JPH0827090B2 - Refrigeration system operation controller - Google Patents

Refrigeration system operation controller

Info

Publication number
JPH0827090B2
JPH0827090B2 JP1158095A JP15809589A JPH0827090B2 JP H0827090 B2 JPH0827090 B2 JP H0827090B2 JP 1158095 A JP1158095 A JP 1158095A JP 15809589 A JP15809589 A JP 15809589A JP H0827090 B2 JPH0827090 B2 JP H0827090B2
Authority
JP
Japan
Prior art keywords
degree
opening
superheat
evaporator
opening degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1158095A
Other languages
Japanese (ja)
Other versions
JPH0325257A (en
Inventor
真理 佐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP1158095A priority Critical patent/JPH0827090B2/en
Publication of JPH0325257A publication Critical patent/JPH0325257A/en
Publication of JPH0827090B2 publication Critical patent/JPH0827090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷媒回路に複数の熱交換器を並列に接続し
た冷凍装置の運転制御装置に係り、特にコストの低減対
策に関する。
Description: TECHNICAL FIELD The present invention relates to an operation control device for a refrigeration system in which a plurality of heat exchangers are connected in parallel to a refrigerant circuit, and particularly to cost reduction measures.

(従来の技術) 従来より、複数の利用側熱交換器を並列に配置してな
る冷媒回路を有する空気調和装置において、上記各利用
側熱交換器への冷媒を減圧する開度の調節可能な減圧弁
をそれぞれの利用側熱交換器の上流側に配置し、冷媒運
転時には各利用側熱交換器の過熱度に応じて、暖房運転
時には各利用側熱交換器における冷媒の過冷却度に応じ
てそれぞれの減圧弁の開度を個別に調節するようにした
ものは、一般的な技術として知られている。
(Prior Art) Conventionally, in an air conditioner having a refrigerant circuit in which a plurality of use-side heat exchangers are arranged in parallel, the opening degree for depressurizing the refrigerant to each of the use-side heat exchangers can be adjusted. A pressure reducing valve is arranged on the upstream side of each usage-side heat exchanger to respond to the degree of superheat of each usage-side heat exchanger during refrigerant operation and to the degree of refrigerant subcooling in each usage-side heat exchanger during heating operation. It is known as a general technique to individually adjust the opening degree of each pressure reducing valve.

(発明が解決しようとする課題) しかしながら、上記従来のもののように、各熱交換器
の冷媒の過熱度に応じて各減圧弁の開度を個別に調節す
る場合、各熱交換器個別に過熱度を検出するための圧力
センサや温度センサが必要となり、コストの低減を十分
図ることができないという問題がある。
(Problems to be Solved by the Invention) However, when the opening degree of each pressure reducing valve is individually adjusted according to the degree of superheat of the refrigerant of each heat exchanger, as in the above-mentioned conventional one, each heat exchanger is overheated individually. Since a pressure sensor and a temperature sensor for detecting the degree are required, there is a problem that the cost cannot be sufficiently reduced.

また、上記熱交換器が凝縮器となる場合には、各熱交
換器の冷媒流量を流量制御弁の開度により調節するよう
に制御することになるが、そのときにも、上記と同様の
問題が生じる。
Further, when the heat exchanger is a condenser, the refrigerant flow rate of each heat exchanger is controlled so as to be adjusted by the opening degree of the flow rate control valve. The problem arises.

本発明は斯かる点に鑑みてなされたものであり、その
主たる目的は、並列に接続された各熱交換器の減圧弁又
は流量制御弁を単一の検出手段で検出される過熱度又は
過冷却度に応じて制御する手段を講ずることにより、コ
ストの低減を図ることにある。
The present invention has been made in view of the above points, and a main object thereof is to detect the degree of superheat or the degree of superheat detected by a single detecting means for a pressure reducing valve or a flow control valve of each heat exchanger connected in parallel. It is intended to reduce the cost by providing a means for controlling according to the cooling degree.

また、特に各利用側熱交換器を共通のファンによる通
風路に直列に配置し、蒸発器もしくは凝縮器として使用
するときには、風下側の熱交換器の吸込空気温度が低下
もしくは上昇して十分な過熱度もしくは過冷却度をとれ
ないために、過熱度もしくは過冷却度一定制御をするの
が困難となる虞れがあった。
Further, particularly when the heat exchangers on the use side are arranged in series in a ventilation path by a common fan and are used as an evaporator or a condenser, the intake air temperature of the heat exchanger on the leeward side is lowered or risen, which is sufficient. Since the degree of superheat or the degree of subcool cannot be obtained, there is a possibility that it becomes difficult to perform constant control of the degree of superheat or the degree of subcool.

本発明の第2の目的は、特に一つの通風路に熱交換器
が気流方向に沿って直列に配置された場合に、吸込空気
温度の変化に起因する制御不良を防止して、過熱度もし
くは過冷却度一定制御を行う手段を講ずることにより、
制御性能及び信頼性の向上を図ることにある。
A second object of the present invention is to prevent the control failure due to the change of the intake air temperature to prevent the degree of superheat, especially when the heat exchangers are arranged in series along the air flow direction in one ventilation passage. By taking measures to perform constant supercooling degree control,
It is to improve control performance and reliability.

(課題を解決するための手段) 上記目的を達成するため本発明の解決手段は、複数の
熱交換器のうちの一つを基準として、その基準となる熱
交換器における弁開度について過熱度もしくは過冷却度
一定制御を行うとともに、他の熱交換器における弁開度
については、基準となる弁開度の制御値に対して一定の
関係を有するように弁開度制御を行うことにある。
(Means for Solving the Problem) In order to achieve the above object, the solution means of the present invention is based on one of a plurality of heat exchangers, and the degree of superheat with respect to the valve opening degree in the heat exchanger serving as the reference. Alternatively, the constant supercooling degree control is performed, and the valve opening degree in other heat exchangers is controlled so as to have a constant relationship with the control value of the reference valve opening degree. .

具体的には、第1の解決手段は、第1図に示すように
(破線部分を含まず、点線部分を含む)、圧縮機(1)
及び凝縮器(7)が接続された主冷媒配管(9)に対し
て、開度の調節可能な減圧弁(4a),(4b)と蒸発器
(3a),(3b)とが直列に接続された複数の分岐管(11
a),(11b)を互いに並列に接続してなる冷媒回路(1
0)を有する冷凍装置を前提とする。
Specifically, the first solution means is, as shown in FIG. 1 (not including a broken line portion, including a dotted line portion), the compressor (1).
And, to the main refrigerant pipe (9) to which the condenser (7) is connected, pressure reducing valves (4a) and (4b) with adjustable opening and evaporators (3a) and (3b) are connected in series. Multiple branch pipes (11
Refrigerant circuit (1), (11b) connected in parallel with each other
0) is assumed.

そして、冷凍装置の運転制御装置として、冷媒の過熱
度を検出する単一の過熱度検出手段(51)と、該過熱度
検出手段(51)の出力を受け、上記複数の蒸発器(3
a),(3b)のうちの基準となる基準蒸発器(3b)に対
応する基準減圧弁(4b)の開度を演算する基準開度演算
手段(53A)と、該基準開度制御手段(53A)で演算され
た上記基準減圧弁(4b)の開度に対して所定の関係を有
するように他の減圧弁(4a)の開度を演算する副開度演
算手段(54A)と、上記各開度演算手段(53A),(54
A)の演算結果に基づき各減圧弁(4a),(4b)の開度
を制御する開度制御手段(55A)とを設ける構成とした
ものである。
Then, as an operation control device of the refrigeration system, a single superheat degree detecting means (51) for detecting the superheat degree of the refrigerant and the output of the superheat degree detecting means (51) are received, and the plurality of evaporators (3
a), a reference opening calculation means (53A) for calculating the opening of the reference pressure reducing valve (4b) corresponding to the reference evaporator (3b) of (3b), and the reference opening control means (53A). 53A), an auxiliary opening degree calculating means (54A) for calculating the opening degree of the other pressure reducing valve (4a) so as to have a predetermined relationship with the opening degree of the reference pressure reducing valve (4b), Each opening calculation means (53A), (54
The opening control means (55A) for controlling the opening of each pressure reducing valve (4a), (4b) based on the calculation result of (A) is provided.

第2の解決手段は、上記第1の解決手段において、フ
ァン(13)による通風路に、基準蒸発器(3b)が風上側
になるよう各蒸発器(3a),(3b)が気流方向に沿って
直列に配置し、過熱度検出手段(51)を、基準蒸発器
(3b)が接続される分岐管(11b)のガス側に配置して
基準蒸発器(3b)における冷媒の過熱度を検出するもの
とする。さらに、副開度演算手段(54B)を、基準開度
演算手段(53A)で演算される基準減圧弁(4b)の開度
と上記過熱度検出手段(51)で検出される過熱度との積
に比例するように他の減圧弁(4a)の開度を演算するも
のとしたものである。
A second solving means is the above first solving means, wherein the evaporators (3a) and (3b) are arranged in the airflow direction so that the reference evaporator (3b) is located on the windward side in the air passage by the fan (13). Along with the superheat detection means (51) on the gas side of the branch pipe (11b) to which the reference evaporator (3b) is connected to determine the degree of superheat of the refrigerant in the reference evaporator (3b). Shall be detected. Further, the sub-opening degree calculation means (54B) is used to calculate the opening degree of the reference pressure reducing valve (4b) calculated by the reference opening degree calculation means (53A) and the superheat degree detected by the superheat degree detection means (51). The opening of the other pressure reducing valve (4a) is calculated so as to be proportional to the product.

第3の解決手段は、上記第1の解決手段において、フ
ァン(13)による通風路に、基準蒸発器(3b)が風上側
になるよう各蒸発器(3a),(3b)を気流方向に沿って
直列に配置して、過熱度検出手段(51)を主冷媒配管
(9)の吸入ラインに配置して各蒸発器(3a),(3b)
の平均的な過熱度を検出するものとし、副開度演算手段
(54A)を、基準開度演算手段(53A)で演算される基準
減圧弁(4b)の開度と上記過熱度検出手段(51)で検出
される過熱度との積に比例するように他の減圧弁(4a)
の開度を演算するものとしたものである。
A third solution is that, in the first solution, the evaporators (3a) and (3b) are placed in the airflow direction of the fan (13) so that the reference evaporator (3b) is on the windward side. Along with the superheat detection means (51) in the suction line of the main refrigerant pipe (9) and each evaporator (3a), (3b)
Of the reference decompression valve (4b) calculated by the reference opening calculation means (53A) and the above-mentioned superheat detection means (54A). Other pressure reducing valve (4a) so that it is proportional to the product with the degree of superheat detected in 51).
The opening degree of is calculated.

第4の解決手段は、上記第1の解決手段において、各
蒸発器(3a),(3b)をそれぞれ別個の通風路に配置し
て、過熱度検出手段(51)を基準蒸発器(3b)が接続さ
れる分岐管(11b)のガス側に配置して基準蒸発器(3
b)における冷媒の過熱度を検出するものとし、副開度
演算手段(54A)を、基準開度演算手段(53A)で演算さ
れる基準減圧弁(4b)の開度と他の蒸発器(3a)に対す
る基準蒸発器(3b)の容量比との積に比例するように他
の減圧弁(4a)の開度を演算するものとしたものであ
る。
A fourth solving means is the same as the first solving means, wherein the evaporators (3a) and (3b) are arranged in separate ventilation passages, and the superheat detection means (51) is used as a reference evaporator (3b). Is installed on the gas side of the branch pipe (11b) connected to the reference evaporator (3
It is assumed that the degree of superheat of the refrigerant in b) is detected, and the auxiliary opening calculation means (54A) is used to set the opening of the reference pressure reducing valve (4b) calculated by the reference opening calculation means (53A) and another evaporator ( The opening of the other pressure reducing valve (4a) is calculated so as to be proportional to the product of the capacity ratio of the reference evaporator (3b) to 3a).

