圧力で微小な振動を与えた時に、青果物13の
皮もしくは表面に発生する変位による、反力を検出する
ための反力検出手段である。
The load meter 17 is also called a load detector. The load meter 17 is a reaction force detecting means for detecting a reaction force due to a displacement generated on the skin or surface of the fruits and vegetables 13 when a minute vibration is applied to a local portion of the fruits and vegetables 13 by a minute contact pressure. Is.

【0027】次に、演算測定処理回路19について説明
する。
Next, the calculation and measurement processing circuit 19 will be described.

【0028】上述した変位計3、加振器5、そして荷重
計17に対して、演算測定処理回路19が電気的に接続
されている。
A calculation / measurement processing circuit 19 is electrically connected to the displacement meter 3, the vibrator 5, and the load meter 17 described above.

【0029】荷重計17には増幅器21が接続され、こ
の増幅器21はサーボアナライザ23と電圧計25に接
続されている。電圧計25は、接触子33を青果物13
に接触させた時の接触圧力のオフセット値を、微動装置
7により調整する際の、参照用に設けられる。
An amplifier 21 is connected to the load meter 17, and the amplifier 21 is connected to a servo analyzer 23 and a voltmeter 25. The voltmeter 25 connects the contact 33 to the fruits and vegetables 13
It is provided for reference when adjusting the offset value of the contact pressure when it is brought into contact with the fine movement device 7.

【0030】また、サーボアナライザ23は、デジタル
スペクトラムアナライザともいい、変位信号発生器27
に接続されている。この変位信号発生器27は、電力増
幅器31を介して加振器5に接続されている。
The servo analyzer 23 is also called a digital spectrum analyzer, which is a displacement signal generator 27.
It is connected to the. The displacement signal generator 27 is connected to the vibration exciter 5 via a power amplifier 31.

【0031】これにより、サーボアナライザ23からの
信号に基づいて、変位信号発生器27が変位信号SDを
電力増幅器31に与える。そして、この電力増幅器31
はこの変位信号SDを増幅して加振器5に与えるように
なっている。加振器5は、この増幅された変位信号SD
に基づいて、荷重計17と接触子33を介して青果物1
3の局所に変位を与えることができる。
As a result, the displacement signal generator 27 gives the displacement signal SD to the power amplifier 31 based on the signal from the servo analyzer 23. And this power amplifier 31
Is adapted to amplify the displacement signal SD and give it to the exciter 5. The vibration exciter 5 receives the amplified displacement signal SD.
Based on the load cell 17 and the contactor 33
Displacement can be given locally in 3.

【0032】さらに、変位計3は増幅器31を介してサ
ーボアナライザ23に接続されている。これにより、変
位計3は青果物13に発生する変位を測定し、この測定
された変位の信号PSを増幅器29で増幅して、サーボ
アナライザ23に入力できるようになっている。
Further, the displacement meter 3 is connected to the servo analyzer 23 via an amplifier 31. As a result, the displacement meter 3 measures the displacement generated in the fruits and vegetables 13, the signal PS of the measured displacement is amplified by the amplifier 29, and can be input to the servo analyzer 23.

【0033】次に、図1の本発明の青果物の表面硬度測
定器の実施例における実験例を説明する。 実験例1 まず、図1の青果物の表面硬度測定器を用いて、青果物
13の表面硬度を測定するに先立って、円柱状のモデル
試料(模擬試料、図示せず)の特性を測定した。
Next, an experimental example in the embodiment of the surface hardness measuring instrument for fruits and vegetables of the present invention shown in FIG. 1 will be described. Experimental Example 1 First, the characteristics of a cylindrical model sample (simulated sample, not shown) were measured using the surface hardness measuring instrument for fruits and vegetables shown in FIG. 1 prior to measuring the surface hardness of the fruits and vegetables 13.

【0034】この円柱状のモデル試料は、硬化剤の量を
調整して硬さをコントロールしたシリコーンゴム製の円
柱状モデルであり、たとえばその直径が20mmで長さ
が30mmである。
The cylindrical model sample is a cylindrical model made of silicone rubber in which the hardness is controlled by adjusting the amount of the curing agent, and the diameter is 20 mm and the length is 30 mm, for example.

