JPH08271765A - Oeic array provided with lens - Google Patents

Oeic array provided with lens

Info

Publication number
JPH08271765A
JPH08271765A JP9956495A JP9956495A JPH08271765A JP H08271765 A JPH08271765 A JP H08271765A JP 9956495 A JP9956495 A JP 9956495A JP 9956495 A JP9956495 A JP 9956495A JP H08271765 A JPH08271765 A JP H08271765A
Authority
JP
Japan
Prior art keywords
light receiving
lens
oeic
array
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9956495A
Other languages
Japanese (ja)
Inventor
Takeshi Sekiguchi
剛 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GIJUTSU KENKYU KUMIAI SHINJOHO
GIJUTSU KENKYU KUMIAI SHINJOHO SHIYORI KAIHATSU KIKO
Sumitomo Electric Industries Ltd
Original Assignee
GIJUTSU KENKYU KUMIAI SHINJOHO
GIJUTSU KENKYU KUMIAI SHINJOHO SHIYORI KAIHATSU KIKO
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GIJUTSU KENKYU KUMIAI SHINJOHO, GIJUTSU KENKYU KUMIAI SHINJOHO SHIYORI KAIHATSU KIKO, Sumitomo Electric Industries Ltd filed Critical GIJUTSU KENKYU KUMIAI SHINJOHO
Priority to JP9956495A priority Critical patent/JPH08271765A/en
Publication of JPH08271765A publication Critical patent/JPH08271765A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE: To obtain a practical OEIC array whose manufacture is easy by providing only one cylindrical surface type lens on the back surface of an OEIC chip on which a flip-chip type photodetector and an electronic integrated circuit are formed, and making the photodetective part of each photodetector an ellipse or a rectangle. CONSTITUTION: The OEIC array 1 is provided with four photodiodes arrayed in one line on the lower surface of the array 1. The photodetective parts 11a to 11d are formed toward the inside of the chip, and receive light transmitted through inside the chip. The parts 11a to 11d are formed, so that their shapes are ellipse including a long diameter which is in parallel with the arrayed direction of the parts 11a to 11d. On the other hand, a lens 12 having a cylindrical surface which follows a cylindrical surface having an axis in parallel with the arrayed direction of the photodiodes is formed on the upper surface. The lens 12 has a shape by which focal points are linked on the respective parts 11a to 11d of the photodiodes. By such constitution, the OEIC array provided with the lens whose tolerance with respect to the incident light is very large can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レンズ付OEIC(光
電子集積回路)アレイに関する。より詳細には、本発明
は、集積回路チップの裏面から受光するフリップチップ
型の受光素子を含むOEICであって、特に複数の受光
素子を一体に備えたOEICアレイの新規な構造に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an OEIC (Optical Electronic Integrated Circuit) array with a lens. More specifically, the present invention relates to an OEIC including a flip-chip type light receiving element that receives light from the back surface of an integrated circuit chip, and more particularly to a novel structure of an OEIC array integrally including a plurality of light receiving elements.

【0002】[0002]

【従来の技術】近年急速に利用が拡大している各種情報
機器の応用分野において、特に、画像あるいは映像を取
り扱うシステムや並列コンピュータ等では、従来に比較
すると桁違いに大量のデータを取り扱うようになってき
ている。そこで、無誘導で高密度な信号伝送が可能な光
ファイバの特徴を活かしてこの種のシステムを構築すべ
く種々の技術開発が進行しつつある。
2. Description of the Related Art In the field of application of various information devices, which are rapidly expanding in use in recent years, particularly in systems for handling images or video, parallel computers, etc., it is necessary to handle an enormous amount of data as compared with the conventional one. It has become to. Therefore, various technological developments are underway to construct a system of this kind by taking advantage of the characteristics of an optical fiber capable of non-induction and high-density signal transmission.