第5の解決手段は、第1図に示すように(点線部分を
含まず、破線部分を含む)、圧縮機(1),減圧機構
(6)及び蒸発器(7)が接続された主冷媒配管(9)
に対して、開度の調節可能な流量制御弁(4a),(4b)
と凝縮器(3a),(3b)とが直列に接続された複数の分
岐管(11a),(11b)を並列に接続してなる冷媒回路
(10)を有する冷凍装置を前提とする。
A fifth solution means is, as shown in FIG. 1 (not including a dotted line portion, including a broken line portion), a main refrigerant to which a compressor (1), a pressure reducing mechanism (6) and an evaporator (7) are connected. Plumbing (9)
The flow control valves (4a) and (4b) with adjustable opening
A refrigerating device having a refrigerant circuit (10) in which a plurality of branch pipes (11a) and (11b) connected in series with a condenser (3a) and a condenser (3b) are connected in parallel is assumed.

そして、冷凍装置の運転制御装置として、冷媒の過冷
却度を検出する単一の過冷却度検出手段(52)と、該過
冷却度検出手段(52)の出力を受け、上記複数の凝縮器
(3a),(3b)のうちの基準となる基準凝縮器(3b)に
対応する基準流量制御弁(4b)の開度を制御する基準開
度演算手段(53B)と、該基準開度演算手段(53B)で演
算される上記基準流量制御弁(4b)の開度に対して所定
の関係を有するように他の流量制御弁(4a)の開度を演
算する副開度演算手段(54B)と、上記各開度演算手段
(53B),(54B)の演算結果に基づき各流量制御弁(4
a),(4b)の開度を制御する開度制御手段(55B)とを
設ける構成としたものである。
Then, as the operation control device of the refrigeration system, a single supercooling degree detecting means (52) for detecting the supercooling degree of the refrigerant and the output of the supercooling degree detecting means (52) are received, and the plurality of condensers are provided. Reference opening calculation means (53B) for controlling the opening of the reference flow control valve (4b) corresponding to the reference condenser (3b) which is the reference of (3a) and (3b), and the reference opening calculation Sub-opening calculation means (54B) for calculating the opening of another flow control valve (4a) so as to have a predetermined relationship with the opening of the reference flow control valve (4b) calculated by the means (53B). ) And the flow rate control valve (4) based on the calculation results of the opening degree calculation means (53B) and (54B).
The opening control means (55B) for controlling the opening of (a) and (4b) is provided.

第6の解決手段は、上記第5の解決手段において、フ
ァン(13)による通風路に、基準凝縮器(3b)が風上側
になるよう各凝縮器(3a),(3b)を気流方向に沿って
直列に配置し、過冷却度検出手段(52)を基準蒸発器
(3b)が接続される分岐管(11b)に配置して基準凝縮
器(3b)における冷媒の過冷却度を検出するものとし、
副開度演算手段(54B)を、基準開度演算手段(53B)で
演算される基準流量制御弁(4b)の開度と上記過冷却度
検出手段(52)で検出される過冷却度との積に比例する
よう他の流量制御弁(4a)の開度を演算するものとした
ものである。
A sixth solution is that, in the fifth solution, the condensers (3a) and (3b) are arranged in the airflow direction by the fan (13) so that the reference condenser (3b) is located on the windward side. Are arranged in series, and the supercooling degree detection means (52) is arranged in the branch pipe (11b) connected to the reference evaporator (3b) to detect the supercooling degree of the refrigerant in the reference condenser (3b). And
The sub-opening degree calculation means (54B) is used to calculate the opening degree of the reference flow control valve (4b) calculated by the reference opening degree calculation means (53B) and the supercooling degree detected by the supercooling degree detection means (52). The opening of the other flow control valve (4a) is calculated so as to be proportional to the product of

第7の解決手段は、上記第5の解決手段において、フ
ァン(13)による通風路に、基準凝縮器(3b)が風上側
になるよう各凝縮器(3a),(3b)を気流方向に沿って
直列に配置し、過冷却度検出手段(52)を主冷媒配管
(9)の液ラインに配置して各凝縮器(3a),(3b)の
平均的な過冷却度を検出するものとし、副開度演算手段
(54B)を、基準開度演算手段(53A)で演算される基準
流量制御弁(4b)の開度と上記過冷却度検出手段(52)
で検出される過冷却度との積に比例するよう他の流量制
御弁(4a)の開度を演算するものとしたものである。
The seventh solution is that in the fifth solution, the condensers (3a) and (3b) are arranged in the airflow direction so that the reference condenser (3b) is located on the windward side in the air passage by the fan (13). Arranged in series along the supercooling degree detection means (52) in the liquid line of the main refrigerant pipe (9) to detect the average supercooling degree of each condenser (3a), (3b) The sub-opening degree calculation means (54B) is used as the opening degree of the reference flow rate control valve (4b) calculated by the reference opening degree calculation means (53A) and the supercooling degree detection means (52).
The opening degree of the other flow rate control valve (4a) is calculated so as to be proportional to the product of the degree of supercooling detected in.

第8の解決手段は、上記第5の解決手段において、各
凝縮器(3a),(3b)をそれぞれ別個の通風路に配置
し、過冷却度検出手段(52)を基準凝縮器(3b)が接続
される分岐管(11b)の液側に配置して基準凝縮器(3
b)における冷媒の過冷却度を検出するものとし、副開
度演算手段(54B)を、上記基準開度演算手段(53B)で
演算される基準流量制御弁(4b)の開度と他の凝縮器
(3a)に対する基準凝縮器(3b)の容量比との積に比例
するよう他の流量制御弁(4a)の開度を演算するものと
したものである。
An eighth solving means is the above-mentioned fifth solving means, wherein the condensers (3a) and (3b) are arranged in separate ventilation passages, and the supercooling degree detecting means (52) is used as a reference condenser (3b). Is placed on the liquid side of the branch pipe (11b) to which the reference condenser (3
It is assumed that the degree of supercooling of the refrigerant in b) is detected, and the sub-opening degree calculation means (54B) is used to determine the opening degree of the reference flow rate control valve (4b) calculated by the reference opening degree calculation means (53B). The opening of the other flow control valve (4a) is calculated so as to be proportional to the product of the capacity ratio of the reference condenser (3b) to the condenser (3a).

(作用) 以上の構成により、請求項(1)の発明では、基準開
度演算手段(53A)により、過熱度検出手段(51)で検
出される冷媒の過熱度に応じて、基準蒸発器(3b)に対
応する基準減圧弁(4b)について過熱度一定制御をする
ための開度が演算され、副開度演算手段(54A)によ
り、上記基準開度演算手段(53A)で算出された基準減
圧弁(4b)の開度に応じて、所定の関係で変化するよう
に他の減圧弁(4a)の開度が演算された後、開度制御手
段(55A)により、各減圧弁(4a),(4b)の開度が制
御される。
(Operation) With the above-described configuration, in the invention of claim (1), the reference opening calculation means (53A) determines the reference evaporator (53A) according to the superheat degree of the refrigerant detected by the superheat detection means (51). The opening for controlling the constant superheat of the reference pressure reducing valve (4b) corresponding to 3b) is calculated, and the reference calculated by the reference opening calculating means (53A) by the auxiliary opening calculating means (54A). After the opening degree of the other pressure reducing valve (4a) is calculated so as to change in a predetermined relationship according to the opening degree of the pressure reducing valve (4b), the opening degree control means (55A) controls each pressure reducing valve (4a). ) And (4b) are controlled.

したがって、単一の過熱度検出手段(51)により各蒸
発器(3a),(3b)の能力が要求に応じて適切な値に調
節されることになる。
Therefore, the capacity of each evaporator (3a), (3b) is adjusted to an appropriate value according to the demand by the single superheat detection means (51).

請求項(2)の発明では、上記請求項(1)の発明の
作用において、基準蒸発器(3b)が接続される分岐管
(11b)に配置された過熱度検出手段(51)で検出され
る冷媒の過熱度に応じて、基準開度演算手段(53A)に
より、基準減圧弁(4b)の開度が演算され、さらに、副
開度演算手段(54A)により、上記で演算される基準減
圧弁(4b)の開度と冷媒の過熱度との積に比例するよう
に他の減圧弁(4a)の開度が演算される。
According to the invention of claim (2), in the operation of the invention of claim (1), it is detected by the superheat degree detecting means (51) arranged in the branch pipe (11b) to which the reference evaporator (3b) is connected. The reference opening calculating means (53A) calculates the opening of the reference pressure reducing valve (4b) according to the degree of superheat of the refrigerant, and the auxiliary opening calculating means (54A) calculates the reference as above. The opening of the other pressure reducing valve (4a) is calculated so as to be proportional to the product of the opening of the pressure reducing valve (4b) and the degree of superheat of the refrigerant.

したがって、基準減圧弁(4b)の開度について過熱度
一定制御が行われる一方、他の減圧弁(4a)について
も、吸込空気温度の低下に起因する制御不良を招くこと
なく、基準減圧弁(4b)の開度制御値に基づき簡易迅速
に過熱度一定制御が行われて、制御性能が向上する。
Therefore, while the superheat constant control is performed on the opening of the reference pressure reducing valve (4b), the reference pressure reducing valve (4a) can be controlled without causing the control failure due to the decrease of the intake air temperature. Based on the opening control value in 4b), constant superheat constant control is performed quickly and the control performance is improved.

請求項(3)の発明では、上記請求項(1)の発明の
作用において、冷媒回路(10)の吸入ラインに配置され
た過熱度検出手段(51)により、両分岐管(11a),(1
1b)から吸入される冷媒の平均的な過熱度が検出され
る。そして、吸入ラインにおける冷媒の過熱度をパラメ
ータとして、上記請求項(2)の発明と同様の過熱度一
定制御が行われる。したがって、圧縮機(1)への液冷
媒の液バック等の虞れが防止されることになり、信頼性
が向上する。
According to the invention of claim (3), in the operation of the invention of claim (1), both branch pipes (11a), () are provided by the superheat detection means (51) arranged in the suction line of the refrigerant circuit (10). 1
The average degree of superheat of the refrigerant drawn from 1b) is detected. Then, with the superheat degree of the refrigerant in the suction line as a parameter, constant superheat degree control similar to that of the invention of claim (2) is performed. Therefore, the risk of liquid backing of the liquid refrigerant to the compressor (1) is prevented and reliability is improved.

請求項(4)の発明では、上記請求項(1)の発明の
作用において、各蒸発器(3a),(3b)が個別の通風路
に配置された場合、副開度演算手段(54A)により、各
蒸発器(3a),(3b)の容量比と基準減圧弁(4b)の開
度との積に比例するよう他の減圧弁(4a)の開度が演算
されるので、各蒸発器(3a),(3b)における過熱度が
ほぼ同じ値に保持される過熱度一定制御が行われること
になる。
According to the invention of claim (4), in the operation of the invention of claim (1), when each evaporator (3a), (3b) is arranged in a separate ventilation passage, a sub-opening degree calculation means (54A) By this, the opening of another pressure reducing valve (4a) is calculated so as to be proportional to the product of the capacity ratio of each evaporator (3a), (3b) and the opening of the reference pressure reducing valve (4b). The superheat constant control is performed so that the superheats in the reactors (3a) and (3b) are maintained at almost the same value.