【0035】モデル試料の表面硬度測定条件は、次のよ
うになっている。
The conditions for measuring the surface hardness of the model sample are as follows.

【0036】図1の電力増幅器31から加振器5に与え
られる振幅制御電圧は、たとえば0.02Vであり、こ
の振幅制御電圧を加振器5に与えることにより、加振器
5は荷重計17と接触子33を介して、モデル試料の局
所に対して最大振幅3マイクロメータ相当のランダム振
動を変位として与えた。
The amplitude control voltage applied from the power amplifier 31 of FIG. 1 to the exciter 5 is, for example, 0.02 V. By applying the amplitude control voltage to the exciter 5, the exciter 5 is loaded with a load meter. Random vibration having a maximum amplitude of 3 micrometers was applied as a displacement to the local portion of the model sample via 17 and the contact 33.

【0037】また、荷重検出器ともいう荷重計17から
増幅器21を介してサーボアナライザ23に与えられる
反力もしくは接触圧力のオフセット出力電圧は、2Vな
いし4Vであり、このオフセット出力電圧は、荷重計1
7における接触圧力3ないし8gfに相当する。
The offset output voltage of the reaction force or contact pressure applied to the servo analyzer 23 from the load meter 17 also called a load detector via the amplifier 21 is 2V to 4V, and this offset output voltage is the load meter. 1
Corresponding to a contact pressure of 3 to 8 gf at 7.

【0038】さらに、加振器5によるランダム振動の周
波数は20ないし200Hzに設定して、室温(20°
C)下で測定を行った。
Further, the frequency of random vibration by the vibrator 5 is set to 20 to 200 Hz, and the room temperature (20 °
C) The measurements were made under

【0039】硬さの参照値としては、微小体用の動的粘
弾性測定器(東洋精機製)を用いて、縦振動モード、周
波数2Hz、振幅40マイクロメータの各条件設定で、
室温(20°C)下で測定した動的弾性率を用いた。
As a reference value for hardness, a dynamic viscoelasticity measuring instrument (manufactured by Toyo Seiki Co., Ltd.) for microscopic bodies was used, and longitudinal vibration mode, frequency 2 Hz, and amplitude 40 micrometer were set.
The dynamic elastic modulus measured at room temperature (20 ° C) was used.

【0040】以上の実験の結果を、図2に示す。The results of the above experiment are shown in FIG.

【0041】図2においては、反共振周波数と、上述の
ようにして得られた動的弾性率との関係を示している。
この反共振周波数とは、共振しないところにおける周波
数をいう。
FIG. 2 shows the relationship between the anti-resonance frequency and the dynamic elastic modulus obtained as described above.
The anti-resonance frequency means a frequency at a place where resonance does not occur.

【0042】動的弾性率で1×106 から13×106
dyn/cm2(cm2は平方cmのこと)の範囲のモ
デル試料では、反共振周波数が22Hzないし61Hz
の範囲で変化することを確認し、両者の間に対数的な関
係が存在することを確認した。
Dynamic elastic modulus of 1 × 10 6 to 13 × 10 6
The antiresonance frequency is 22 Hz to 61 Hz in the model sample in the range of dyn / cm2 (cm2 means square cm).
It was confirmed that there was a logarithmic relationship between the two, and that there was a change in the range.

【0043】次に、実験例1を前提として実験例2を行
った。 実験例2 図1に示す青果物の表面硬度測定器を用いて、青果物1
3として市販のトマト(品種名は桃太郎)の硬さを識別
する実験を、次のようにして行った。
Next, based on the experimental example 1, the experimental example 2 was performed. Experimental Example 2 Using the surface hardness measuring device for fruits and vegetables shown in FIG.
An experiment for identifying the hardness of a commercially available tomato (various name: Momotaro) as No. 3 was performed as follows.

【0044】初めに、21個の青果物13を手で触っ
て、図3に示すように、硬さ(表面硬度)の異なる3つ
のグループA,B,Cに分けた。
First, 21 fruits and vegetables 13 were touched by hand and divided into three groups A, B and C having different hardness (surface hardness) as shown in FIG.