【0003】但し、現状では信号処理の多くは電気信号
で取り扱われるので、光伝送技術を用いたシステムにお
いては頻繁な電気/光または光/電気変換が不可欠にな
る。そこで、光/電気変換または電気/光変換を行う光
素子と光信号の伝送媒体である光ファイバとを一体にし
た光モジュールが供給されており、これを電子回路と光
ファイバとのインターフェースに使用することが一般的
である。更に、光素子に不可避に付随する駆動回路や増
幅回路等もこの光モジュールに一体に装備されている場
合が多い。このような光モジュールを用いることによ
り、光ファイバと光素子とを結合する際に必要な光軸合
わせ等の工程を装置の製造現場では省略することがで
き、光システムを効率良く構築することが可能になる。
However, since most of signal processing is currently handled by electric signals, frequent electric / optical or optical / electrical conversion is indispensable in a system using the optical transmission technology. Therefore, there is provided an optical module in which an optical element that performs optical / electrical conversion or electrical / optical conversion and an optical fiber that is a transmission medium of an optical signal are integrated, and this is used as an interface between an electronic circuit and an optical fiber. It is common to Further, in many cases, a drive circuit, an amplifier circuit and the like, which are unavoidably attached to the optical element, are integrally provided in the optical module. By using such an optical module, steps such as optical axis alignment required when coupling an optical fiber and an optical element can be omitted at the device manufacturing site, and an optical system can be efficiently constructed. It will be possible.

【0004】しかしながら、前述の並列処理コンピュー
タ等の新規なアーキテクチャへの適用を考慮した場合、
光信号伝送路のチャンネル数は非常に多くなる。そこ
で、例えば、複数の光素子を一体にパッケージングした
光素子アレイや、1本で複数のコアを備えた多芯コアフ
ァイバ等を開発して多チャンネル化へ対応することが試
みられている。
However, in consideration of application to the new architecture such as the above-mentioned parallel processing computer,
The number of channels of the optical signal transmission line becomes very large. Therefore, for example, an optical element array in which a plurality of optical elements are integrally packaged, a multi-core fiber having a plurality of cores by one, and the like have been developed to try to cope with multi-channel.

【0005】[0005]

【発明が解決しようとする課題】多芯コア光ファイバを
用いてシステムを構成しようとした場合、光ファイバの
コア数に対応した複数の光素子および電子回路を一体化
したOEICアレイを用いることができると便利であ
る。即ち、OEICは、HEMT、HBT等の化合物半
導体を材料として、受光素子あるいは発光素子である光
素子と、通常の電子素子とを一体に集積化した集積回路
である。従って、例えば、受光素子であるフォトダイオ
ードと、このフォトダイオードの直後に結合される増幅
器等を一体の集積回路として製造することができる。従
って、多チャンネル化する場合でも、複数の光素子と電
子回路素子とを同時に形成すればよい。但し、単独のO
EICを単純に複数連結しただけでは以下に述べるよう
な種々の問題が発生する。従って、これらの問題点を全
て解決しなければ、実際に使用できるOEICアレイを
実現することはできない。
When a system is constructed using a multi-core optical fiber, an OEIC array in which a plurality of optical elements and electronic circuits corresponding to the number of cores of the optical fiber are integrated is used. It would be convenient if possible. That is, the OEIC is an integrated circuit in which an optical element, which is a light receiving element or a light emitting element, and an ordinary electronic element are integrally integrated, using a compound semiconductor such as HEMT or HBT as a material. Therefore, for example, the photodiode, which is a light receiving element, and the amplifier and the like coupled immediately after the photodiode can be manufactured as an integrated circuit. Therefore, even when the number of channels is increased, a plurality of optical elements and electronic circuit elements may be formed at the same time. However, a single O
Simply connecting a plurality of EICs causes various problems as described below. Therefore, an OEIC array that can be actually used cannot be realized without solving all of these problems.