請求項(5)の発明では、基準開度演算手段(53B)
により、過冷却度検出手段(52)で検出される冷媒の過
冷却度に基づき、基準凝縮器(3b)に対応する基準流量
制御弁(4b)について過冷却度一定制御をするための開
度が演算され、副開度演算手段(54B)により、その開
度と所定の関係を有するように他の流量制御弁(4a)の
開度が演算された後、開度制御手段(55B)により、各
流量制御弁(4a),(4b)の開度が制御される。
In the invention of claim (5), reference opening calculation means (53B)
The opening degree for performing constant supercooling degree control for the reference flow control valve (4b) corresponding to the reference condenser (3b) based on the supercooling degree of the refrigerant detected by the supercooling degree detection means (52). Is calculated and the opening degree of the other flow rate control valve (4a) is calculated by the auxiliary opening degree calculation means (54B) so as to have a predetermined relationship with the opening degree, and then by the opening degree control means (55B). The opening degree of each flow control valve (4a), (4b) is controlled.

したがって、単一の過冷却度検出手段(52)により、
並列に接続された複数の凝縮器(3a),(3b)の能力が
要求に応じて適切に調節されることになる。
Therefore, by the single supercooling degree detection means (52),
The capacities of a plurality of condensers (3a), (3b) connected in parallel will be appropriately adjusted according to requirements.

請求項(6)の発明では、上記請求項(5)の発明に
おいて、過冷却度検出手段(52)により、風上に配置さ
れた基準凝縮器(3b)における冷媒の過冷却度に応じて
基準流量制御弁(4b)の開度が演算されるとともに、副
開度演算手段(54B)により、その基準流量制御弁(4
b)の開度と冷媒の過冷却度との積に比例するように、
他の流量制御弁(4a)の開度が演算される。
According to the invention of claim (6), in the invention of claim (5), the supercooling degree detecting means (52) is used to determine the degree of supercooling of the refrigerant in the reference condenser (3b) arranged on the windward side. The opening of the reference flow control valve (4b) is calculated, and the reference opening control valve (4b) is calculated by the auxiliary opening calculation means (54B).
To be proportional to the product of the opening of b) and the degree of supercooling of the refrigerant,
The opening of the other flow control valve (4a) is calculated.

したがって、まず、基準凝縮器(3b)の過冷却度一定
制御が行われた後、他の流量制御弁(4a)についても、
吸込空気温度の上昇に起因する制御不良を招くことな
く、基準流量制御弁(4b)の制御値に基づき簡易迅速に
過冷却度一定制御が行われることになり、制御性能が向
上する。
Therefore, first, after performing the constant supercooling degree control of the reference condenser (3b), the other flow control valves (4a) are also
The constant supercooling degree constant control is performed based on the control value of the reference flow rate control valve (4b) without causing control failure due to the rise of the intake air temperature, and the control performance is improved.

請求項(7)の発明では、上記請求項(5)の発明の
作用において、液ラインに配置された過冷却度検出手段
(52)の信号に基づき、上記請求項(6)の発明と同様
の過冷却度一定制御が行われるので、液ラインにおける
冷媒のフラッシュが防止され、信頼性が向上することに
なる。
According to the invention of claim (7), in the operation of the invention of claim (5), the same as the invention of claim (6) based on the signal of the supercooling degree detection means (52) arranged in the liquid line. Since the constant supercooling degree control is performed, the flash of the refrigerant in the liquid line is prevented, and the reliability is improved.

請求項(8)の発明では、複数の凝縮器(3a),(3
b)が個別の通風路に配置された場合、基準流量制御弁
(4b)の開度制御値と各凝縮器(3a),(3b)の容量比
との積に比例するよう他の流量制御弁(4a)の開度が制
御されるので、各凝縮器(3a),(3b)における過冷却
度がほぼ同じ一定値に保持される過冷却度一定制御が行
われることになる。
In the invention of claim (8), a plurality of condensers (3a), (3
When b) is placed in a separate ventilation passage, other flow rate control is performed so as to be proportional to the product of the opening control value of the reference flow control valve (4b) and the capacity ratio of each condenser (3a), (3b). Since the opening degree of the valve (4a) is controlled, the constant supercooling degree control is performed in which the supercooling degree in each of the condensers (3a) and (3b) is maintained at a substantially constant constant value.

(実施例) 以下、本発明の実施例について、第2図以下の図面に
基づき説明する。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings starting from FIG.

まず、請求項(1)〜(3)及び(5)〜(7)の発
明に係る第1実施例について、第2図〜第4図に基づき
説明するに、第2図は本実施例に係る空気調和装置の全
体構成を示し、一台の室外ユニット(X)に対して3台
の室内ユニット(A)〜(C)が並列に接続されたいわ
ゆるマルチタイプのものである。
First, the first embodiment according to the inventions of claims (1) to (3) and (5) to (7) will be described with reference to FIGS. 2 to 4, and FIG. The whole structure of such an air conditioner is shown, and is a so-called multi-type in which three indoor units (A) to (C) are connected in parallel to one outdoor unit (X).

上記室外ユニット(X)において、(1)はインバー
タ(12)により運転周波数つまり運転容量を可変に調節
される圧縮機、(2)は冷房運転時には図中実線のごと
く、暖房運転時には図中破線のごとく切換わる四路切換
弁、(3a),(3b)はいずれも冷房運転時には凝縮器と
して、暖房運転時には蒸発器として機能する熱源側熱交
換器としての第1,第2室外熱交換器、(4a),(4b)は
いずれも冷房運転時は冷媒流量を制御する流量制御弁と
して機能し、暖房運転時には冷媒を減圧する減圧弁とし
て機能する室外電動膨張弁、(5)は液冷媒を貯溜する
ためのレシーバ、(8)は吸入冷媒中の液冷媒を除去す
るためのアキュムレータである。
In the outdoor unit (X), (1) is a compressor whose operating frequency, that is, operating capacity is variably adjusted by an inverter (12), (2) is a solid line in the figure during cooling operation, and a broken line in the figure during heating operation. The four-way switching valves that switch as in (3a) and (3b) are the first and second outdoor heat exchangers as heat source side heat exchangers that function as a condenser during cooling operation and as an evaporator during heating operation. , (4a), (4b) each function as a flow rate control valve that controls the flow rate of the refrigerant during the cooling operation, and an outdoor electric expansion valve that functions as a pressure reducing valve that reduces the pressure during the heating operation, and (5) is a liquid refrigerant Is a receiver for storing, and (8) is an accumulator for removing the liquid refrigerant in the suction refrigerant.

上記室内ユニット(A)〜(C)は同一構成であっ
て、(6)は冷房運転時には冷媒を減圧し、暖房運転時
には冷媒流量を調節する減圧機構としての室内電動膨張
弁、(7)は冷房運転時には蒸発器として、暖房運転時
には凝縮器として機能する室内熱交換器である。
The indoor units (A) to (C) have the same configuration, and (6) is an indoor electric expansion valve as a pressure reducing mechanism that decompresses the refrigerant during cooling operation and adjusts the refrigerant flow rate during heating operation, and (7) It is an indoor heat exchanger that functions as an evaporator during cooling operation and as a condenser during heating operation.

そして、上記室外ユニット(X)において、圧縮機
(1)、四路切換弁(2)、アキュムレータ(8)及び
レシーバ(5))は主冷媒配管(9)により直列に接続
される一方、第1室外熱交換器(3a)と第1室外電動膨
張弁(4a)とは第1分岐管(11a)により直列に接続さ
れ、第2室外熱交換器(3a)及び第2室外電動膨張弁
(4a)は第2分岐管(11b)により冷媒の流通可能に接
続され、上記第1,第2分岐管(11a),(11b)は主冷媒
配管(9)に対してそれぞれ並列に接続されている。な
お、各室外熱交換器(3a),(3b)は、室外ファン(1
3)による通風路において、風下側に第1室外熱交換器
(3a)、風上側に第2室外熱交換器(3b)が位置するよ
うに気流方向に沿って直列に配置されていて、風上側の
第2室外熱交換器(3b)が基準蒸発器又は基準凝縮器と
なっている。すなわち、上記のように二台の室外熱交換
器(3a),(3b)を併せて使用することにより、室外側
の広い能力調節範囲を確保するようになされている。
In the outdoor unit (X), the compressor (1), the four-way switching valve (2), the accumulator (8) and the receiver (5) are connected in series by the main refrigerant pipe (9), while The first outdoor heat exchanger (3a) and the first outdoor electric expansion valve (4a) are connected in series by the first branch pipe (11a), and the second outdoor heat exchanger (3a) and the second outdoor electric expansion valve ( 4a) is connected by a second branch pipe (11b) so that the refrigerant can flow, and the first and second branch pipes (11a) and (11b) are connected in parallel to the main refrigerant pipe (9), respectively. There is. The outdoor heat exchangers (3a) and (3b) are connected to the outdoor fan (1
In the ventilation passage according to 3), the first outdoor heat exchanger (3a) is located on the leeward side, and the second outdoor heat exchanger (3b) is located on the leeward side in series along the air flow direction. The upper second outdoor heat exchanger (3b) serves as a reference evaporator or a reference condenser. That is, by using the two outdoor heat exchangers (3a) and (3b) together as described above, a wide capacity adjustment range on the outdoor side is ensured.

また、各室内ユニット(A)〜(C)の各機器は、室
内分岐管により主冷媒配管(9)に対して並列に接続さ
れていて、以上の各機器(1)〜(8)を主冷媒配管及
び分岐管で閉回路に接続することにより、各室内空気と
の熱交換で得た熱を室外空気に放出するヒートポンプ作
用を有する主冷媒回路(11)が構成されている。
Further, each device of each indoor unit (A) to (C) is connected in parallel to the main refrigerant pipe (9) by an indoor branch pipe, and each of the above devices (1) to (8) is mainly connected. By connecting the refrigerant pipe and the branch pipe to the closed circuit, a main refrigerant circuit (11) having a heat pump function of releasing the heat obtained by heat exchange with each indoor air to the outdoor air is configured.