【0045】図3では、各グループA,B,Cについて
の反共振周波数、破断勾配、破断力の各測定項目を示し
ている。
FIG. 3 shows the measurement items of the anti-resonance frequency, the breaking gradient, and the breaking force for each of the groups A, B, and C.

【0046】破断勾配、破断力は、次のような破断試験
により求められる。まず、試料を中心から2等分にし、
切断面を下にして試料台の上に載せる。そして、表面硬
度を測定した部位にプランジャを垂直に貫入させる。プ
ランジャが試料に接触してから1mm変位するまでの、
変位に対する荷重の変化率を「破断勾配」といい、果皮
が破れた時点での最大荷重を「破断力」という。
The breaking gradient and breaking force are determined by the following breaking test. First, divide the sample into two equal parts from the center,
Place the cut surface down on the sample table. Then, the plunger is vertically inserted into the portion where the surface hardness is measured. From the contact of the plunger with the sample to the displacement of 1 mm,
The rate of change of load with respect to displacement is called "breaking gradient", and the maximum load at the time when the peel peels is called "breaking force".

【0047】この測定項目の内の破断勾配とは、実験例
1で求められた動的弾性率に相当する硬さ指標である。
The rupture slope of the measurement items is a hardness index corresponding to the dynamic elastic modulus obtained in Experimental Example 1.

【0048】一番表面の硬いグループAと、グループA
のものよりは柔らかいグループBについて、図1の青果
物の表面硬度測定器により、各青果物13につきその赤
道部を2か所測定した。また、各青果物13の赤道部に
おける硬さの指標を得るために、上記2つの測定箇所の
破断試験を行って破断力を得た。
The hardest group A and the group A
For Group B, which is softer than that of No. 1, the equatorial portion of each of the fruits and vegetables 13 was measured at two locations using the surface hardness measuring instrument for fruits and vegetables shown in FIG. Further, in order to obtain an index of hardness at the equator of each fruit and vegetable 13, a breaking test was performed on the above two measurement points to obtain a breaking force.

【0049】一方、中間の硬さのグループCは、軟化さ
せるために5日間、20°Cの環境に放置した後に、同
様にグループCの各青果物13の赤道部の2か所を図1
の青果物の表面硬度測定器により測定し、そして破断試
験を行った。
On the other hand, the medium hardness group C was left in the environment of 20 ° C. for 5 days for softening, and then the two equator parts of each of the fruits and vegetables 13 of the group C were also shown in FIG.
Of the fruits and vegetables were subjected to a breaking test.

【0050】図4は、図3で示した上記反共振周波数
と、破断勾配との関係をグラフで表したものである。
FIG. 4 is a graph showing the relationship between the anti-resonance frequency shown in FIG. 3 and the breaking gradient.

【0051】図4においては、上述した破断試験に基づ
き、プランジャ(図示せず)を青果物13の赤道部に押
し込んだ際に、そのプランジャの移動距離が1mmまで
の範囲における、破断勾配(gf/mm)と、反共振周
波数(Hz)との関係を示している。図4の関係におい
て、破断勾配と反共振周波数との間には、0.899と
いう強い相関が得られた。つまり、反共振周波数と、破
断勾配との関係に関しては、ほぼ再現性の得られること
が分かった。
In FIG. 4, when a plunger (not shown) was pushed into the equator of the fruit and vegetables 13 based on the above-mentioned breaking test, the breaking gradient (gf / gf / mm) and the anti-resonance frequency (Hz). In the relationship of FIG. 4, a strong correlation of 0.899 was obtained between the breaking slope and the anti-resonance frequency. That is, it was found that the relationship between the anti-resonance frequency and the breaking slope was almost reproducible.

【0052】つまり、モデル試料の硬さ指標である動的
弾性率が増加するのに伴って、反共振周波数が大きくな
ることが確認された。また、青果物を用いた実験例で
も、図4に示すように、破断勾配(動的弾性率に相当す
る指標)が大きくなるに伴って、反共振周波数が増加す
ることが確認された。
That is, it was confirmed that the anti-resonance frequency increased as the dynamic elastic modulus, which is the hardness index of the model sample, increased. Also in the experimental example using fruits and vegetables, as shown in FIG. 4, it was confirmed that the anti-resonance frequency increases as the breaking gradient (index corresponding to the dynamic elastic modulus) increases.