【0006】即ち、OEICアレイにおいて集積化され
る電子回路はその動作時に不可避に熱を発生する。従っ
て、特にアレイ化して多数の電子回路を含んでいるOE
ICアレイチップでは効率良く放熱させなければならな
い。そこで、半導体集積回路において放熱性が問題にな
った場合の典型的な解決方法を採り入れて、OEICア
レイチップをフリップチップ化することが提案されてい
る。即ち、通常のOEICでは、半導体ウェハの一方の
表面を加工して集積回路が形成された後、加工されてい
ない面で基板等に固着させて実装される。しかしなが
ら、集積回路等が形成された面を実装面側にして実装す
ることにより、半導体ウェハ自体をヒートシンクとして
利用し、効率良く冷却できるモジュールを構成し得るこ
とが知られている。
That is, the electronic circuit integrated in the OEIC array inevitably generates heat during its operation. Therefore, especially an OE including a large number of electronic circuits in an array.
The IC array chip must efficiently dissipate heat. Therefore, it has been proposed to adopt a typical solution to the problem of heat dissipation in a semiconductor integrated circuit and flip the OEIC array chip into a flip chip. That is, in a normal OEIC, after one surface of a semiconductor wafer is processed to form an integrated circuit, the unprocessed surface is fixed and mounted on a substrate or the like. However, it is known that the semiconductor wafer itself can be used as a heat sink to form a module that can be efficiently cooled by mounting the surface on which the integrated circuit and the like are formed on the mounting surface side.

【0007】但し、OEICをこのような方法でフリッ
プチップ化した場合、受光素子の受光部は、半導体ウェ
ハ自体を介して入射光を受光することになる。このた
め、光ファイバ等の出射端と受光素子の受光部との間隔
が大きくなり、受光部に対する入射光軸のトレランスが
小さくなるという問題がある。更に、受光素子は電気回
路的には電流源であるが、同時に容量素子としての特性
も有しているので、トレランスの拡大のために受光部の
面積を大きくすると動作速度が低下してしまう。そこ
で、このような問題に対して、特開昭63-35114号公報に
は、半導体ウェハの裏面を加工して球面レンズを形成
し、このレンズにより入射光の位置決めトレランスを拡
大する技術が開示されている。
However, when the OEIC is flip-chiped by such a method, the light receiving portion of the light receiving element receives the incident light through the semiconductor wafer itself. Therefore, there is a problem that the distance between the emission end of the optical fiber or the like and the light receiving portion of the light receiving element becomes large, and the tolerance of the incident optical axis with respect to the light receiving portion becomes small. Further, although the light receiving element is a current source in terms of an electric circuit, it also has characteristics as a capacitive element, and therefore, if the area of the light receiving portion is increased to increase the tolerance, the operating speed will be reduced. Therefore, in order to deal with such a problem, Japanese Patent Laid-Open No. 63-35114 discloses a technique of processing the back surface of a semiconductor wafer to form a spherical lens, and enlarging the positioning tolerance of incident light by this lens. ing.

【0008】しかしながら、典型的な多芯コアファイバ
では、コア相互の間隔は 120μm程度であり、これに対
応したOEICアレイを構成した場合、フォトダイオー
ドの受光部も 120μmピッチとしなければならない。と
ころが、特開昭63-35114号公報に記載された技術で球面
レンズを形成しようとした場合、受光部に焦点を結ぶよ
うな球面レンズの直径はこの受光部ピッチよりも大き
く、OEICアレイの裏面に各受光部に対応した複数の
球面レンズを形成することは非常に難しい。さらに、形
成される複数の球面レンズの特性をそろえることは非常
に難しく、入射光に対する十分なトレランスを有し、且
つ、等しい受光特性を有する受光素子が一体化されたO
EICアレイは実現されていない。
However, in a typical multi-core fiber, the distance between the cores is about 120 μm, and when the OEIC array corresponding to this is constructed, the light receiving portions of the photodiodes must also have a pitch of 120 μm. However, when it is attempted to form a spherical lens by the technique disclosed in Japanese Patent Laid-Open No. 63-35114, the diameter of the spherical lens that focuses on the light receiving portion is larger than the light receiving portion pitch, and the rear surface of the OEIC array. It is very difficult to form a plurality of spherical lenses corresponding to each light receiving section. Further, it is very difficult to align the characteristics of the formed spherical lenses, and a light receiving element having sufficient tolerance to incident light and having the same light receiving characteristics is integrated.
EIC arrays have not been realized.

【0009】そこで、本発明は、上記従来技術の問題点
を解決し、製造が容易で実用的な新規なOEICアレイ
を提供することをその目的としている。
Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a novel OEIC array which is easy to manufacture and practical.

【0010】[0010]

【課題を解決するための手段】本発明に従うと、半導体
チップと、該半導体チップの一方の表面に受光部が1列
に配列されるように形成された複数の受光素子と、該受
光素子の各々に接続して形成された複数の電子集積回路
と、該半導体チップの他方の表面に形成された光学レン
ズとを備え、該レンズおよび該半導体チップを介して該
受光部に光が入射するように構成されたレンズ付OEI
Cアレイであって、該受光部の各々が、該受光部の配列
方向と平行な長辺または長径を有する長方形または長円
形の形状を有し、該レンズが、該受光部の配列方向と平
行な軸を有する円筒面状の表面形状を有し、該半導体チ
ップの全幅にわたって形成されたひとつの円筒面レンズ
であることを特徴とするレンズ付OEICアレイが提供
される。
According to the present invention, a semiconductor chip, a plurality of light receiving elements formed on one surface of the semiconductor chip so that light receiving portions are arranged in a row, and a plurality of light receiving elements of the light receiving element are provided. A plurality of electronic integrated circuits connected to each other and an optical lens formed on the other surface of the semiconductor chip are provided, and light is incident on the light receiving unit through the lens and the semiconductor chip. OEI with lens configured in
In the C array, each of the light receiving parts has a rectangular or oval shape having a long side or a major axis parallel to the array direction of the light receiving parts, and the lens is parallel to the array direction of the light receiving parts. Provided is an OEIC array with a lens, which has a cylindrical surface shape having various axes and is one cylindrical surface lens formed over the entire width of the semiconductor chip.

【0011】[0011]

【作用】本発明に係るレンズ付OEICアレイは、フリ
ップチップ型の受光素子および電子集積回路を形成され
たOEICチップの裏面に、円筒面型の唯ひとつのレン
ズを備えると共に、各受光素子の受光部が楕円形または
長方形になっていることをその主要な特徴としている。
The lens-equipped OEIC array according to the present invention is provided with only one cylindrical surface type lens on the back surface of the flip-chip type light-receiving element and the OEIC chip on which the electronic integrated circuit is formed, and the light-receiving element receives light. Its main feature is that the part is oval or rectangular.

【0012】即ち、本発明に係るレンズ付OEICアレ
イでは、複数の受光素子の受光部が1列に配置されてお
り、且つ、長方形または長円形の受光部の長辺または長
径がこの配列方向と平行になるように形成されている。
更に、OEICチップの裏面には、この配列方向と平行
な軸を有する円筒面状のレンズが形成されている。
That is, in the OEIC array with lens according to the present invention, the light receiving portions of the plurality of light receiving elements are arranged in one row, and the long side or the long diameter of the rectangular or oval light receiving portion corresponds to this arrangement direction. It is formed to be parallel.
Further, on the back surface of the OEIC chip, a cylindrical lens having an axis parallel to the arrangement direction is formed.

【0013】以上のような構成によると、受光素子の配
列方向については、受光部の形状により入射光軸に対す
る大きなトレランスが得られる。また、受光素子の配列
方向と直角な方向についてはレンズの集光効果により大
きなトレランスが得られる。尚、受光部の形状は、受光
部の配列方向にのみ拡大すればよいので、受光部の大面
積化による特性の劣化は僅かである。
According to the above-mentioned structure, in the arrangement direction of the light receiving elements, a large tolerance with respect to the incident optical axis can be obtained depending on the shape of the light receiving section. Further, in the direction perpendicular to the array direction of the light receiving elements, a large tolerance can be obtained due to the condensing effect of the lens. Since the shape of the light receiving portion may be expanded only in the array direction of the light receiving portions, the deterioration of the characteristics due to the increase in the area of the light receiving portions is slight.

【0014】更に、本願発明のOEICアレイは、ただ
ひとつの円筒状レンズで複数の受光部に対応しているの
で、レンズの形成は単一のプロセスで行うことができ
る。従って、生産性が良好であると共に、受光部の配列
間隔等とは無関係に所望の特性が得られる。また、受光
部毎にレンズの光学特性が異なることもない。
Further, since the OEIC array of the present invention corresponds to a plurality of light receiving portions with only one cylindrical lens, the lenses can be formed by a single process. Therefore, the productivity is good, and desired characteristics can be obtained regardless of the arrangement interval of the light receiving portions. Further, the optical characteristics of the lens do not differ for each light receiving unit.

【0015】以下、図面を参照して本発明に係るレンズ
付OEICアレイをより具体的に説明するが、以下の開
示は本発明の一実施例に過ぎず、本発明の技術的範囲を
何ら限定するものではない。
Hereinafter, the OEIC array with lens according to the present invention will be described more specifically with reference to the drawings. However, the following disclosure is merely an example of the present invention, and the technical scope of the present invention is not limited thereto. Not something to do.

【0016】[0016]

【実施例】図1は、本発明に係るレンズ付OEICアレ
イの具体的な構成例を示す図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing a specific configuration example of an OEIC array with lenses according to the present invention.

【0017】同図に示すように、このOEICアレイ1
は、図中の下面に1列に配列された4個のフォトダイオ
ードを備えている。このフォトダイオードの受光部11a
〜11dはチップの内部に向かって形成されており、各受
光部11a〜11dはチップの内部を透過した光を受ける。
また、各受光部11a〜11dは、それ自身の配列方向と平
行な長径を含む長円形となるように形成されている。
As shown in FIG. 1, this OEIC array 1
Is provided with four photodiodes arranged in a line on the lower surface in the figure. Light receiving part 11a of this photodiode
.About.11d are formed toward the inside of the chip, and the respective light receiving portions 11a to 11d receive the light transmitted through the inside of the chip.
In addition, each of the light receiving portions 11a to 11d is formed to have an elliptical shape including a long diameter parallel to the arrangement direction of itself.

【0018】一方、このOEICアレイ1の上面には、
フォトダイオードの配列方向と平行な軸を有する円筒面
に倣った円筒面レンズ12が形成されている。この円筒面
レンズ12は、フォトダイオードの各受光部11a〜11d上
に焦点を結ぶような形状を有している。
On the other hand, on the upper surface of the OEIC array 1,
A cylindrical lens 12 is formed following a cylindrical surface having an axis parallel to the arrangement direction of the photodiodes. The cylindrical lens 12 is shaped so as to focus on the light receiving portions 11a to 11d of the photodiode.

【0019】以上のように構成されたOEICアレイの
機能について以下に説明する。
The function of the OEIC array configured as described above will be described below.

【0020】図2は、図1に示したOEICアレイの受
光部の、入射光に対するx方向のトレランスについて説
明するための図である。前述のように、本発明に係るO
EICアレイでは、各受光部11a〜11dは、その配列方
向と平行に長辺または長径を持つように細長く形成され
ている。従って、図2(a) に示す従来のOEICアレイ
の受光部10a〜10dに比較して明らかに広いトレランス
x を有している。
FIG. 2 is a diagram for explaining the tolerance of the light receiving portion of the OEIC array shown in FIG. 1 in the x direction with respect to the incident light. As described above, the O according to the present invention
In the EIC array, each of the light receiving portions 11a to 11d is formed in an elongated shape so as to have a long side or a long diameter parallel to the arrangement direction. Therefore, the tolerance W x is obviously wider than that of the light receiving portions 10a to 10d of the conventional OEIC array shown in FIG. 2 (a).

【0021】図3は、図1に示したOEICアレイの受
光部の、入射光に対するy方向のトレランスについて説
明するための図である。図3(b) に示すようにこのOE
ICアレイではレンズ12によって入射光が集束されるの
で、一定の幅の受光部10a、11aに対する入射光のトレ
ランスWy は、図3(a) に示す一般的なフリップチップ
型の受光素子よりも大きくなっている。
FIG. 3 is a diagram for explaining the tolerance of the light receiving portion of the OEIC array shown in FIG. 1 in the y direction with respect to the incident light. As shown in Figure 3 (b), this OE
Since the incident light is focused by the lens 12 in the IC array, the tolerance W y of the incident light on the light receiving portions 10a and 11a having a constant width is larger than that of the general flip-chip type light receiving element shown in FIG. 3 (a). It is getting bigger.

【0022】尚、受光素子における上述のような長円形
の受光部は以下のようにして形成することができる。即
ち、フォトダイオードの受光面は、n−i−p層をエピ
タキシャル成長させた後、ウェットエッチングにより不
要部分を除去することで形成される。従って、このエッ
チング処理時に長方形のホールパターンを有するマスク
を用いれば、通常のフォトダイオード製造と全く同じ工
程で長円形の受光部を有するフォトダイオードを作製す
ることができる。このような方法では、長方形のホール
パターンの角部でエッチング速度が速くなるので、最終
的に形成される受光面の形状は長円形になる。
The oblong light receiving portion of the light receiving element can be formed as follows. That is, the light receiving surface of the photodiode is formed by epitaxially growing the nip layer and then removing an unnecessary portion by wet etching. Therefore, if a mask having a rectangular hole pattern is used at the time of this etching process, a photodiode having an oval light receiving portion can be manufactured in exactly the same process as in the normal photodiode manufacturing. In such a method, since the etching rate is increased at the corners of the rectangular hole pattern, the shape of the light receiving surface finally formed is an ellipse.

【0023】また、円筒形のレンズ12は、以下のように
して形成することができる。即ち、まず、ウェハの裏面
に光学部品の材料となるTEOS等を塗布した後、線状
のパターンを有するレジストマスクを用いてこれをエッ
チングする。その結果、概ね台形の断面を有する隆起が
形成されるので、レジストマスクを取り除いた後に改め
てこれをウェットエッチングすると、全体の形状がなだ
らかになり実質的に円筒面状のレンズが形成される。
The cylindrical lens 12 can be formed as follows. That is, first, TEOS or the like, which is a material of an optical component, is applied to the back surface of the wafer, and then this is etched using a resist mask having a linear pattern. As a result, since a ridge having a substantially trapezoidal cross section is formed, if the resist mask is removed and then wet etching is performed again, the entire shape becomes gentle and a substantially cylindrical lens is formed.

【0024】尚、本実施例では4チャンネルのOEIC
アレイについて説明したが、より多チャンネルのアレイ
を同じ構造で製造し得ることは言うまでもない。
In the present embodiment, four-channel OEIC is used.
Although an array has been described, it goes without saying that more channel arrays can be manufactured with the same structure.

【0025】[0025]

【発明の効果】以上詳細に説明したように、本発明に係
るレンズ付OEICアレイは、その独特の構成により、
電子回路で発生した熱を効率良く放散することができる
というフリップチップ型集積回路の特徴を有しつつ、入
射光に対するトレランスが十分に大きい。
As described above in detail, the lens-equipped OEIC array according to the present invention has a unique structure.
While having the characteristic of the flip-chip type integrated circuit that the heat generated in the electronic circuit can be efficiently dissipated, the tolerance for incident light is sufficiently large.

【0026】また、本発明に係るレンズ付OEICアレ
イは、ただ一つのレンズで全ての受光部に対する入射光
を集束させるので、受光部相互の間で特性のばらつきが
生じない。また、製造も容易である。
Further, in the OEIC array with lens according to the present invention, since the incident light to all the light receiving portions is focused by only one lens, there is no variation in characteristics between the light receiving portions. In addition, it is easy to manufacture.

【0027】更に、本発明に係るレンズ付OEICアレ
イでは、受光素子の受光部を細長い形状にしているの
で、受光部積の拡大による特性の低下が少なく、高性能
で高密度な光信号処理を可能にする。
Further, in the lens-equipped OEIC array according to the present invention, since the light receiving portion of the light receiving element has an elongated shape, the deterioration of the characteristics due to the expansion of the light receiving portion is small, and high performance and high density optical signal processing is possible. enable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るレンズ付OEICアレイの具体的
な構成例を示す図である。
FIG. 1 is a diagram showing a specific configuration example of an OEIC array with lenses according to the present invention.

【図2】図1に示したレンズ付OEICアレイにおける
受光部の形状が及ぼす効果を示す図である。
FIG. 2 is a diagram showing an effect exerted by a shape of a light receiving portion in the OEIC array with lens shown in FIG.

【図3】本発明に係るレンズ付OEICアレイにおける
レンズの機能を説明するための図である。
FIG. 3 is a diagram for explaining a function of a lens in the OEIC array with a lens according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・OEICアレイ、 2・・・光フ
ァイバ、10a〜10d、11a〜11d・・・受光部、 12・
・・円筒面レンズ
1 ... OEIC array, 2 ... Optical fiber, 10a-10d, 11a-11d ... Light receiving part, 12 ...
..Cylinder surface lenses

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】半導体チップと、該半導体チップの一方の
表面に受光部が1列に配列されるように形成された複数
の受光素子と、該受光素子の各々に接続して形成された
複数の電子集積回路と、該半導体チップの他方の表面に
形成された光学レンズとを備え、該レンズおよび該半導
体チップを介して該受光部に光が入射するように構成さ
れたレンズ付OEICアレイであって、 該受光部の各々が、該受光部の配列方向と平行な長辺ま
たは長径を有する長方形または長円形の形状を有し、 該レンズが、該受光部の配列方向と平行な軸を有する円
筒面状の表面形状を有し、該半導体チップの全幅にわた
って形成されたひとつの円筒面レンズであることを特徴
とするレンズ付OEICアレイ。
1. A semiconductor chip, a plurality of light receiving elements formed so that light receiving portions are arranged in a row on one surface of the semiconductor chip, and a plurality of light receiving elements connected to each of the light receiving elements. And an optical lens formed on the other surface of the semiconductor chip, and an OEIC array with a lens configured such that light is incident on the light receiving portion via the lens and the semiconductor chip. And each of the light receiving portions has a rectangular or oval shape having a long side or a major axis parallel to the arrangement direction of the light receiving portions, and the lens has an axis parallel to the arrangement direction of the light receiving portions. An OEIC array with a lens, which has a cylindrical surface shape and has one cylindrical surface lens formed over the entire width of the semiconductor chip.
【請求項2】請求項1に記載されたレンズ付OEICア
レイにおいて、前記受光部が、多芯コア光ファイバのコ
アピッチと等しい間隔で配置されていることを特徴とす
るレンズ付OEICアレイ。
2. The lens-equipped OEIC array according to claim 1, wherein the light receiving portions are arranged at an interval equal to the core pitch of the multi-core optical fiber.
【請求項3】請求項1または請求項2に記載されたレン
ズ付OEICアレイにおいて、前記半導体チップが化合
物半導体により形成されていることを特徴とするレンズ
付OEICアレイ。
3. The lens-equipped OEIC array according to claim 1 or 2, wherein the semiconductor chip is made of a compound semiconductor.
JP9956495A 1995-03-31 1995-03-31 Oeic array provided with lens Pending JPH08271765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9956495A JPH08271765A (en) 1995-03-31 1995-03-31 Oeic array provided with lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9956495A JPH08271765A (en) 1995-03-31 1995-03-31 Oeic array provided with lens

Publications (1)

Publication Number Publication Date
JPH08271765A true JPH08271765A (en) 1996-10-18

Family

ID=14250642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9956495A Pending JPH08271765A (en) 1995-03-31 1995-03-31 Oeic array provided with lens

Country Status (1)

Country Link
JP (1) JPH08271765A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075592A (en) * 2009-09-29 2011-04-14 Mitsubishi Electric Corp Light receiving module and method of manufacturing light receiving module
JP2012022154A (en) * 2010-07-14 2012-02-02 Mitsubishi Electric Corp Wavelength division multiplex receiver module
JP2013038216A (en) * 2011-08-08 2013-02-21 Mitsubishi Electric Corp Optical receiver module
JP2013127651A (en) * 2013-03-27 2013-06-27 Mitsubishi Electric Corp Light receiving module
JP2013207027A (en) * 2012-03-28 2013-10-07 Nippon Telegr & Teleph Corp <Ntt> Photodiode array
JP2015201503A (en) * 2014-04-07 2015-11-12 日本電信電話株式会社 Semiconductor light-emitting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075592A (en) * 2009-09-29 2011-04-14 Mitsubishi Electric Corp Light receiving module and method of manufacturing light receiving module
JP2012022154A (en) * 2010-07-14 2012-02-02 Mitsubishi Electric Corp Wavelength division multiplex receiver module
JP2013038216A (en) * 2011-08-08 2013-02-21 Mitsubishi Electric Corp Optical receiver module
JP2013207027A (en) * 2012-03-28 2013-10-07 Nippon Telegr & Teleph Corp <Ntt> Photodiode array
JP2013127651A (en) * 2013-03-27 2013-06-27 Mitsubishi Electric Corp Light receiving module
JP2015201503A (en) * 2014-04-07 2015-11-12 日本電信電話株式会社 Semiconductor light-emitting device

Similar Documents

Publication Publication Date Title
US20200219865A1 (en) Co-packaged optics and transceiver
US7474815B2 (en) Interconnecting (mapping) a two-dimensional optoelectronic (OE) device array to a one-dimensional waveguide array
US5883996A (en) Electronic component for aligning a light transmitting structure
US5605856A (en) Method for designing an electronic integrated circuit with optical inputs and outputs
US8692276B2 (en) Parallel optical transceiver module
JP2642063B2 (en) Optical communication connector system including embedded substrate receptacle
EP0465230B1 (en) Silicon-based optical subassembly
KR101591847B1 (en) Efficient silicon-on-insulator grating coupler
US6936808B2 (en) Semiconductor device, optoelectronic board, and production methods therefor
US9329349B2 (en) Integrated optical cooling core for optoelectronic interconnect modules
US20090226130A1 (en) Optical Transceiver Module with Optical Windows
US20060120666A1 (en) Optical waveguide device, manufacturing method thereof, optical information processing apparatus, and electronic equipment
JPH05251717A (en) Semiconductor package and semiconductor module
EP0800243B1 (en) Semiconductor laser module
US20060133764A1 (en) Processing head for formation of mirror plane of optical waveguide sheet, processing apparatus, and method of forming mirror plane of optical waveguide
JPH08271765A (en) Oeic array provided with lens
JP2005201937A (en) Optical waveguide array and manufacturing method thereof
JP2007019133A (en) Photoelectric conversion device, its manufacturing method, and optical information process device
US20020102072A1 (en) Optical fiber guide module and a method for making the same
WO2020216916A1 (en) Co-packaged optics and transceiver
JP2006041004A (en) Device and element array for photoelectric conversion
JP4654801B2 (en) PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND OPTICAL INFORMATION PROCESSING DEVICE
JP4646479B2 (en) Semiconductor device
JP3003324B2 (en) Optical receiving module
Armiento Hybrid optoelectronic integration of transmitter arrays on silicon waferboard

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030218