さらに、装置には多くのセンサが配置されていて、
(Tho)は室外ユニット(X)に配置され、室外空気温
度を検出するための外気温センサ、(Th1)は上記第2
分岐管(11b)のガス管側に配置され、第2室外熱交換
器(3b)におけるガス冷媒温度T1を検出するためのガス
管センサ、(Th2)は第2室外熱交換器(3b)の液管側
に配置され、液冷媒温度T2を検出する液管センサ、(Th
3)は各室内ユニット(A)〜(C)の空気吸込口に配
置され、室温に相当する吸込空気温度を検出するための
室温センサ、(Hp)は吐出管に配置され、凝縮圧力相当
飽和温度(以下、単に「凝縮温度」という)に相当する
高圧Tcを検出する高圧センサ、(Lp)は吸入管に配置さ
れ、蒸発圧力相当飽和温度(以下、単に「蒸発温度」と
いう)に相当する低圧Teを検出する低圧センサである。
装置の暖房運転時、上記ガス管センサ(Th1)で検出さ
れる吸入過熱冷媒温度T1と低圧センサ(Lp)で検出され
る蒸発温度Teとの差温(T1−Te)により、第2室外熱交
換器(基準となる熱源側熱交換器)(3b)における冷媒
の過熱度Sh2が算出されるようになされていて、上記低
圧センサ(Lp)及びガス管センサ(Th1)により過熱度
検出手段(51)が構成されている。また、冷房運転時に
は、上記高圧センサ(Hp)で検出される凝縮温度Tcと液
管センサ(Th2)で検出される液冷媒温度T2との温度偏
差(Tc−T2)により、第2室外熱交換器(3b)における
冷媒の過冷却度Sc2が検出されるようになされていて、
上記高圧センサ(Hp)及び液管センサ(Th2)により過
冷却度検出手段(52)が構成されている。
In addition, the device has many sensors
(Tho) is arranged in the outdoor unit (X), and an outdoor air temperature sensor for detecting the outdoor air temperature, (Th1) is the second
A gas pipe sensor arranged on the gas pipe side of the branch pipe (11b) for detecting the gas refrigerant temperature T 1 in the second outdoor heat exchanger (3b), and (Th2) is the second outdoor heat exchanger (3b). Is installed on the liquid pipe side of the liquid pipe sensor for detecting the liquid refrigerant temperature T 2 , (Th
3) is a room temperature sensor for detecting the intake air temperature corresponding to room temperature, and (Hp) is arranged in the discharge pipe, which is arranged at the air inlet of each indoor unit (A) to (C), and is saturated by the condensation pressure. A high-pressure sensor that detects a high pressure Tc corresponding to the temperature (hereinafter, simply referred to as "condensation temperature"), (Lp) is disposed in the suction pipe, and corresponds to the vapor pressure equivalent saturation temperature (hereinafter, simply referred to as "evaporation temperature"). It is a low-voltage sensor that detects low-voltage Te.
During the heating operation of the device, the temperature difference between the intake superheated refrigerant temperature T 1 detected by the gas pipe sensor (Th1) and the evaporation temperature Te detected by the low pressure sensor (Lp) (T 1 −T e ) 2 The superheat degree Sh2 of the refrigerant in the outdoor heat exchanger (reference heat source side heat exchanger) (3b) is calculated, and the superheat degree is calculated by the low pressure sensor (Lp) and the gas pipe sensor (Th1). A detection means (51) is configured. Further, in the cooling operation, the temperature deviation (T c -T 2) between the liquid refrigerant temperature T 2 detected by the condensation temperature Tc and the liquid pipe sensor which is detected by the pressure sensor (Hp) (Th2), second The subcooling degree Sc2 of the refrigerant in the outdoor heat exchanger (3b) is detected,
The high-pressure sensor (Hp) and the liquid pipe sensor (Th2) constitute a supercooling degree detecting means (52).

そして、上記各センサは図示しないが装置の運転を制
御するコントローラに信号の入力可能に接続されてい
て、該コントローラにより、上記各センサの出力信号に
応じて圧縮機(1)の運転容量、各室外電動膨張弁(4
a),(4b)の開度、室外ファン(13)の風量、各室内
電動膨張弁(6),…の開度等、各機器の運転を制御す
るようになされている。
Although not shown, each sensor is connected to a controller that controls the operation of the device so that a signal can be input, and the controller operates the operating capacity of the compressor (1) according to the output signal of each sensor. Outdoor electric expansion valve (4
The operation of each device is controlled such as the opening degree of a) and (4b), the air flow rate of the outdoor fan (13), the opening degree of each indoor electric expansion valve (6) ,.

次に、上記コントローラによる各室外電動膨張弁(4
a),(4b)の開度制御について第3図及び第4図のフ
ローチャートに基づき説明するに、冷房運転時、ステッ
プS1で、上記過熱度検出手段(51)で検出される第2室
外熱交換器(3b)における冷媒の過熱度Sh2を入力し、
ステップS2で、この過熱度Sh2が所定の目標値Sh2sにな
るように第2室外電動膨張弁(4b)の開度Ev2を決定す
る。すなわち、下記式 ΔEv2=K0・(Sh2s−Sh2) (ただし、K0は所定の定数)に基づき開度変更量ΔEv2
を演算した後、下記式 Ev2=Ev2o+ΔEv2 (ただし、Ev2oは全開のサンプリングにおける第2室外
電動膨張弁(4b)の開度制御値である)に基づき新開度
Ev2を決定する。
Next, each outdoor electric expansion valve (4
a), (for the control of the opening degree of 4b) to be described with reference to the flow chart of FIG. 3 and FIG. 4, the cooling operation, in step S 1, the second outdoor detected by the superheat degree detecting means (51) Enter the superheat degree Sh2 of the refrigerant in the heat exchanger (3b),
In step S 2, the degree of superheat Sh2 determines the opening Ev2 of the second outdoor electric expansion valve to a predetermined target value Sh2s (4b). That is, the opening change amount ΔEv2 based on the following formula ΔEv2 = K 0 · (Sh2s−Sh2) (where K 0 is a predetermined constant)
After calculating, the new opening based on the following equation Ev2 = Ev2o + ΔEv2 (where Ev2o is the opening control value of the second outdoor electric expansion valve (4b) in fully open sampling)
Determine Ev2.

そして、ステップS3で、下記式 Ev1=K1・(T1−Te)・Ev2 (1) (ただし、K1は所定の定数)に基づき第1室外電動膨張
弁(4a)の開度Ev1を算出して決定した後、ステップS4
で、それぞれの開度Ev1,Ev2の信号を出力して、各室外
電動膨張弁(4a),(4b)を駆動する。
Then, in step S 3, the opening degree of the formula Ev1 = K 1 · (T 1 -T e) · Ev2 (1) ( provided that, K 1 is a predetermined constant) the first outdoor electric expansion valve on the basis of (4a) After calculating and determining Ev1, step S 4
Then, the signals of the opening degrees Ev1 and Ev2 are output to drive the outdoor electric expansion valves (4a) and (4b).

一方、暖房運転時には、ステップS11で、上記過冷却
度検出手段(52)で検出される第2室外熱交換器(3b)
における冷媒の過冷却度Sc2を入力し、ステップS12で、
上記ステップS2と同様の手順により、その過冷却度Sc2
に応じて第2室外電動膨張弁(4b)の開度Ev2を決定す
る。そして、ステップS13で、下記式 Ev1=K2・(Tc−T2)・Ev2 (2) (ただし、K2は所定の定数)に基づき第1室外電動膨張
弁(4a)の開度Ev1を算出して決定した後、ステップS14
で、上記で決定した開度信号Ev1,Ev2を出力して、各室
外電動膨張弁(4a),(4b)を駆動する。
On the other hand, during heating operation, in step S 11 , the second outdoor heat exchanger (3b) detected by the supercooling degree detection means (52).
Enter the supercooling degree Sc2 of the refrigerant in, in step S 12,
The same procedure as the steps S 2, the degree of supercooling Sc2
Accordingly, the opening Ev2 of the second outdoor electric expansion valve (4b) is determined. Then, in step S 13, the opening degree of the formula Ev1 = K 2 · (T c -T 2) · Ev2 (2) ( however, K 2 are predetermined constants) first outdoor electric expansion valve on the basis of (4a) After calculating and determining Ev1, step S 14
Then, the opening signals Ev1 and Ev2 determined above are output to drive the outdoor electric expansion valves (4a) and (4b).

以上のフローにおいて、請求項(1)〜(3)の発明
では、ステップS2により、過熱度検出手段(51)の出力
を受け、上記複数の室外熱交換器(蒸発器)(3a),
(3b)のうちの基準となる第2室外熱交換器(基準蒸発
器)(3b)に対応する第2室外電動膨張弁(基準減圧
弁)(4b)の開度を演算する基準開度演算手段(53A)
が構成され、ステップS3により、該基準開度制御手段
(53A)で演算された上記第2室外電動膨張弁(4b)の
開度に対して所定の関係を有するように第1室外電動膨
張弁(他の減圧弁)(4a)の開度を演算する副開度演算
手段(54A)が構成されている。さらに、ステップS4
より、上記各開度演算手段(53A),(54A)の演算結果
に基づき各室外電動膨張弁(4a),(4b)の開度を制御
する開度制御手段(55A)が構成されている。
In the above flow, the invention of claim (1) to (3), the step S 2, receives the output of the superheating degree detecting means (51), the plurality of outdoor heat exchanger (evaporator) (3a),
Reference opening calculation for calculating the opening of the second outdoor electric expansion valve (reference pressure reducing valve) (4b) corresponding to the second outdoor heat exchanger (reference evaporator) (3b) that is the reference of (3b) Means (53A)
There is constituted by step S 3, the first outdoor electric expansion so as to have a predetermined relationship to the opening of the reference opening control means computed the second outdoor electric expansion valve at (53A) (4b) An auxiliary opening degree calculating means (54A) for calculating the opening degree of the valve (other pressure reducing valve) (4a) is configured. Further, in step S 4, each opening calculating means (53A), the outdoor electric expansion valve on the basis of the calculation result of (54A) (4a), opening control means for controlling the opening of (4b) (55A) Is configured.

また、請求項(5)〜(7)の発明では、ステップS
12により、上記過冷却度検出手段(52)の出力を受け、
上記複数の室外熱交換器(凝縮器)(3a),(3b)のう
ちの基準となる第2室外熱交換器(基準凝縮器)(3b)
に対応する第2室外電動膨張弁(基準流量制御弁)(4
b)の開度を制御する基準開度演算手段(53B)が構成さ
れ、ステップS13により、該基準開度演算手段(53B)で
演算される第2室外電動膨張弁(4b)の開度に対して所
定の関係を有するように第1室外電動膨張弁(他の流量
制御弁)(4a)の開度を演算する副開度演算手段(54
B)が構成されている。さらに、ステップS14により、上
記各開度演算手段(53B),(54B)の演算結果に基づき
各室外電動膨張弁(4a),(4b)の開度を制御する開度
制御手段(55B)が構成されている。
In the inventions of claims (5) to (7), the step S
12 , the output of the supercooling degree detection means (52) is received,
A second outdoor heat exchanger (reference condenser) (3b) which is a reference among the plurality of outdoor heat exchangers (condensers) (3a) and (3b)
Second outdoor electric expansion valve (reference flow control valve) (4
reference opening calculating means for controlling the opening of b) (53B) is constructed, the opening degree of the step S 13, the second outdoor electric expansion valve which is calculated by the reference opening calculating means (53B) (4b) To the second outdoor electric expansion valve (other flow control valve) (4a) so as to have a predetermined relationship with
B) is configured. Further, in step S 14, the respective opening calculating means (53B), the outdoor electric expansion valve on the basis of the calculation result of (54B) (4a), opening control means for controlling the opening of (4b) (55B) Is configured.

したがって、請求項(1)の発明では、装置の暖房運
転時、基準開度演算手段(53A)により、過熱度検出手
段(51)で検出される冷媒の過熱度Shに応じて、複数の
室外熱交換器(3a),(3b)のうちの基準となる第1室
外熱交換器(基準蒸発器)(3b)に対応する第2室外電
動膨張弁(基準減圧弁)(3b)の開度Ev2が演算され、
副開度演算手段(54A)により、上記基準開度演算手段
(53A)で算出された第2室外電動膨張弁(4b)の開度E
v2に応じて、所定の関係で変化するように第1室外電動
膨張弁(他の減圧弁)(4a)の開度Ev1が演算された
後、開度制御手段(55A)により、各室外電動膨張弁(4
a),(4b)の開度Ev1,Ev2が制御される。
Therefore, according to the invention of claim (1), during the heating operation of the device, the plurality of outdoor units are operated according to the superheat degree Sh of the refrigerant detected by the superheat degree detection means (51) by the reference opening degree calculation means (53A). Opening degree of the second outdoor electric expansion valve (reference pressure reducing valve) (3b) corresponding to the first outdoor heat exchanger (reference evaporator) (3b) that is the reference of the heat exchangers (3a) and (3b) Ev2 is calculated,
The opening E of the second outdoor electric expansion valve (4b) calculated by the reference opening calculation means (53A) by the auxiliary opening calculation means (54A)
After the opening Ev1 of the first outdoor electric expansion valve (another pressure reducing valve) (4a) is calculated so as to change in a predetermined relationship according to v2, each outdoor electric valve is controlled by the opening control means (55A). Expansion valve (4
The openings Ev1 and Ev2 in a) and (4b) are controlled.