【0053】しかも、図4に示すように、この反共振周
波数と破断勾配には強い相関関係があることが確認され
た。
Moreover, as shown in FIG. 4, it was confirmed that there is a strong correlation between the antiresonance frequency and the breaking gradient.

【0054】このように、青果物の熟度やテクスチャー
を測定するのには、青果物の力学的特性は重要な指標と
なり、特に表面の柔らかい青果物の力学的特性(青果物
の表面硬度)を、青果物に与えられる変位とその変位に
よる反力(接触圧力)から反共振周波数を求めることに
より、無傷の状態で簡便に青果物の表面硬度を測定する
ことができる。
As described above, the mechanical properties of fruits and vegetables are an important index for measuring the ripeness and texture of the fruits and vegetables. Particularly, the mechanical properties of the fruits and vegetables having a soft surface (the surface hardness of the fruits and vegetables) are measured as By obtaining the anti-resonance frequency from the given displacement and the reaction force (contact pressure) due to the displacement, the surface hardness of fruits and vegetables can be easily measured in an intact state.

【0055】本発明の実施例における特徴は、次の通り
である。 (1)振動子ともいう加振器5に、荷重検出器ともいう
荷重計17を取り付けたことにより、加振器5と荷重計
17がほぼ同一箇所となり、しかも微動装置7によりX
方向にそって青果物13の位置を調整でき、青果物13
の大きさ(サイズ)の大小に影響を受けずに、青果物1
3の表面硬度の測定をすることができる。 (2)接触子33の接触圧力が微小(たとえば数gf)
であるために、押せ傷を青果物13に付けることなく表
面硬度を測定することができる。 (3)加える振動のエネルギーが微小(たとえば振幅数
マイクロメータ、最高周波数200Hz)であることか
ら、測定箇所以外では振動が減衰してしまうために、青
果物13全体の伝搬特性は無関係となる。このために、
青果物13の固定のための特別な治具が不要である。 (4)入出力の比である伝達関数で力学的特性を記述す
ることにより、青果物の表面硬度測定器の特性を除くこ
とができる。つまり、青果物の表面硬度測定器の特性に
関係なく、青果物の表面硬度を測定することができる。 (5)接触子の接触面が球状もしくは半球状であり、そ
の面積は微小であるので、対象物である青果物13との
接触各変動の影響を受けにくい。
The features of the embodiment of the present invention are as follows. (1) By attaching the load meter 17 also called a load detector to the vibrator 5 also called a vibrator, the vibrator 5 and the load meter 17 are located at almost the same location, and the fine movement device 7 makes X
You can adjust the position of fruits and vegetables 13 along the direction.
Fruit and vegetables 1 without being affected by the size of
The surface hardness of 3 can be measured. (2) The contact pressure of the contact 33 is very small (for example, several gf)
Therefore, it is possible to measure the surface hardness without pressing the fruits and vegetables 13. (3) Since the energy of the applied vibration is very small (for example, an amplitude of a few micrometers and the maximum frequency is 200 Hz), the vibration is attenuated at locations other than the measurement location, so that the propagation characteristics of the entire fruits and vegetables 13 are irrelevant. For this,
No special jig for fixing the fruits and vegetables 13 is required. (4) By describing the mechanical characteristics by the transfer function, which is the ratio of input and output, the characteristics of the surface hardness measuring instrument for fruits and vegetables can be excluded. That is, the surface hardness of fruits and vegetables can be measured regardless of the characteristics of the surface hardness measuring instrument for fruits and vegetables. (5) Since the contact surface of the contactor is spherical or hemispherical and the area thereof is minute, it is not easily affected by each variation in contact with the fruit or vegetable 13 as the object.

【0056】ところで、本発明は上記実施例に限定され
ない。
The present invention is not limited to the above embodiment.