その場合、低圧センサ(Lp)と一つのガス管センサ
(Th1)という単一の過熱度検出手段(51)だけで済
み、従来のもののように、複数の室外熱交換器(3a),
(3b)毎にガス管センサを設ける必要がない。したがっ
て、単一の過熱度検出手段(51)により、複数の室外熱
交換器(3a),(3b)の能力を要求に応じて適切な値に
調節することができ、よって、コストの低減を図ること
ができるのである。
In that case, only a single superheat detection means (51) consisting of a low pressure sensor (Lp) and one gas pipe sensor (Th1) is required, and as in the conventional one, a plurality of outdoor heat exchangers (3a),
It is not necessary to provide a gas pipe sensor for each (3b). Therefore, the capacity of the plurality of outdoor heat exchangers (3a), (3b) can be adjusted to an appropriate value according to the demand by the single superheat detection means (51), thereby reducing the cost. It can be achieved.

請求項(2)の発明では、上記請求項(1)の発明に
おいて、過熱度検出手段(51)を構成するセンサの一方
たるガス管センサ(Th1)が第2室外熱交換器(基準蒸
発器)(3b)の接続される第2分岐管(11b)に配置さ
れていて、過熱度検出手段(51)により、第2室外熱交
換器(3b)における冷媒の過熱度Sh2が検出される。そ
して、基準開度演算手段(53A)により、その過熱度Sh2
に応じて、第2室外電動膨張弁(4b)の開度Ev2が演算
され、さらに、副開度演算手段(54A)により、上記で
演算される第2室外電動膨張弁(4b)の開度Ev2と冷媒
の過熱度Sh2(=T1−Te)との積に比例するように第1
室外電動膨張弁(4a)の開度Ev1が演算される。
According to the invention of claim (2), in the invention of claim (1), the gas pipe sensor (Th1), which is one of the sensors constituting the superheat detection means (51), is the second outdoor heat exchanger (reference evaporator). (3b) is connected to the second branch pipe (11b) connected to the second branch pipe (11b), and the superheat detection means (51) detects the superheat degree Sh2 of the refrigerant in the second outdoor heat exchanger (3b). Then, by the reference opening calculation means (53A), the degree of superheat Sh2
According to the above, the opening degree Ev2 of the second outdoor electric expansion valve (4b) is calculated, and further, the opening degree of the second outdoor electric expansion valve (4b) calculated by the sub-opening calculation means (54A). The first value is proportional to the product of Ev2 and the refrigerant superheat degree Sh2 (= T 1 −T e ).
The opening degree Ev1 of the outdoor electric expansion valve (4a) is calculated.

すなわち、上記実施例のごとく、各室外熱交換器(3
a),(3b)が室外ファン(13)による通風路に、第2
室外熱交換器(3b)が風上側になるよう気流方向に沿っ
て直列に設置されている場合、風下側の室外熱交換器
(3a)には、第2室外熱交換器(3b)との熱交換により
冷却された冷風が吸込まれるので、第1分岐管(11a)
における冷媒の過熱度Sh1が第2分岐管(11b)における
過熱度Ev2に比べて低くなる。したがって、過熱度Sh1が
十分とれないことで、第1室外電動膨張弁(4a)の開度
Ev1について、過熱度一定制御することができない虞れ
が生じる。
That is, as in the above embodiment, each outdoor heat exchanger (3
The a) and (3b) are the second in the ventilation path by the outdoor fan (13).
When the outdoor heat exchanger (3b) is installed in series along the airflow direction so as to be on the windward side, the outdoor heat exchanger (3a) on the leeward side is connected to the second outdoor heat exchanger (3b). Since the cold air cooled by heat exchange is sucked in, the first branch pipe (11a)
The superheat degree Sh1 of the refrigerant in is lower than the superheat degree Ev2 in the second branch pipe (11b). Therefore, the degree of superheat Sh1 is not sufficient, and the opening degree of the first outdoor electric expansion valve (4a)
With respect to Ev1, there is a possibility that the constant degree of superheat cannot be controlled.

それに対して、本発明では、第2室外電動膨張弁(4
b)の開度Ev2が決定されれば、その開度Ev2から第1室
外電動膨張弁(4a)の開度Ev1が上記(1)式に基づき
自動的に求められる。現実には、各室外熱交換器(3
a),(3b)における熱交換量は必ずしも開度Ev1,Ev2に
比例しないが、上記(1)式で近似的に求めることがで
きる。したがって、まず、基準となる第2室外熱交換器
(3b)の側で第2室外電動膨張弁(4b)について過熱度
一定制御を行うとともに、その開度Ev2に比例するよう
近似的に設定され演算式に基づき、吸込空気温度の低下
に起因する制御不良を招くことなく、簡易迅速に第1室
外電動膨張弁(4a)について過熱度一定制御をすること
ができ、よって、制御性能の向上を図ることができるの
である。
On the other hand, in the present invention, the second outdoor electric expansion valve (4
When the opening degree Ev2 of b) is determined, the opening degree Ev1 of the first outdoor electric expansion valve (4a) is automatically calculated from the opening degree Ev2 based on the above equation (1). In reality, each outdoor heat exchanger (3
The heat exchange amounts in a) and (3b) are not necessarily proportional to the opening degrees Ev1 and Ev2, but can be approximately calculated by the above equation (1). Therefore, first, the second outdoor electric expansion valve (4b) is subjected to constant superheat control on the side of the second outdoor heat exchanger (3b) serving as a reference, and is approximately set to be proportional to the opening degree Ev2. Based on the calculation formula, constant superheat degree control of the first outdoor electric expansion valve (4a) can be performed simply and quickly without causing control failure due to a decrease in intake air temperature, thus improving control performance. It can be achieved.

請求項(3)の発明では、図示しないが、上記実施例
におけるガス管センサ(Th1)は冷媒回路(10)の吸入
ライン(9b)に設置されていて、両分岐管(11a),(1
1b)から吸入される冷媒の平均的な過熱度Shoが検出さ
れる。したがって、上記請求項(2)の発明と同様の手
順で、吸入ライン(9b)における平均的な冷媒の過熱度
Shoをパラメータとして、各室外電動膨張弁(4a),(4
b)の開度Ev1,Ev2についての過熱度一定制御が行われる
ことになり、吸入過熱度の低下が阻止されるので、圧縮
機(1)への液バックによる液圧縮等の虞れが有効に防
止される。よって、上記請求項(2)の発明の効果に加
えて、信頼性の向上を図ることができる。
In the invention of claim (3), although not shown, the gas pipe sensor (Th1) in the above embodiment is installed in the suction line (9b) of the refrigerant circuit (10), and the branch pipes (11a), (1)
The average superheat degree Sho of the refrigerant drawn from 1b) is detected. Therefore, the average degree of superheat of the refrigerant in the suction line (9b) is the same as that of the invention of claim (2).
Each outdoor electric expansion valve (4a), (4
Since the constant superheat degree control for the opening degrees Ev1 and Ev2 in b) is performed, and the decrease in the intake superheat degree is prevented, the risk of liquid compression due to liquid back to the compressor (1) is effective. To be prevented. Therefore, in addition to the effect of the invention of claim (2), the reliability can be improved.

請求項(5)の発明では、上記実施例における冷房運
転時、過冷却度検出手段(52)で検出される冷媒の過冷
却度Scに応じて、基準開度演算手段(53B)により第2
室外電動膨張弁(4b)の開度Ev2が演算され、副開度演
算手段(54B)により、その開度Ev2と所定の関係を有す
るように上記第1室外電動膨張弁(4a)の開度Ev1が演
算された後、開度制御手段(55B)により、各室外電動
膨張弁(4a),(4b)の開度Ev1,Ev2が制御される。
According to the invention of claim (5), during the cooling operation in the above-described embodiment, the second opening is calculated by the reference opening degree calculation means (53B) according to the supercooling degree Sc of the refrigerant detected by the supercooling degree detecting means (52).
The opening degree Ev2 of the outdoor electric expansion valve (4b) is calculated, and the opening degree of the first outdoor electric expansion valve (4a) is calculated by the auxiliary opening degree calculation means (54B) so as to have a predetermined relationship with the opening degree Ev2. After Ev1 is calculated, the opening control means (55B) controls the openings Ev1 and Ev2 of the outdoor electric expansion valves (4a) and (4b).

したがって、単一の過冷却度検出手段(52)でもって
並列に接続された複数の室外熱交換器(3a),(3b)の
能力を要求に応じて適切な値に調節することができ、よ
って、コストの低減を図ることができる。
Therefore, it is possible to adjust the capacities of the plurality of outdoor heat exchangers (3a) and (3b) connected in parallel by the single supercooling degree detection means (52) to an appropriate value as required, Therefore, the cost can be reduced.

請求項(6)の発明では、上記請求項(5)の発明に
おいて、過冷却度検出手段(52)により、第2室外熱交
換器(3b)側における冷媒の過冷却度Sc2が検出され、
基準開度演算手段(53B)により、その過冷却度Sc2に応
じて第2室外熱交換器(3b)の開度Ev2が演算されると
ともに、上記(2)式に示すように、副開度演算手段
(54B)により、第2室外電動膨張弁(4b)の開度Ev2と
冷媒の過冷却度Sc2との積に比例するように、第1室外
電動膨張弁(4a)の開度Ev1が演算される。
According to the invention of claim (6), in the invention of claim (5), the subcooling degree detecting means (52) detects the subcooling degree Sc2 of the refrigerant on the second outdoor heat exchanger (3b) side,
The opening degree Ev2 of the second outdoor heat exchanger (3b) is calculated by the reference opening degree calculation means (53B) according to the degree of supercooling Sc2, and as shown in the above equation (2), the auxiliary opening degree is calculated. The calculation means (54B) adjusts the opening degree Ev1 of the first outdoor electric expansion valve (4a) so as to be proportional to the product of the opening degree Ev2 of the second outdoor electric expansion valve (4b) and the refrigerant subcooling degree Sc2. Is calculated.

ここで、従来のように、各室外電動膨張弁(4a),
(4b)の開度Ev1,Ev2について、それぞれ過冷却度を検
出して個別に過冷却度一定制御を行うものでは、風下側
の第1室外熱交換器(3a)の吸込空気温度が第2室外熱
交換器(3b)での熱交換により上昇しているので、過冷
却度が十分とれず、過冷却度一定制御をすることができ
なくなる虞れがある。
Here, as in the conventional case, each outdoor electric expansion valve (4a),
With regard to the openings Ev1 and Ev2 of (4b), the degree of supercooling is detected and the constant degree of supercooling is individually controlled, so that the intake air temperature of the first outdoor heat exchanger (3a) on the leeward side is the second Since the temperature rises due to the heat exchange in the outdoor heat exchanger (3b), the degree of supercooling may not be sufficient and there is a possibility that the constant degree of supercooling cannot be controlled.

それに対し、本発明では、上記第(2)式に基づき、
第2室外電動膨張弁(4b)の開度制御値Ev2から自動的
に第1室外電動膨張弁(4a)の開度Ev1が求められる。
したがって、まず、基準となる側の第2室外熱交換器
(3b)の過冷却度一定制御を行うとともに、その開度制
御値Ev2に基づき、吸込空気温度の上昇に起因する制御
不良を招くことなく、第1室外室外電動膨張弁(4a)の
開度Ev1について簡易迅速に過冷却度一定制御をするこ
とができ、よって、制御性能の向上を図ることができる
のである。
On the other hand, in the present invention, based on the above equation (2),
The opening degree Ev1 of the first outdoor electric expansion valve (4a) is automatically obtained from the opening degree control value Ev2 of the second outdoor electric expansion valve (4b).
Therefore, first, while performing the constant supercooling degree control of the second outdoor heat exchanger (3b) on the reference side, the control failure caused by the rise of the intake air temperature may be caused based on the opening control value Ev2. Instead, the degree of opening Ev1 of the first outdoor / outdoor outdoor electric expansion valve (4a) can be simply and quickly controlled at a constant supercooling degree, and thus the control performance can be improved.

請求項(7)の発明では、上記請求項(6)の発明と
同様の作用において、過冷却度検出手段(52)の一部を
構成する液管センサ(Th2)が冷媒回路(10)の液ライ
ン(9a)に配置されているので、液ライン(9a)におけ
る平均的な過冷却度Scoをパラメータとして、各室外電
動膨張弁(4a),(4b)の開度Ev1,Ev2について過冷却
度一定制御が行われる。したがって、上記実施例のごと
く第2分岐管(11b)に配置するのに比べて、液ライン
(9a)において、例えば各室外電動膨張弁(4a),(4
b)における減圧効果に起因する冷媒温度の上昇で、冷
媒のフラッシュ等が生じるのを有効に防止することがで
き、よって、信頼性を向上することができるのである。
According to the invention of claim (7), in the same operation as that of the invention of claim (6), the liquid pipe sensor (Th2) forming a part of the supercooling degree detecting means (52) is the refrigerant circuit (10). Since it is arranged in the liquid line (9a), the average degree of supercooling Sco in the liquid line (9a) is used as a parameter to supercool the opening Ev1, Ev2 of each outdoor electric expansion valve (4a), (4b). Constant control is performed. Therefore, as compared with the case where the second branch pipe (11b) is arranged as in the above embodiment, in the liquid line (9a), for example, the outdoor electric expansion valves (4a), (4).
It is possible to effectively prevent the refrigerant from flashing or the like due to the increase in the refrigerant temperature due to the pressure reducing effect in b), thus improving the reliability.

次に、請求項(4)及び(8)の発明に係る第2実施
例について、第5図に基づき説明する。
Next, a second embodiment according to the inventions of claims (4) and (8) will be described with reference to FIG.

第5図は第2実施例に係る空気調和装置の構成を示
し、2つの分岐管(11a),(11b)により冷媒回路(1
0)内で並列に接続される各室外熱交換器(3a),(3
b)はそれぞれ別個の室外ファン(13a),(13b)によ
る通風路に設置されている。その他の構成は、上記第1
実施例と同じである。
FIG. 5 shows the configuration of the air conditioner according to the second embodiment, which includes two branch pipes (11a) and (11b) for the refrigerant circuit (1
Outdoor heat exchangers (3a), (3
b) is installed in the ventilation passage by separate outdoor fans (13a) and (13b). Other configurations are the same as those of the first
Same as the embodiment.

そして、本実施例における制御内容は、上記第1実施
例における第3図及び第4図におけるフローと同じであ
る。ただし、本実施例においては、ステップS3又はS13
において、副開度演算手段(54A又は54B)により、下記
式 Ev1=K3・(1/m)・Ev2 (3) (ただし、K3は正の定数、mは第1室外熱交換器(3a)
と第2室外熱交換器(3b)の容量比である)に基づき、
第1室外熱交換器(3a)の開度Ev1を演算するようにな
されている。
The control content in this embodiment is the same as the flow in FIGS. 3 and 4 in the first embodiment. However, in the present embodiment, step S 3 or S 13
In the above, by the sub-opening degree calculation means (54A or 54B), the following equation Ev1 = K 3 · (1 / m) · Ev2 (3) (where K 3 is a positive constant and m is the first outdoor heat exchanger ( 3a)
And the capacity ratio of the second outdoor heat exchanger (3b)),
The opening Ev1 of the first outdoor heat exchanger (3a) is calculated.

したがって、請求項(4)の発明では、装置の冷房運
転時、上記請求項(1)の発明と同様の作用により、基
準開度演算手段(53A)及び副開度演算手段(54A)によ
り、各室外電動膨張弁(4a),(4b)の開度Ev1及びEv2
が演算され、開度制御手段(55A)により、各開度Ev1及
びEv2が制御される。ここで、各室外熱交換器(3a),
(3b)における過熱度Sh1,Sh2は、各室外熱交換器(3
a),(3b)の容量に対する各室外電動膨張弁(4a),
(4b)の開度Ev1,Ev2の相対的な値で決定されるので、
上記(3)式のように各室外電動膨張弁(4a),(4b)
の開度Ev1,Ev2を演算し、その値と容量比とに応じて開
度制御することにより、各室外熱交換器(3a),(3b)
における冷媒の過熱度Sh1及びSh2がほぼ同じ値に保持さ
れる。
Therefore, according to the invention of claim (4), during the cooling operation of the apparatus, by the same operation as the invention of claim (1), the reference opening calculation means (53A) and the sub opening calculation means (54A) Opening Ev1 and Ev2 of each outdoor electric expansion valve (4a), (4b)
Is calculated, and each opening Ev1 and Ev2 is controlled by the opening control means (55A). Here, each outdoor heat exchanger (3a),
The superheats Sh1 and Sh2 in (3b) depend on the outdoor heat exchanger (3
Each outdoor electric expansion valve (4a) for the capacity of a), (3b),
Since it is determined by the relative values of the openings Ev1 and Ev2 in (4b),
Each outdoor electric expansion valve (4a), (4b) as in the above formula (3)
The outdoor heat exchangers (3a) and (3b) are calculated by calculating the opening degrees Ev1 and Ev2 of each and controlling the opening degrees according to the values and the capacity ratio.
The superheats Sh1 and Sh2 of the refrigerant are maintained at substantially the same value.

したがって、複数の蒸発器たる室外熱交換器(3a),
(3b)が個別の通風路に設置された場合にも、単一の過
熱度検出手段(51)により、制御性能と信頼性とを損ね
ることなく、各室外熱交換器(3a),(3b)における冷
媒の過熱度一定制御を行うことができる。
Therefore, the outdoor heat exchanger (3a), which is a plurality of evaporators,
Even when (3b) is installed in a separate ventilation passage, the single superheat detection means (51) does not impair control performance and reliability, and each outdoor heat exchanger (3a), (3b) ), The constant superheat degree of the refrigerant can be controlled.

請求項(8)の発明では、上記請求項(4)の発明の
作用から容易に導かれるように、複数の凝縮器たる室外
熱交換器(3a),(3b)が個別の通風路に配置された装
置の冷房運転時、単一の過冷却度検出手段(52)によ
り、制御性能と信頼性とを損ねることなく、各室外熱交
換器(3a),(3b)における冷媒の過冷却度一定制御を
有効に確保することができる。
In the invention of claim (8), the plurality of outdoor heat exchangers (3a) and (3b), which are condensers, are arranged in separate ventilation passages so as to be easily derived from the action of the invention of claim (4). During the cooling operation of the installed device, the single supercooling degree detection means (52) prevents the supercooling degree of the refrigerant in each of the outdoor heat exchangers (3a) and (3b) without impairing the control performance and reliability. It is possible to effectively ensure constant control.

ここで、上記請求項(4)又は請求項(8)の発明で
は、過熱度検出手段(51)又は過冷却度検出手段(52)
が、吸入ライン(9b)又は液ライン(9a)に設置されて
いてもよい。
Here, in the invention of the above-mentioned claim (4) or claim (8), the superheat degree detecting means (51) or the supercooling degree detecting means (52).
May be installed in the suction line (9b) or the liquid line (9a).

なお、上記各実施例においては、二台の室外熱交換器
(3a),(3b)が配置された例について説明したが、本
発明に係る実施例に限定されるものではなく、三台以上
の室外熱交換器を配置したものについても適用すること
ができ、そのときにも、風上側に配置された室外熱交換
器を基準蒸発器又は基準凝縮器とすることにより、上記
実施例と同様の制御を行うことができる。
In addition, in each of the above-described embodiments, an example in which two outdoor heat exchangers (3a) and (3b) are arranged has been described, but the present invention is not limited to the embodiments according to the present invention, and three or more are provided. It can also be applied to the one in which the outdoor heat exchanger is arranged, and at that time as well, by using the outdoor heat exchanger arranged on the windward side as the reference evaporator or the reference condenser, the same as in the above embodiment. Can be controlled.

また、上記実施例では室外熱交換器の弁開度制御例に
ついて説明したが、複数の室外熱交換器を配置した場合
にも、本発明を適用して、単一の過熱度検出手段又は過
冷却度検出手段の信号に応じて各室内熱交換器の減圧弁
や流量制御弁の開度を制御することができる。
Further, in the above-mentioned embodiment, the valve opening control example of the outdoor heat exchanger has been described.However, even when a plurality of outdoor heat exchangers are arranged, the present invention is applied, and a single superheat degree detecting means or a superheat degree detecting means is provided. It is possible to control the openings of the pressure reducing valve and the flow control valve of each indoor heat exchanger according to the signal from the cooling degree detecting means.

さらに、上記実施例では、複数の室内ユニット(A)
〜(C)が配置されている場合について説明したが、一
台の室内ユニットが接続されたものについても適用しう
ることはいうまでもない。
Further, in the above embodiment, a plurality of indoor units (A)
Although the case where (C) to (C) are arranged has been described, it goes without saying that the invention can be applied to a case where one indoor unit is connected.

(発明の効果) 以上説明したように、請求項(1)の発明によれば、
冷媒回路内に複数の蒸発器を並列に接続した冷凍装置に
おいて、単一の過熱度検出手段の信号に応じて、基準蒸
発器の減圧弁の開度について過熱度一定制御をするとと
もに、その開度制御値に対して一定の開度を有するよう
他の蒸発器の減圧弁開度を制御するようにしたので、単
一の過熱度検出手段で複数の蒸発器の能力を要求に応じ
て適切な値に調節することができ、よって、コストの低
減を図ることができる。
(Effect of the invention) As described above, according to the invention of claim (1),
In a refrigeration system in which a plurality of evaporators are connected in parallel in a refrigerant circuit, constant superheat control is performed on the opening degree of the pressure reducing valve of the reference evaporator according to a signal from a single superheat detection means, and the opening Since the pressure reducing valve opening of other evaporators is controlled so that it has a constant opening with respect to the temperature control value, the capacity of multiple evaporators can be adjusted appropriately with a single superheat detection means. It can be adjusted to any value, and thus cost can be reduced.

請求項(2)の発明によれば、上記請求項(1)の発
明において、基準蒸発器が風上になるよう複数の蒸発器
を気流方向に沿って直列に配置した場合、基準蒸発器が
接続された分岐管における過熱度に応じて基準減圧弁の
開度について過熱度一定制御を行うとともに、その基準
減圧弁の開度制御値と過熱度との積に比例するよう他の
減圧弁開度を制御するようにしたので、他の減圧弁の開
度についても、吸込空気温度の低下による影響を排除し
て、簡易迅速に過熱度一定制御を確実に行うことがで
き、よって、制御性能の向上を図ることができる。
According to the invention of claim (2), in the invention of claim (1), when the plurality of evaporators are arranged in series along the airflow direction so that the reference evaporator is on the windward side, the reference evaporator is The superheat constant control is performed on the opening of the reference pressure reducing valve according to the degree of superheat in the connected branch pipe, and the other pressure reducing valve is opened so as to be proportional to the product of the control value of the reference pressure reducing valve opening and the degree of superheat. Since the degree of temperature control is controlled, it is possible to eliminate the influence of the decrease in the intake air temperature on other opening of the pressure reducing valve, and to perform the constant superheat degree constant control easily and quickly. Can be improved.