【0057】[0057]

【発明の効果】以上述べたように、本発明によれば、青
果物に押せ傷をつけずに青果物を保護し、青果物のサイ
ズに影響を受けず、簡単な構成により正確に青果物の表
面硬度を測定することができる。
As described above, according to the present invention, the fruits and vegetables are protected without being pressed against the fruits and vegetables, and are not affected by the size of the fruits and vegetables, and the surface hardness of the fruits and vegetables can be accurately measured by a simple structure. Can be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の青果物の表面硬度測定器の好ましい実
施例を示すブロック図。
FIG. 1 is a block diagram showing a preferred embodiment of a surface hardness measuring instrument for fruits and vegetables according to the present invention.

【図2】反共振周波数と動的弾性率との関係を示す図。FIG. 2 is a diagram showing a relationship between an anti-resonance frequency and a dynamic elastic modulus.

【図3】実験例の各グループにおける反共振周波数、破
断勾配、そして破断力を示す図。
FIG. 3 is a diagram showing an anti-resonance frequency, a breaking gradient, and a breaking force in each group of experimental examples.

【図4】反共振周波数と破断勾配の関係を示す図。FIG. 4 is a diagram showing a relationship between an anti-resonance frequency and a breaking gradient.

【符号の説明】[Explanation of symbols]

1 ベース 3 変位計 5 加振器(変位付与手段) 7 微動装置 13 青果物(試料) 17 荷重計(反力検出手段) 19 演算測定処理回路 1 base 3 displacement meter 5 vibrator (displacement imparting means) 7 fine movement device 13 fruits and vegetables (sample) 17 load meter (reaction force detecting means) 19 arithmetic measurement processing circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 測定対象の青果物の局所に変位(x
を与える変位付与手段と、前記変位(xi)を検出する
変位検出手段と、 前記与えられた変位(xi)により発生する前記青果物
の局所の反力(p)を検出する反力検出手段と、 前記検出変位(x)および検出反力(p)を入力と
し、前記青果物の局所の力学的伝達関数(H(s)=P
(s)/X(s))のゲイン特性上の反共振周波数
(fn)を演算し、この反共振周波数(fn)と青果物
の表面硬度との相関関係より当該青果物の表面硬度を解
析する解析手段と、 を備えることを特徴とする青果物の表面硬度測定器。
1. A local displacement (x i ) of a vegetable or fruit to be measured
And a displacement detecting means for detecting the displacement (xi), and a reaction force detecting means for detecting a local reaction force (p 0 ) of the fruits and vegetables caused by the given displacement (xi). , The detected displacement (x i ) and the detected reaction force (p 0 ) are input, and the local mechanical transfer function (H (s) = P of the fruits and vegetables is input.
The anti-resonance frequency (fn) on the gain characteristic of 0 (s) / X i (s) is calculated, and the surface hardness of the fruit or vegetable is analyzed from the correlation between the anti-resonance frequency (fn) and the surface hardness of the fruit or vegetable. A surface hardness measuring instrument for fruits and vegetables, comprising:
【請求項2】 測定対象の青果物の局所に変位(x
を与え、当該与えられた変位(xi)により発生する前
記青果物の局所の反力(p)を検出し、前記変位(x
)および反力(P)に基づいて、前記青果物の局所
の力学的伝達関数(H(s)=P(s)/X
(s))のゲイン特性上の反共振周波数(fn)を演
算し、この反共振周波数(fn)と青果物の表面硬度と
の相関関係より当該青果物の表面硬度を解析することを
特徴とする青果物の表面硬度測定方法。
2. The local displacement (x i ) of the fruit or vegetable to be measured
And a local reaction force (p 0 ) of the fruits and vegetables caused by the given displacement (xi) is detected, and the displacement (x
i ) and reaction force (P 0 ) based on the local mechanical transfer function (H (s) = P 0 (s) / X of the fruits and vegetables.
It is characterized in that the anti-resonance frequency (fn) in the gain characteristic of i (s) is calculated, and the surface hardness of the fruit or vegetable is analyzed from the correlation between the anti-resonance frequency (fn) and the surface hardness of the fruit or vegetable. Method for measuring surface hardness of fruits and vegetables.
JP19698293A 1993-07-14 1993-07-14 Surface hardness measuring instrument for fruits and vegetables and method for measuring surface hardness of fruits and vegetables Expired - Lifetime JPH0827227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19698293A JPH0827227B2 (en) 1993-07-14 1993-07-14 Surface hardness measuring instrument for fruits and vegetables and method for measuring surface hardness of fruits and vegetables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19698293A JPH0827227B2 (en) 1993-07-14 1993-07-14 Surface hardness measuring instrument for fruits and vegetables and method for measuring surface hardness of fruits and vegetables

Publications (2)

Publication Number Publication Date
JPH0727689A JPH0727689A (en) 1995-01-31
JPH0827227B2 true JPH0827227B2 (en) 1996-03-21

Family

ID=16366872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19698293A Expired - Lifetime JPH0827227B2 (en) 1993-07-14 1993-07-14 Surface hardness measuring instrument for fruits and vegetables and method for measuring surface hardness of fruits and vegetables

Country Status (1)

Country Link
JP (1) JPH0827227B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028445A (en) * 2013-07-30 2015-02-12 国立大学法人広島大学 Hardness measuring device of fruit, hardness measuring method of fruit, and ripeness evaluation method of fruit
CN105527390A (en) * 2015-12-31 2016-04-27 西安远景信息技术有限公司 Fruit quality fast detector

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002296254A (en) * 2001-03-30 2002-10-09 Mitsui Mining & Smelting Co Ltd Method and instrument for measuring hardness of sarcocarp of vegetables and fruits
JP4899049B2 (en) * 2006-03-24 2012-03-21 国立大学法人広島大学 Method and apparatus for measuring the viscosity of fruits and vegetables
CN110779861B (en) * 2019-10-07 2020-08-14 浙江大学 Fruit and vegetable compactness measuring device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028445A (en) * 2013-07-30 2015-02-12 国立大学法人広島大学 Hardness measuring device of fruit, hardness measuring method of fruit, and ripeness evaluation method of fruit
CN105527390A (en) * 2015-12-31 2016-04-27 西安远景信息技术有限公司 Fruit quality fast detector

Also Published As

Publication number Publication date
JPH0727689A (en) 1995-01-31

Similar Documents

Publication Publication Date Title
Loutridis et al. Crack identification in double-cracked beams using wavelet analysis
Armstrong et al. Impulsive excitation of acoustic vibrations in apples for firmness determination
Bajema et al. Instrumented pendulum for impact characterization of whole fruit and vegetable specimens
US9494475B2 (en) Apparatus, system and method for dynamically measuring material viscoelasticity using shear wave induced resonance
US7441465B2 (en) Measurement of properties of thin specimens based on experimentally acquired force-displacement data
US5095465A (en) In situ testing with surface seismic waves of materials having properties that change with time
Wang et al. Pear dynamic characteristics and firmness detection
JP2022036270A5 (en)
Armandei et al. Experimental study on variation of mechanical properties of a cantilever beam of bamboo
FINNEY JR Vibration techniques for testing fruit firmness
US5365457A (en) In situ dynamic material property measurement system
Nnodim et al. Design, simulation, and experimental testing of a tactile sensor for fruit ripeness detection
JPH0827227B2 (en) Surface hardness measuring instrument for fruits and vegetables and method for measuring surface hardness of fruits and vegetables
Van Woensel et al. Measuring the mechanical properties of apple tissue using modal analysis
US3416363A (en) Method and apparatus for determining the dynamic qualities of elastic materials
JP3301314B2 (en) Measurement method of elastic constant and damping ratio of DUT
Petróczki et al. Improvement of compressive testing instrument with wide range of speed for examining agricultural materials
Moreira et al. A generalized frequency-temperature viscoelastic model
De Ketelaere et al. PH—Postharvest technology: advances in spectral analysis of vibrations for non-destructive determination of tomato firmness
Lu et al. A transient method for determining dynamic viscoelastic properties of solid foods
Kulisiewicz et al. Identification of nonlinear damping using energy balance method with random pulse excitation
JP2982802B1 (en) Fruit texture measuring device
JPH11183443A (en) Measuring method for ripeness degree of fruit
Endriatno et al. Dynamic Responses at Various Points of Aluminum Cantilever Beam
JP2000097920A (en) Apparatus for measuring maturity of fruit

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term