請求項(3)の発明では、請求項(1)の発明におい
て、ファンによる通風路に基準蒸発器が風上になるよう
複数の蒸発器を気流方向に沿って直列に配置した場合、
合流後の吸入ラインにおける過熱度をパラメータとし
て、各減圧弁の開度について上記請求項(2)の発明と
同様の過熱度一定制御をするようにしたので、圧縮機へ
の液バックを有効に防止することができ、よって、上記
請求項(2)の発明の効果に加えて、信頼性の向上を図
ることができる。
According to the invention of claim (3), in the invention of claim (1), when a plurality of evaporators are arranged in series along the airflow direction so that the reference evaporator is on the windward side in the ventilation passage by the fan,
Since the degree of superheat in the suction line after merging is used as a parameter and the degree of opening of each pressure reducing valve is controlled to be the same degree of superheat as in the invention of claim (2), liquid backing to the compressor is effectively performed. Therefore, the reliability can be improved in addition to the effect of the invention of claim (2).

請求項(4)の発明によれば、上記請求項(1)の発
明において、複数の蒸発器を個別の通風路に配置した場
合、基準蒸発器の減圧弁の開度と各蒸発器の容量比との
積に比例するよう他の減圧弁の開度を制御するようにし
たので、各蒸発器における過熱度をぼ同じ値に維持する
ことができ、よって、上記請求項(2)及び(3)の発
明の効果を併せて得ることができる。
According to the invention of claim (4), in the invention of claim (1), when a plurality of evaporators are arranged in individual ventilation passages, the opening degree of the pressure reducing valve of the reference evaporator and the capacity of each evaporator Since the opening degree of the other pressure reducing valve is controlled so as to be proportional to the product of the ratio, the superheat degree in each evaporator can be maintained at almost the same value. Therefore, the above claims (2) and ( The effect of the invention of 3) can be obtained together.

請求項(5)の発明によれば、冷媒回路内に複数の凝
縮器を並列に接続した冷凍装置におて、単一の過冷却度
検出手段の信号に応じて、基準凝縮器の流量制御弁の開
度について過冷却度一定制御を行うとともに、その開度
制御値に対して一定の開度を有するよう他の流量制御弁
開度を制御するようにしたので、単一の過冷却度検出手
段で複数の凝縮器の能力を要求に応じて適切な値に調節
することができ、よって、コストの低減を図ることがで
きる。
According to the invention of claim (5), in the refrigeration system in which a plurality of condensers are connected in parallel in the refrigerant circuit, the flow rate control of the reference condenser is performed in response to a signal from a single supercooling degree detection means. A constant degree of supercooling is controlled for the opening of the valve, and other flow rate control valve openings are controlled so as to have a constant degree of opening control value. The detection means can adjust the capacities of the plurality of condensers to appropriate values according to demands, and thus the cost can be reduced.

請求項(6)の発明によれば、上記請求項(5)の発
明において、基準凝縮器が風上になるよう複数の凝縮器
を気流方向に沿って直列に配置した場合、基準凝縮器の
接続された分岐管における過冷却度に応じて基準凝縮器
に対応する基準流量制御弁の開度について過冷却度一定
制御を行うとともに、基準流量制御弁の開度と過冷却度
との積に比例するよう他の流量制御弁の開度を制御する
ようにしたので、他の流量制御弁の開度について、吸込
空気温度の上昇による影響を排除して、簡易迅速に過冷
却度一定制御を行うことができ、よって、制御性能の向
上を図ることができる。
According to the invention of claim (6), in the invention of claim (5), when a plurality of condensers are arranged in series along the air flow direction so that the reference condenser is on the windward side, Performs constant supercooling degree control for the opening of the reference flow control valve corresponding to the reference condenser according to the supercooling degree in the connected branch pipe, and determines the product of the opening of the reference flow control valve and the supercooling degree. Since the other flow control valve openings are controlled so as to be proportional to each other, the influence of the rise in intake air temperature on the other flow control valve openings is eliminated, and simple and quick constant supercooling degree control is performed. Therefore, the control performance can be improved.

請求項(7)の発明では、請求項(5)の発明におい
て、ファンによる通風路に基準の凝縮器が風上になるよ
う複数の凝縮器を気流方向に沿って直列に配置した場
合、合流後の吸入ラインにおける過冷却度をパラメータ
として、各流量制御弁の開度について上記請求項(6)
の発明と同様の過冷却度一定制御をするようにしたの
で、液ラインにおけるフラッシュを有効に防止すること
ができ、よって、上記請求項(6)の発明の効果に加え
て、信頼性の向上を図ることができる。
According to the invention of claim (7), in the invention of claim (5), when a plurality of condensers are arranged in series along the airflow direction so that the reference condenser is on the windward side in the ventilation passage by the fan, The opening degree of each flow rate control valve, wherein the degree of supercooling in the subsequent suction line is used as a parameter.
Since the same degree of supercooling control is performed as in the invention of claim 1, it is possible to effectively prevent flushing in the liquid line. Therefore, in addition to the effect of the invention of claim (6), the reliability is improved. Can be achieved.

請求項(8)の発明によれば、上記請求項(5)の発
明において、複数の凝縮器を個別の通風路に配置した場
合、基準凝縮器の流量制御弁の開度と他の凝縮器の容量
比との積に比例するよう他の流量制御弁の開度を制御す
るようにしたので、各凝縮器における過冷却度をほぼ同
じ値に保持するような過冷却度一定制御を行うことがで
き、よって、上記請求項(6)及び(7)の発明の効果
を併せて得ることができる。
According to the invention of claim (8), in the invention of claim (5), when a plurality of condensers are arranged in individual ventilation passages, the opening degree of the flow control valve of the reference condenser and other condensers Since the openings of the other flow control valves are controlled so as to be proportional to the product of the capacity ratio, the constant supercooling degree control that maintains the supercooling degree in each condenser at approximately the same value should be performed. Therefore, the effects of the inventions of the above claims (6) and (7) can be obtained together.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の構成を示すブロック図である。第2図
〜第4図は第1実施例を示し、第2図は空気調和装置の
冷媒配管系統図、第3図は暖房運転時における制御内容
を示すフローチャート図、第4図は冷房運転時にはおけ
る制御内容を示すフローチャート図、第5図は第2実施
例に係る空気調和装置の冷媒配管系統図である。 1……圧縮機 3a……第1室外熱交換器(他の蒸発器又は凝縮器) 3b……第2室外熱交換器(基準蒸発器又は凝縮器) 4a……第1室外電動膨張弁(他の減圧弁又は流量制御
弁) 4b……第2室外電動膨張弁(基準減圧弁又は流量制御
弁) 6……室内電動膨張弁(減圧機構) 7……室内熱交換器(凝縮器又は蒸発器) 9……主冷媒配管 10……冷媒回路 11a……第1分岐管 11b……第2分岐管 13……室外ファン 51……過熱度検出手段 52……過冷却度検出手段 53……基準開度演算手段 54……副開度演算手段 55……開度制御手段
FIG. 1 is a block diagram showing the configuration of the present invention. 2 to 4 show the first embodiment, FIG. 2 is a refrigerant piping system diagram of the air conditioner, FIG. 3 is a flow chart showing the control contents during heating operation, and FIG. 4 is during cooling operation. FIG. 5 is a flow chart showing the control contents in FIG. 5, and FIG. 5 is a refrigerant piping system diagram of the air conditioner according to the second embodiment. 1 ... Compressor 3a ... 1st outdoor heat exchanger (other evaporator or condenser) 3b ... 2nd outdoor heat exchanger (reference evaporator or condenser) 4a ... 1st outdoor electric expansion valve ( Other pressure reducing valves or flow control valves) 4b: Second outdoor electric expansion valve (reference pressure reducing valve or flow control valve) 6 ... Indoor electric expansion valve (pressure reducing mechanism) 7 ... Indoor heat exchanger (condenser or evaporation) 9) Main refrigerant pipe 10 ... Refrigerant circuit 11a ... 1st branch pipe 11b ... 2nd branch pipe 13 ... Outdoor fan 51 ... Superheat detection means 52 ... Supercooling degree detection means 53 ... Reference opening calculation means 54 ... Sub opening calculation means 55 ... Opening control means

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】圧縮機(1)及び凝縮器(7)が接続され
た主冷媒配管(9)に対して、開度の調節可能な減圧弁
(4a),(4b)と蒸発器(3a),(3b)とが直列に接続
された複数の分岐管(11a),(11b)を互いに並列に接
続してなる冷媒回路(10)を有する冷凍装置において、 冷媒の過熱度を検出する単一の過熱度検出手段(51)
と、該過熱度検出手段(51)の出力を受け、上記複数の
蒸発器(3a),(3b)のうちの基準となる基準蒸発器
(3b)に対応する基準減圧弁(4b)の開度を演算する基
準開度演算手段(53A)と、該基準開度制御手段(53A)
で演算された上記基準減圧弁(4b)の開度に対して所定
の関係を有するように他の減圧弁(4a)の開度を演算す
る副開度演算手段(54A)と、上記各開度演算手段(53
A),(54A)の演算結果に基づき各減圧弁(4a),(4
b)の開度を制御する開度制御手段(55A)とを備えたこ
とを特徴とする冷凍装置の運転制御装置。
1. A main refrigerant pipe (9) to which a compressor (1) and a condenser (7) are connected, a pressure reducing valve (4a), (4b) having an adjustable opening and an evaporator (3a). ), (3b) connected in series with a plurality of branch pipes (11a), (11b) connected in parallel to each other in a refrigerating apparatus having a refrigerant circuit (10) for detecting the degree of superheat of the refrigerant. One superheat detection means (51)
And receiving the output of the superheat detection means (51) to open the reference pressure reducing valve (4b) corresponding to the reference evaporator (3b) serving as the reference among the plurality of evaporators (3a), (3b). Reference opening calculation means (53A) for calculating the degree, and the reference opening control means (53A)
The auxiliary opening degree calculation means (54A) for calculating the opening degree of the other pressure reducing valve (4a) so as to have a predetermined relationship with the opening degree of the reference pressure reducing valve (4b) calculated in Degree calculation means (53
A), (54A) based on the calculation results of each pressure reducing valve (4a), (4a)
An operation control device for a refrigeration system, comprising: an opening control means (55A) for controlling the opening of b).
【請求項2】ファン(13)による通風路に、基準蒸発器
(3b)が風上側になるよう各蒸発器(3a),(3b)が気
流方向に沿って直列に配置されており、過熱度検出手段
(51)は、基準蒸発器(3b)が接続される分岐管(11
b)のガス側に配置されて基準蒸発器(3b)における冷
媒の過熱度を検出するものであり、副開度演算手段(54
B)は、基準開度演算手段(53A)で演算される基準減圧
弁(4b)の開度と上記過熱度検出手段(51)で検出され
る過熱度との積に比例するように他の減圧弁(4a)の開
度を演算するものであることを特徴とする請求項(1)
記載の冷凍装置の運転制御装置。
2. The evaporator (3a), (3b) is arranged in series along the air flow direction so that the reference evaporator (3b) is located on the windward side in the ventilation passage of the fan (13), and the overheat is generated. The degree detecting means (51) includes a branch pipe (11) to which the reference evaporator (3b) is connected.
It is arranged on the gas side of b) and detects the degree of superheat of the refrigerant in the reference evaporator (3b).
B) is another value proportional to the product of the opening degree of the reference pressure reducing valve (4b) calculated by the reference opening degree calculation means (53A) and the superheat degree detected by the superheat degree detection means (51). The method for calculating the opening of a pressure reducing valve (4a), characterized in that (1)
An operation control device for the refrigeration system described.
【請求項3】ファン(13)による通風路に、基準蒸発器
(3b)が風上側になるよう各蒸発器(3a),(3b)が気
流方向に沿って直列に配置されており、過熱度検出手段
(51)は主冷媒配管(9)の吸入ラインに配置されて各
蒸発器(3a),(3b)の平均的な過熱度を検出するもの
であり、副開度演算手段(54A)は、基準開度演算手段
(53A)で演算される基準減圧弁(4b)の開度と上記過
熱度検出手段(51)で検出される過熱度との積に比例す
るように他の減圧弁(4a)の開度を演算するものである
ことを特徴とする請求項(1)記載の冷凍装置の運転制
御装置。
3. The evaporator (3a), (3b) is arranged in series along the air flow direction so that the reference evaporator (3b) is located on the windward side in the ventilation passage of the fan (13), and the overheat is generated. The degree detection means (51) is arranged in the suction line of the main refrigerant pipe (9) to detect the average degree of superheat of each evaporator (3a), (3b), and the auxiliary opening degree calculation means (54A). ) Is another decompression so as to be proportional to the product of the opening of the reference pressure reducing valve (4b) calculated by the reference opening calculation means (53A) and the superheat detected by the superheat detection means (51). The operation control device for a refrigeration system according to claim 1, wherein the operation control device calculates the opening of the valve (4a).
【請求項4】各蒸発器(3a),(3b)はそれぞれ別個の
通風路に配置されており、過熱度検出手段(51)は基準
蒸発器(3b)が接続される分岐管(11b)のガス側に配
置されて基準蒸発器(3b)における冷媒の過熱度を検出
するものであり、副開度演算手段(54A)は、基準開度
演算手段(53A)で演算される基準減圧弁(4b)の開度
と他の蒸発器(3a)に対する基準蒸発器(3b)の容量比
との積に比例するように他の減圧弁(4a)の開度を演算
するものであることを特徴とする請求項(1)記載の冷
凍装置の運転制御装置。
4. The evaporators (3a), (3b) are arranged in separate air passages, and the superheat detection means (51) is a branch pipe (11b) to which the reference evaporator (3b) is connected. Is arranged on the gas side of the unit to detect the degree of superheat of the refrigerant in the reference evaporator (3b), and the auxiliary opening calculation means (54A) is the reference pressure reducing valve calculated by the reference opening calculation means (53A). To calculate the opening of the other pressure reducing valve (4a) so as to be proportional to the product of the opening of (4b) and the capacity ratio of the reference evaporator (3b) to the other evaporator (3a). The operation control device for a refrigerating apparatus according to claim (1).
【請求項5】圧縮機(1),減圧機構(6)及び蒸発器
(7)が接続された主冷媒配管(9)に対して、開度の
調節可能な流量制御弁(4a),(4b)と凝縮器(3a),
(3b)とが直列に接続された複数の分岐管(11a),(1
1b)を並列に接続してなる冷媒回路(10)を有する冷凍
装置において、 冷媒の過冷却度を検出する単一の過冷却度検出手段(5
2)と、該過冷却度検出手段(52)の出力を受け、上記
複数の凝縮器(3a),(3b)のうちの基準となる基準凝
縮器(3b)に対応する基準流量制御弁(4b)の開度を制
御する基準開度演算手段(53B)と、該基準開度演算手
段(53B)で演算される上記基準流量制御弁(4b)の開
度に対して所定の関係を有するように他の流量制御弁
(4a)の開度を演算する副開度演算手段(54B)と、上
記各開度演算手段(53B),(54B)の演算結果に基づき
各流量制御弁(4a),(4b)の開度を制御する開度制御
手段(55B)とを備えたことを特徴とする冷凍装置の運
転制御装置。
5. A flow control valve (4a), whose opening can be adjusted with respect to a main refrigerant pipe (9) to which a compressor (1), a pressure reducing mechanism (6) and an evaporator (7) are connected. 4b) and condenser (3a),
(3b) and multiple branch pipes (11a), (1
In a refrigeration system having a refrigerant circuit (10) in which 1b) are connected in parallel, a single supercooling degree detecting means (5
2) and the output of the supercooling degree detection means (52), and a reference flow rate control valve (a) corresponding to the reference condenser (3b) serving as a reference among the plurality of condensers (3a) and (3b). 4b) has a predetermined relationship with the reference opening control means (53B) for controlling the opening and the opening of the reference flow control valve (4b) calculated by the reference opening calculation means (53B). The sub-opening degree calculation means (54B) for calculating the opening degree of the other flow rate control valve (4a) and each flow rate control valve (4a) based on the calculation results of the respective opening degree calculation means (53B), (54B). ), (4b) opening degree control means (55B) for controlling the opening degree, and an operation control device for a refrigerating apparatus.
【請求項6】ファン(13)による通風路に、基準凝縮器
(3b)が風上側になるよう各凝縮器(3a),(3b)が気
流方向に沿って直列に配置されており、過冷却度検出手
段(52)は、基準蒸発器(3b)が接続される分岐管(11
b)に配置されて基準凝縮器(3b)における冷媒の過冷
却度を検出するものであり、副開度演算手段(54B)
は、基準開度演算手段(53B)で演算される基準流量制
御弁(4b)の開度と上記過冷却度検出手段(52)で検出
される過冷却度との積に比例するように他の流量制御弁
(4a)の開度を演算するものであることを特徴とする請
求項(5)記載の冷凍装置の運転制御装置。
6. Condensers (3a), (3b) are arranged in series along the air flow direction so that the reference condenser (3b) is on the windward side in the ventilation passage of the fan (13). The cooling degree detecting means (52) includes a branch pipe (11) to which the reference evaporator (3b) is connected.
It is arranged in b) to detect the degree of supercooling of the refrigerant in the reference condenser (3b), and an auxiliary opening degree calculation means (54B)
Is proportional to the product of the opening degree of the reference flow rate control valve (4b) calculated by the reference opening degree calculation means (53B) and the degree of supercooling detected by the degree of supercooling detection means (52). 6. The operation control device for a refrigerating apparatus according to claim 5, wherein the opening degree of the flow control valve (4a) is calculated.
【請求項7】ファン(13)による通風路に、基準凝縮器
(3b)が風上側になるよう各凝縮器(3a),(3b)が気
流方向に沿って直列に配置されており、過冷却度検出手
段(52)は主冷媒配管(9)の液ラインに配置されて各
凝縮器(3a),(3b)の平均的な過冷却度を検出するも
のであり、副開度演算手段(54B)は、基準開度演算手
段(53A)で演算される基準流量制御弁(4b)の開度と
上記過冷却度検出手段(52)で検出される過冷却度との
積に比例するように他の流量制御弁(4a)の開度を演算
するものであることを特徴とする請求項(5)記載の冷
凍装置の運転制御装置。
7. The condensers (3a), (3b) are arranged in series along the air flow direction so that the reference condenser (3b) is on the windward side in the ventilation passage of the fan (13). The cooling degree detecting means (52) is arranged in the liquid line of the main refrigerant pipe (9) to detect the average degree of supercooling of each condenser (3a), (3b), and the auxiliary opening degree calculating means. (54B) is proportional to the product of the opening degree of the reference flow rate control valve (4b) calculated by the reference opening degree calculating means (53A) and the supercooling degree detected by the supercooling degree detecting means (52). The operation control device for a refrigerating apparatus according to claim 5, wherein the opening degree of the other flow control valve (4a) is calculated as described above.
【請求項8】各凝縮器(3a),(3b)はそれぞれ別個の
通風路に配置されており、過冷却度検出手段(52)は基
準凝縮器(3b)が接続される分岐管(11b)の液側に配
置されて基準凝縮器(3b)における冷媒の過冷却度を検
出するものであり、副開度演算手段(54B)は、上記基
準開度演算手段(53B)で演算される基準流量制御弁(4
b)の開度と他の凝縮器(3a)に対する基準凝縮器(3
b)の容量比との積に比例するように他の流量制御弁(4
a)の開度を演算するものであることを特徴とする請求
項(5)記載の冷凍装置の運転制御装置。
8. The condensers (3a), (3b) are arranged in separate air passages, and the supercooling degree detecting means (52) is a branch pipe (11b) to which the reference condenser (3b) is connected. ) Is arranged on the liquid side to detect the degree of supercooling of the refrigerant in the reference condenser (3b), and the auxiliary opening degree calculation means (54B) is calculated by the reference opening degree calculation means (53B). Reference flow control valve (4
b) opening and reference condenser (3
Other flow control valves (4
The operation control device for a refrigerating apparatus according to claim 5, wherein the opening degree of a) is calculated.
JP1158095A 1989-06-20 1989-06-20 Refrigeration system operation controller Expired - Fee Related JPH0827090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1158095A JPH0827090B2 (en) 1989-06-20 1989-06-20 Refrigeration system operation controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1158095A JPH0827090B2 (en) 1989-06-20 1989-06-20 Refrigeration system operation controller

Publications (2)

Publication Number Publication Date
JPH0325257A JPH0325257A (en) 1991-02-04
JPH0827090B2 true JPH0827090B2 (en) 1996-03-21

Family

ID=15664195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1158095A Expired - Fee Related JPH0827090B2 (en) 1989-06-20 1989-06-20 Refrigeration system operation controller

Country Status (1)

Country Link
JP (1) JPH0827090B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102492157A (en) * 2011-12-07 2012-06-13 江苏梅兰化工有限公司 Preparation method for dispersed graphite filled polytetrafluoroethylene resin

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6048168B2 (en) * 2013-01-29 2016-12-21 ダイキン工業株式会社 Secondary refrigerant air conditioning system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102492157A (en) * 2011-12-07 2012-06-13 江苏梅兰化工有限公司 Preparation method for dispersed graphite filled polytetrafluoroethylene resin

Also Published As

Publication number Publication date
JPH0325257A (en) 1991-02-04

Similar Documents

Publication Publication Date Title
EP1586836B1 (en) Cooling cycle apparatus and method of controlling linear expansion valve of the same
US8047011B2 (en) Refrigeration system
WO2006013938A1 (en) Freezing apparatus
JP3596506B2 (en) Refrigeration equipment
JPH0827090B2 (en) Refrigeration system operation controller
JP2684845B2 (en) Operation control device for air conditioner
JP3028008B2 (en) Air conditioner
JP3482845B2 (en) Air conditioner
JPH0799286B2 (en) Wet control device for air conditioner
JPH10185343A (en) Refrigerating equipment
JP2757685B2 (en) Operation control device for air conditioner
JP2904354B2 (en) Air conditioner
JP2755040B2 (en) Heat pump system
JP3511708B2 (en) Operation control unit for air conditioner
JPH07122534B2 (en) Defrost operation controller for air conditioner
JPH05272822A (en) Freezer
JP2503699B2 (en) Compressor discharge pipe temperature control device
JP3353367B2 (en) Air conditioner
WO2023047534A1 (en) Air conditioner, method for controlling air conditioner, and program
JP6987229B2 (en) Air conditioner
JPH0395359A (en) Air conditioner
JPH085184A (en) Multi-room type air conditioner
JPH08128747A (en) Controller for air conditioner
JPS60133267A (en) Separate type air conditioner
JPS62299660A (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080321

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090321

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees