JPH08269721A - Method for removing dust in exhaust gas of cvd device - Google Patents

Method for removing dust in exhaust gas of cvd device

Info

Publication number
JPH08269721A
JPH08269721A JP7073877A JP7387795A JPH08269721A JP H08269721 A JPH08269721 A JP H08269721A JP 7073877 A JP7073877 A JP 7073877A JP 7387795 A JP7387795 A JP 7387795A JP H08269721 A JPH08269721 A JP H08269721A
Authority
JP
Japan
Prior art keywords
filter
exhaust gas
operated
coarse
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7073877A
Other languages
Japanese (ja)
Inventor
Susumu Nakai
進 中井
Tomoyuki Uruno
智之 宇留野
Jiro Hiramoto
治郎 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7073877A priority Critical patent/JPH08269721A/en
Publication of JPH08269721A publication Critical patent/JPH08269721A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a method for removing dust in the exhaust gas of a semiconductor producing device, etc., needing a dense thick-film coating by a CVD device. CONSTITUTION: A raw gas is supplied to a reactor 3 in a CVD device and allowed to react with a sample S, the generated exhaust gas is evacuated by a vacuum pump 7, and the dust is removed by filter elements 5A and 5B. In this case, the filter element 5A provided with a coarse-mesh filter F1 and the filter element 5B furnished with a coarse-mesh filter F2 are arranged in parallel and operated alternately and independently. When the operated element 5A is switched to the suspended element 5B, both elements are transiently operated at the same time, and then only the element 5B is operated. Consequently, a large amt. of exhaust gas is continuously treated for a long time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温雰囲気での化学気
相蒸着装置(以下、CVD装置と略す)による緻密なコ
ーティングの厚膜を必要とする半導体製造装置等の排気
ガス除塵方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas dust removing method for a semiconductor manufacturing apparatus or the like which requires a thick film of a dense coating by a chemical vapor deposition apparatus (hereinafter abbreviated as a CVD apparatus) in a high temperature atmosphere.

【0002】[0002]

【従来の技術】CVD(化学気相蒸着)法によりシリコ
ンや炭素材等の表面に導電性、耐酸化性等の機能を有す
る被膜を形成させる際に、CVDの本質として化学反応
によりリアクタ内の気相中で微粒子を発生させるため、
基材や支持具、リアクタ内壁等に接触・付着・堆積しな
かった多量の反応生成粒子は、排気ガス中に粉末状とな
り飛散する。この粉末状の粒子は、CVD装置の後段に
配置された真空ポンプ等の系を摩滅損傷および閉塞させ
る原因となる。
2. Description of the Related Art When a coating film having functions such as conductivity and oxidation resistance is formed on the surface of silicon or carbon material by the CVD (Chemical Vapor Deposition) method, the chemical reaction in the reactor is the essence of CVD. In order to generate fine particles in the gas phase,
A large amount of reaction product particles that have not come into contact with, adhere to, or deposit on the base material, the support tool, the inner wall of the reactor, etc. are scattered in the exhaust gas in a powder form. The powdery particles cause abrasion damage and blockage of a system such as a vacuum pump arranged in a subsequent stage of the CVD apparatus.

【0003】そのために、たとえば特開昭60− 13071号
公報においてはCVD装置と真空系を保持する油回転ポ
ンプの間にカセット式フィルタを設置し、CVD装置か
らの排気中に含まれる粒子状物質を捕集するのでポンプ
の損傷を防止できる技術が開示されている。一般に、半
導体製造装置の一部を構成するサセプタは炭素材を使用
しているが、耐酸化性を付与させるために厚膜のSiC コ
ーティング膜を形成する際に、CVD法を使用してい
る。たとえば、複雑な形状の基材に均一な数百 mμのコ
ーティング膜を形成する場合には通常数十時間以上の累
積運転が必要となる。
Therefore, for example, in Japanese Patent Laid-Open No. 60-13071, a cassette type filter is installed between a CVD device and an oil rotary pump holding a vacuum system, and particulate matter contained in exhaust gas from the CVD device. A technique has been disclosed that can prevent damage to the pump because it collects. Generally, a carbon material is used for a susceptor that constitutes a part of a semiconductor manufacturing apparatus, but a CVD method is used when forming a thick SiC coating film to impart oxidation resistance. For example, when a uniform coating film of several hundred mμ is formed on a substrate having a complicated shape, cumulative operation for several tens of hours or more is usually required.

【0004】ここで、CVD法によるコーティングにつ
いて説明すると、CVD装置は通常、図4に示すよう
に、原料ガスを貯える原料ガスボンベ1と、反応原料供
給装置2と、試料Sを装入して反応を行うリアクタ3
と、ろ過エレメント5を内蔵した粒子除去装置4と、真
空ポンプ7を配置した排気装置6と、排ガス処理装置8
とから構成される。
[0004] Here, the coating by the CVD method will be explained. As shown in FIG. 4, a CVD apparatus is usually equipped with a raw material gas cylinder 1 for storing a raw material gas, a reaction raw material supply device 2, and a sample S for reaction. Reactor 3
A particle removing device 4 having a filter element 5 incorporated therein, an exhaust device 6 having a vacuum pump 7 disposed therein, and an exhaust gas treatment device 8
Composed of and.

【0005】原料ガスボンベ1の原料ガスとしては、シ
ラン (SiH4) 等の揮発性水素化金属や金属塩化物の原料
ガス、炭化水素やアンモニア等の反応副原料ガスを含ん
だものが用いられる。また、リアクタ3では、反応原料
供給装置2を介して供給された原料ガスを高温・減圧下
で試料Sと反応させ、目的とするコーティング膜の成分
となる超微粒子を生成させ、これを蒸着させて試料Sの
表面にコーティング膜が形成される。
As a raw material gas for the raw material gas cylinder 1, a raw material gas containing a volatile metal hydride such as silane (SiH 4 ) or a metal chloride, and a reaction auxiliary raw material gas such as hydrocarbon or ammonia are used. Further, in the reactor 3, the raw material gas supplied through the reaction raw material supply device 2 is reacted with the sample S at high temperature and under reduced pressure to generate ultrafine particles which are the components of the target coating film and vapor-deposit this. As a result, a coating film is formed on the surface of the sample S.

【0006】粒子除去装置4は、内蔵したろ過エレメン
ト5によってCVD反応で生成する硬度の高いセラミッ
ク質の微粒子によって真空ポンプ7の磨滅損傷あるいは
閉塞等によるトラブルを回避するため設けられるもの
で、ろ過エレメント5としては直接的に当該微粒子を捕
集するフィルタタイプのものか、排気ガスを極低温まで
冷却してその一部特に酸性成分を液化・凝縮させると同
時に微粒子も取り込んで捕集するコールドトラップタイ
プのものが用いられる。
The particle removing device 4 is provided in order to avoid troubles due to abrasion damage or blockage of the vacuum pump 7 due to ceramic particles having high hardness generated by the CVD reaction by the built-in filtering element 5. 5 is a filter type that directly collects the particulates, or a cold trap type that cools the exhaust gas to an extremely low temperature and liquefies and condenses a part of it, especially the acidic components, and also captures the particulates. What is used.

【0007】排気装置6は、反応ガスの排気およびリア
クタ3内の圧力調節を行うためのもので、前記特開昭60
− 13071号公報と同様に、1台もしくは2台以上の真空
ポンプ7が用いられる。排気ガス処理装置8は、反応ガ
ス成分に含まれる強酸成分を中和するために設けられ
る。上記のように構成されるCVD装置は、実験室用の
小型のものから商業用まで広く採用されている公知のも
のである。
The exhaust device 6 is for exhausting the reaction gas and adjusting the pressure in the reactor 3, and is described in the above-mentioned JP-A-60.
As in JP-A-13071, one or more vacuum pumps 7 are used. The exhaust gas treatment device 8 is provided to neutralize the strong acid component contained in the reaction gas component. The CVD apparatus configured as described above is a well-known type that has been widely adopted from a small-sized one for a laboratory to a commercial one.

【0008】ところで、上記したように、粒子除去装置
4のろ過エレメント5にはフィルタタイプかコールドト
ラップタイプのいずれかが使用されるのが一般的である
が、コールドトラップタイプの場合は反応で副生成する
酸性ガス等の除去も可能になるので、排気システムの後
続に設けられる排気ガス処理装置8を設けることが不要
になるとか、あるいは活性炭等による簡単な吸着システ
ムで対応できるなどの利点があり、また、フィルタタイ
プの場合は除去装置の構造が単純で、コールドトラップ
タイプのように高価な低温液化ガスが不要であるという
利点がある。
By the way, as described above, it is general that either the filter type or the cold trap type is used for the filtration element 5 of the particle removing device 4, but in the case of the cold trap type, it is a sub reaction depending on the reaction. Since the generated acid gas and the like can be removed, there is an advantage that it is not necessary to provide the exhaust gas treatment device 8 provided after the exhaust system, or that a simple adsorption system such as activated carbon can be used. Further, in the case of the filter type, there is an advantage that the structure of the removing device is simple and an expensive low temperature liquefied gas unlike the cold trap type is unnecessary.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記し
た従来の粒子除去装置4のろ過エレメント5にコールド
トラップタイプを採用した場合は、冷却剤として非常に
高価な液体窒素等極低温液化ガスが必要となるから、大
量のコールドトラップタイプの設備を必要とするような
長時間・大量に反応ガスを供給する装置には不向きで、
実験室用の小型装置等に広く採用されているのが現状で
ある。
However, when the cold trap type is adopted as the filtration element 5 of the above-mentioned conventional particle removing apparatus 4, a very low temperature liquefied gas such as liquid nitrogen is required as a coolant. Therefore, it is not suitable for a device that supplies a large amount of reaction gas for a long time that requires a large amount of cold trap type equipment,
At present, it is widely used in small devices for laboratories.

【0010】また、フィルタタイプを採用した場合は、
反応で生成されリアクタ3から排出されるのは非常に細
かい微粒子のため、使用するフィルタもまた非常に目の
細かいものにしなければならないことから目詰まりが激
しく、そのメンテナンスのためにたえず運転を止めてフ
ィルタを交換する必要があるから連続運転ができない。
そこで、長時間の操業を実現するためには大面積のフィ
ルタを多数必要とするから、設備費用も高価となる欠点
がある。このことは、排気ガスが強い腐食性を有する厳
しい環境であったり、操業上反応系の圧力変動を嫌うた
め、例えば価格の安いバグフィルタ等の自浄式フィルタ
が導入しにくいことも影響している。
When the filter type is adopted,
Since the particles produced in the reaction and discharged from the reactor 3 are extremely fine particles, the filters used must also have very fine meshes, so clogging is severe, and operation is constantly stopped for maintenance. Continuous operation is not possible because the filter needs to be replaced.
Therefore, a large number of filters having a large area are required to realize a long-time operation, so that there is a drawback that the equipment cost is also high. This also influences the difficulty of introducing self-cleaning filters such as low-priced bag filters, for example, because the exhaust gas is in a severe environment with strong corrosiveness and the pressure fluctuation of the reaction system is disliked during operation. .

【0011】このように、CVD法によるコーティング
技術は古くから知られたものであるにもかかわらず、現
在にいたっても大型部材の処理技術すなわち大型装置の
開発が進まない理由の一つには、大型化したときに発生
する多量の微粒子を含む排気ガスの処理が上述したよう
に難しいことも原因となっているのである。本発明は、
単体としては構造が単純で安価なフィルタを用いて、し
かも大量・大面積を要せず長時間あるいは多量の排気を
処理する能力を有する粒子を連続的に除去することの可
能なCVD装置の排気除塵方法を提供することを目的と
する。
As described above, although the coating technology by the CVD method has been known for a long time, one of the reasons why the processing technology for large-sized members, that is, the development of large-sized equipment has not progressed even nowadays. Another problem is that it is difficult to treat the exhaust gas containing a large amount of fine particles, which is generated when the size is increased, as described above. The present invention
Exhaust from a CVD device that uses a filter that is simple and inexpensive as a single unit, and that can continuously remove particles that have the ability to process a long time or a large amount of exhaust without requiring a large amount of large area. It is intended to provide a dust removal method.

【0012】[0012]

【課題を解決するための手段】本発明は、原料ガスをリ
アクタに供給して試料と反応させ、発生した排気ガスを
真空引きしながらろ過エレメントを用いて除塵するCV
D装置の排気ガス除塵方法において、前記ろ過エレメン
トに目開きの荒いフィルタを用いて、該ろ過エレメント
を並列に配置して1個ずつ交互に単独運転し、運転中の
ろ過エレメントから他のろ過エレメントに切り換える際
に、運転中のろ過エレメントと切り換え先のろ過エレメ
ントとを一時重畳させて運転した後、切り換え先のろ過
エレメントを単独に運転することを特徴とするCVD装
置の排気ガス除塵方法ある。
According to the present invention, a raw material gas is supplied to a reactor to react with a sample, and the generated exhaust gas is evacuated while a filter element is used to remove dust.
In the exhaust gas dust removal method of the D apparatus, a filter having a coarse opening is used as the filter element, the filter elements are arranged in parallel, and the filter elements are operated independently one by one. There is provided a method for removing dust from exhaust gas of a CVD apparatus, which is characterized in that, when the filter element is switched to, the filter element in operation and the filter element in the switching destination are temporarily overlapped and operated, and then the filter element in the switching destination is independently operated.

【0013】なお、前記フィルタの目開きは到達粒子の
60〜98%が通過できる程度の荒さとするのが好ましい。
The opening of the filter is for the particles to reach.
The roughness is preferably such that 60 to 98% can pass through.

【0014】[0014]

【作用】本発明者らは上記の課題を解決すべく鋭意実験
・研究を行った結果、以下のような知見を得て、本発明
を完成させるに至ったものである。すなわち、 リアクタ3から排出される非常に細かい微粒子を捕
集する手段としては、もっとも構造が簡単な固定式フィ
ルタが望ましいこと、 フィルタの目開きは従来のようにそのままで到達粒
子のほとんどを捕集することができるような非常に細か
いものではなく、到達粒子の60〜98%、好ましくは80〜
95%程度が通過できる程度の荒い目開きのフィルタ(以
下、荒目フィルタという)が望ましいこと、 ろ過エレメントの設置個数は1個もしくは2個以上
でよく、より連続長時間の操業を実現するためには、単
純に2個以上のろ過エレメントを切り換えて使用する際
に、運転中のろ過エレメントと切り換え先のろ過エレメ
ントとを一時重畳させて運転した後に切り換えるように
して、互いに閉塞する直前にフィルタを交換すること、
などである。
As a result of intensive experiments and research to solve the above problems, the present inventors have completed the present invention by obtaining the following knowledge. That is, a fixed filter with the simplest structure is desirable as a means for collecting very fine particles discharged from the reactor 3, and most of the arriving particles are collected without changing the opening of the filter as in the conventional case. Not very fine as can be, 60-98% of the reaching particles, preferably 80-
It is desirable to use a filter with a coarse opening that allows about 95% to pass (hereinafter referred to as a coarse filter). The number of filter elements to be installed may be one or two or more, in order to realize a continuous and long-term operation. When simply switching two or more filter elements to use, the filter element is switched immediately after the filter element in operation and the filter element at the switch destination are temporarily superposed and operated. To replace,
And so on.

【0015】そこで、図1に示すような本発明の粒子除
去装置4Aを採用することとした。すなわち、粒子除去
装置4Aはリアクタ3と排気装置6との間に設けられた
主排気管10は枝管11, 12に分岐され、ろ過エレメント5
A,5Bにそれぞれ荒目フィルタF1 ,F2 が1個ずつ
取り付けられ、それらの前後に止弁V11,V12およびV
21,V22が取り付けられ、また、枝管11, 12の間にはバ
イパス管13, 14が設けられ、それぞれ止弁V13,V23
取り付けられて構成される。
Therefore, the particle removing apparatus 4A of the present invention as shown in FIG. 1 is adopted. That is, in the particle removing device 4A, the main exhaust pipe 10 provided between the reactor 3 and the exhaust device 6 is branched into the branch pipes 11 and 12, and the filtering element 5
One coarse filter F 1 and one coarse filter F 2 are attached to A and 5B, respectively, and stop valves V 11 , V 12 and V are provided before and after them.
21 and V 22 are attached, bypass pipes 13 and 14 are provided between the branch pipes 11 and 12, and stop valves V 13 and V 23 are attached, respectively.

【0016】そして、このように構成された粒子除去装
置4Aの連続運転に伴う基本的なフィルタの交換または
清掃は、以下のような切換手順でなされる。 i.ろ過エレメント5Aが運転状態でろ過エレメント5
Bが停止状態の場合;(このとき、止弁V11,V12
開、止弁V13,V21,V22,V23;閉) イ.止弁V21,V23を開 ロ.次いで止弁V11を閉 ハ.所定時間後に止弁V22を開 ニ.次いで止弁V12,V23を閉(これで、ろ過エレメン
ト5Bが運転状態、ろ過エレメント5Aが停止状態にな
る) ホ.ろ過エレメント5A中の荒目フィルタF1 を交換
(または清掃) ii. ろ過エレメント5Bが運転状態でろ過エレメント5
Aが停止状態の場合;(このとき、止弁V21,V22
開、止弁V11,V12,V13,V23;閉) イ.止弁V11,V13を開 ロ.次いで止弁V21を閉 ハ.所定時間後に止弁V12を開 ニ.次いで止弁V22,V13を閉(これで、ろ過エレメン
ト5Aが運転状態、ろ過エレメント5Bが停止状態にな
る) ホ.ろ過エレメント5Bの荒目フィルタF2 を交換(ま
たは清掃) 図2は従来の細目フィルタ(1200メッシュ)と本発明の
荒目フィルタ(100 メッシュ)の使用時間(排気ガス処
理時間)に対するフィルタの入出間の差圧の関係を示し
たものである。図2の破線で示す曲線Aのように、従来
の細目フィルタを用いた場合は、微粒子は確実に捕集で
きるが、短時間で限界に達し閉塞して使用不能となる。
The basic filter replacement or cleaning that accompanies the continuous operation of the particle removing apparatus 4A having the above-described structure is performed by the following switching procedure. i. When the filtration element 5A is in operation, the filtration element 5
When B is in the stopped state; (At this time, the stop valves V 11 and V 12 ;
Open, stop valves V 13 , V 21 , V 22 , V 23 ; closed) a. A check valve V 21, V 23 open Russia. Then close the stop valve V 11 . Open the stop valve V 22 after a predetermined time d. Next, the stop valves V 12 and V 23 are closed (the filter element 5B is in the operating state and the filter element 5A is in the stopped state) e. Replace (or clean) the coarse filter F 1 in the filtration element 5A ii.
When A is in a stopped state; (At this time, the stop valves V 21 , V 22 ;
Open, stop valves V 11 , V 12 , V 13 , V 23 ; closed) a. Open the stop valves V 11 and V 13 . Then close the stop valve V 21 c. Open the stop valve V 12 after a predetermined time. Next, the stop valves V 22 and V 13 are closed (the filter element 5A is in the operating state and the filter element 5B is in the stopped state) e. Replacing (or cleaning) the coarse filter F 2 of the filtration element 5B. FIG. 2 shows the filter entry / exit for the usage time (exhaust gas treatment time) of the conventional fine filter (1200 mesh) and the coarse filter of the present invention (100 mesh). It shows the relationship of the differential pressure between them. When the conventional fine filter is used as shown by the curve A shown by the broken line in FIG. 2, the fine particles can be reliably collected, but they reach the limit in a short time and become blocked and unusable.

【0017】これに対し、本発明の荒目フィルタを採用
すると、図2の実線で示す曲線Bからわかるように、当
初は微粒子の捕集効率は低いが、一定時間経過後は従来
の細目フィルタを用いた場合と遜色のない捕集効率に達
し、以後細目フィルタに比べ閉塞して使用不能となるま
での時間が長いため、単体の荒目フィルタでも従来の細
目フィルタに比べ数倍から数十倍の長い時間排気ガス処
理が可能となる。
On the other hand, when the coarse filter of the present invention is adopted, as can be seen from the curve B shown by the solid line in FIG. 2, the particulate collection efficiency is initially low, but after a certain period of time, the conventional fine filter is used. Since the collection efficiency is comparable to that of the conventional filter and it takes a long time to block and become unusable compared to the fine filter, even a single coarse filter is several times to several tens of times larger than the conventional fine filter. Exhaust gas treatment can be performed for a long time twice as long.

【0018】ここで、この両者の違いについて検討する
と、従来の細目フィルタの場合は、図3(a) に模式的に
示すように、その目開きを到達粒子が埋め尽くしたとき
に閉塞・使用不能となる。これに対し、本発明の荒目フ
ィルタの場合は、図3(b) に示すように、当初微粒子は
その目開きを通過するが大径の粒子や複数の粒子が付着
した固まりが捕集されその目開きを埋めるようになる
と、捕集された大きな粒子層がより細かな微粒子の捕集
層となるため、平面でしか粒子を捕集できない細目フィ
ルタとは異なって、立体的な微粒子の捕集がなされるの
である。この原理は、液中の微粒子の捕集等として知ら
れるろ床ろ過と同じ作用である。
Here, considering the difference between the two, in the case of the conventional fine filter, as shown schematically in FIG. 3 (a), when the reaching particle fills the opening, it is blocked or used. It becomes impossible. On the other hand, in the case of the coarse filter of the present invention, as shown in FIG. 3 (b), initially fine particles pass through the openings, but large particles or agglomerates of a plurality of particles are collected. When it fills the openings, the trapped large particle layer becomes a finer particle trapping layer, and unlike a fine filter that can trap particles only on a flat surface, it traps three-dimensional particles. A gathering is made. This principle is the same as that of filter bed filtration known as collection of fine particles in liquid.

【0019】なお、荒目フィルタの目が荒過ぎて到達粒
子の1%も捕集できないようなものでは、上述のより細
かな微粒子を捕集するための層の形成が不十分で機能を
発揮しない。また、到達粒子の40%以上も捕集してしま
う程度に細かな目開きを有する荒目フィルタでは、実際
に閉塞するまでの時間が短く、従来の細目フィルタと比
べて格段の改善効果を得るのは難しい。
If the coarse filter has too coarse an eye to collect 1% of the reaching particles, the above-mentioned layer for collecting finer particles is not sufficiently formed to exert its function. do not do. In addition, with a coarse filter that has a fine mesh that captures 40% or more of the particles that reach it, the time until actual blockage is short, and a significant improvement effect is obtained compared to conventional fine filters. Is difficult.

【0020】上記のように本発明の粒子除去装置4Aを
構成し、かつ切換手順を用いることによって、より長時
間にわたって、より大量の排気ガスの連続処理を実現す
ることが可能となり、荒目フィルタの稼働開始時から微
粒子を確実に捕集することが可能である。また、本発明
に用いられるろ過エレメントの1個の能力は従来に比べ
格段に向上しているので、2個のろ過エレメントを切り
換えて使用する本発明の方式で十分な効果が得られるの
であるが、3個あるいはそれ以上のろ過エレメントを用
いるように発展させることも容易に可能である。
By configuring the particle removing apparatus 4A of the present invention as described above and using the switching procedure, it becomes possible to realize continuous treatment of a larger amount of exhaust gas for a longer period of time, and to use the coarse filter. It is possible to reliably collect fine particles from the start of the operation of. Further, since the capacity of one of the filtration elements used in the present invention is remarkably improved as compared with the conventional one, a sufficient effect can be obtained by the method of the present invention in which two filtration elements are switched and used. It is easily possible to develop to use three or more filtration elements.

【0021】[0021]

【実施例】以下に、本発明の実施例について、具体的に
説明する。 〔実施例1〕 SiC コーティングのためのCVD装置に
おいて、原料としてSiCl 4 を10nl/min、C3H8を5nl/mi
n、H2を50nl/minを装入しその排気ガスを下記の3種類
のフィルタで処理をした。
EXAMPLES Examples of the present invention will be specifically described below.
explain. [Example 1] In a CVD apparatus for SiC coating
As a raw material, SiCl Four10 nl / min, C3H85 nl / mi
n, H250nl / min is charged and the exhaust gas is the following three types
It processed with the filter.

【0022】その結果、本発明例のろ過エレメント中の
荒目フィルタは単体での連続使用可能時間の大幅延長と
フィルタ単位ろ過面積当たりの粒子捕集総量の大幅増量
が確認された。 i. 従来例1 ・細目フィルタ仕様 目開き 1200 メッシュ相当 粒子通過率 0.5 % (粒子捕集率 99.5%) ろ過面積 0.31 m2 ・排気ガス処理結果 使用可能時間 3 分 粒子捕集量 95 g(ろ過面積当たり捕集量 0.31kg/m2 ) 粒子通過量 0.2 g( 0.2%) ii. 従来例2 ・細目フィルタ仕様 目開き 800 メッシュ相当 粒子通過率 1 % (粒子捕集率 99%) ろ過面積 0.93 m2 ・排気ガス処理結果 使用可能時間 15 分 粒子捕集量 470 g(ろ過面積当たり捕集量 0.51kg/m2 ) 粒子通過量 2 g( 0.4%) iii. 本発明例 ・荒目フィルタ仕様 目開き 100 メッシュ相当 粒子通過率 75 % (粒子捕集率 25%) ろ過面積 0.93 m2 ・排気ガス処理結果 使用可能時間 125 分 粒子捕集量 4114 g(ろ過面積当たり捕集量 4.42kg/m2 ) 粒子通過量 51 g( 1.2%) ・経過時間毎の捕集状況;表1の通り
As a result, it was confirmed that the coarse filter in the filter element of the present invention example greatly extended the continuous usable time by itself and greatly increased the total amount of trapped particles per unit filtration area of the filter. i. Conventional example 1 ・ Fine filter specifications Equivalent to 1200 mesh mesh Particle passage rate 0.5% (Particle collection rate 99.5%) Filtration area 0.31 m 2・ Exhaust gas treatment result Usable time 3 minutes Particle collection amount 95 g (Filtration Collection amount per area 0.31kg / m 2 ) Particle passage amount 0.2g (0.2%) ii. Conventional example 2 ・ Fine filter specifications Equivalent to 800 mesh Particle passage rate 1% (Particle collection rate 99%) Filtration area 0.93 m 2・ Exhaust gas treatment result Usable time 15 minutes Particle collection amount 470 g (collection amount per filtration area 0.51 kg / m 2 ) Particle passage amount 2 g (0.4%) iii. Examples of the present invention ・ Coarse filter specifications Equivalent to 100 meshes Particle passage rate 75% (Particle collection rate 25%) Filtration area 0.93 m 2・ Exhaust gas treatment result Usable time 125 minutes Particle collection amount 4114 g (Collection amount per filtration area 4.42 kg / m 2 ) Particle passage amount 51 g (1.2%) ・ Collection status for each elapsed time; as shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】〔実施例2〕実施例1と同じCVD装置を
同じ条件で操業し、2個のろ過エレメント5A,5Bの
切り換えによるCVDのリアクタ3からの排気ガスの連
続処理を行った。その結果を表2に示す。なお、使用し
た荒目フィルタF1 ,F2 は、実施例1の iiiの本発明
例で使用したものと同じもので、切り換えの都度清掃し
たものに交換した。
Example 2 The same CVD apparatus as in Example 1 was operated under the same conditions, and the exhaust gas from the CVD reactor 3 was continuously treated by switching between the two filtration elements 5A and 5B. The results are shown in Table 2. The coarse filters F 1 and F 2 used were the same as those used in the example of the present invention of iii of Example 1, and they were replaced with those that were cleaned each time they were switched.

【0025】[0025]

【表2】 [Table 2]

【0026】この方法によれば、使用開始当初の15分の
間は多量の未捕捉粒子が荒目フィルタを通過するが、そ
れ以降は平均して従来の細目フィルタを使用したときと
同等もしくはそれ以上の捕集効率で、例えば100 時間以
上の連続長時間の処理が可能であることが確認された
(実際上は時間的制限はないといえる)。
According to this method, a large amount of untrapped particles pass through the coarse filter for 15 minutes at the beginning of use, but thereafter, on average, it is equal to or more than that when the conventional fine filter is used. With the above collection efficiency, it was confirmed that treatment for a continuous long time of, for example, 100 hours or more is possible (it can be said that there is practically no time limit).

【0027】[0027]

【発明の効果】一般のCVD法の操業では、実際にコー
ティングを行う反応処理に比べ、試料のセッティングあ
るいは機密テスト・パージ・昇温といった事前準備や、
試料の取り出し、あるいは降温・パージ・腐食雰囲気に
晒された機器部品類のメンテナンスといった事後処理に
かかる手間・費用の方が、特に大きなリアクタを有する
装置では格段に大きい。
EFFECTS OF THE INVENTION In the operation of a general CVD method, as compared with a reaction process in which coating is actually performed, preparation such as sample setting or confidential test, purging, and temperature rise, and
The time and labor required for post-treatment such as sample removal or maintenance of equipment parts exposed to a temperature drop / purge / corrosive atmosphere is significantly greater in an apparatus having a particularly large reactor.

【0028】それにもかかわらず、大きな装置で厚いコ
ーティング皮膜を得るためには、運転を何度も中断しな
がら運転回数を重ねて膜厚を厚くしていた。この大きな
原因が、CVD反応で排出される粒子の除去を、大量・
長時間処理できなかったことであることは既に述べたよ
うに、従来の超低温冷媒を用いる方法では大型化が難し
く、また細目フィルタでは極めて大型あるいは多数の設
置が必要となり現実的ではなかったことによる。
Nevertheless, in order to obtain a thick coating film with a large apparatus, the film thickness was increased by repeating the operation many times while interrupting the operation many times. The main reason for this is the large amount of particles removed in the CVD reaction.
As mentioned above, it was not possible to process for a long time because it is difficult to increase the size by the method using the conventional ultra-low temperature refrigerant, and it is not realistic because it is necessary to install a very large filter or a large number of fine filters. .

【0029】しかし、本発明の荒目フィルタによれば、
極めて単純なフィルタ方式でありながら、単体でも従来
のものより格段に捕集能力が高く、しかも最小限のフィ
ルタ切り換えによる使用によって、極めて長時間でかつ
大量の排気ガス処理が可能となり、CVDの連続・長時
間運転あるいは大量の排気ガスを発生する大型リアクタ
の運転が可能となった。
However, according to the coarse filter of the present invention,
Even though it is a very simple filter system, even a single unit has a much higher collection capacity than conventional ones, and by using a minimum of filter switching, it is possible to process a large amount of exhaust gas for a very long time, and continuous CVD -It has become possible to operate for a long time or a large reactor that generates a large amount of exhaust gas.

【0030】これにより、厚い膜を得なければならない
ような場合にも、途中で運転を中断する必要がなくなっ
たため、処理途中で試料が汚染される問題や、コーティ
ングが多層皮膜の構造を有するため期待どおりの性能を
発揮できなくなるといった問題が解決されるとともに、
単位量の粒子除去にかかわる設備費用や運転費用を極め
て小さく抑えることが可能になった。
As a result, even when a thick film has to be obtained, it is not necessary to interrupt the operation in the middle of the process, so that the sample is contaminated during the process and the coating has a multi-layered structure. As well as solving the problem of not being able to perform as expected,
It has become possible to keep equipment costs and operation costs associated with the removal of a unit amount of particles extremely low.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の構成の要部を示す概要図であ
る。
FIG. 1 is a schematic diagram showing a main part of a configuration of an exemplary embodiment of the present invention.

【図2】フィルタの使用時間とフィルタ差圧の関係を示
す特性図である。
FIG. 2 is a characteristic diagram showing a relationship between filter use time and filter differential pressure.

【図3】フィルタによる粒子捕捉機構の作用を模式的に
示す(a) 従来の細目フィルタの場合、(b) 本発明の荒目
フィルタの場合の説明図である。
FIG. 3 is an explanatory view schematically showing the action of a particle capturing mechanism by a filter, in the case of (a) a conventional fine filter and (b) a coarse filter of the present invention.

【図4】従来例の構成を示す概要図である。FIG. 4 is a schematic diagram showing a configuration of a conventional example.

【符号の説明】[Explanation of symbols]

1 原料ガスボンベ 2 反応原料供給装置 3 リアクタ 4A 粒子除去装置 5A,5B ろ過エレメント 6 排気装置 7 真空ポンプ 8 排気ガス処理装置 10 主排気管 11, 12 枝管 13, 14 バイパス管 S 試料 F1 ,F2 荒目フィルタ V11,V12,V13,V21,V22,V23 止弁1 raw material gas cylinder 2 reaction raw material supply device 3 reactor 4A particle removal device 5A, 5B filtration element 6 exhaust device 7 vacuum pump 8 exhaust gas treatment device 10 main exhaust pipe 11, 12 branch pipe 13, 14 bypass pipe S sample F 1 , F 2 Coarse filter V 11 , V 12 , V 13 , V 21 , V 22 , V 23 Stop valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原料ガスをリアクタに供給して試料と反
応させ、発生した排気ガスを真空引きしながらろ過エレ
メントを用いて除塵するCVD装置の排気ガス除塵方法
において、 前記ろ過エレメントに目開きの荒いフィルタを用いて、
該ろ過エレメントを並列に配置して1個ずつ交互に単独
運転し、運転中のろ過エレメントから他のろ過エレメン
トに切り換える際に、運転中のろ過エレメントと切り換
え先のろ過エレメントとを一時重畳させて運転した後、
切り換え先のろ過エレメントを単独に運転することを特
徴とするCVD装置の排気ガス除塵方法。
1. An exhaust gas dust removal method for a CVD apparatus, wherein a raw material gas is supplied to a reactor to react with a sample, and the generated exhaust gas is vacuumed to remove dust using a filtration element. Using a rough filter,
The filtration elements are arranged in parallel and operated independently one by one, and when the filtration element in operation is switched to another filtration element, the filtration element in operation and the filtration element of the switching destination are temporarily overlapped. After driving
An exhaust gas dust removing method for a CVD apparatus, characterized in that a filter element at a switching destination is independently operated.
【請求項2】 前記フィルタの目開きは到達粒子の60〜
98%が通過できる程度の荒さであることを特徴とする請
求項1記載のCVD装置の排気ガス除塵方法。
2. The aperture of the filter is 60 to 60
The exhaust gas dust removal method for a CVD apparatus according to claim 1, wherein the roughness is such that 98% can pass through.
JP7073877A 1995-03-30 1995-03-30 Method for removing dust in exhaust gas of cvd device Pending JPH08269721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7073877A JPH08269721A (en) 1995-03-30 1995-03-30 Method for removing dust in exhaust gas of cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7073877A JPH08269721A (en) 1995-03-30 1995-03-30 Method for removing dust in exhaust gas of cvd device

Publications (1)

Publication Number Publication Date
JPH08269721A true JPH08269721A (en) 1996-10-15

Family

ID=13530879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7073877A Pending JPH08269721A (en) 1995-03-30 1995-03-30 Method for removing dust in exhaust gas of cvd device

Country Status (1)

Country Link
JP (1) JPH08269721A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003005428A1 (en) * 2001-06-14 2003-01-16 Tae-Gon Kim Method and apparatus for removing a reaction by-product in the semiconductor and the liquid crystal display manufactured field
KR100441622B1 (en) * 2001-10-11 2004-07-23 주식회사 케이피씨 Apparatus for filtering Particle and Fume gas in chamber
US6863019B2 (en) * 2000-06-13 2005-03-08 Applied Materials, Inc. Semiconductor device fabrication chamber cleaning method and apparatus with recirculation of cleaning gas
CN114062577A (en) * 2021-09-30 2022-02-18 泊菲莱(镇江)智能设备有限公司 Post-treatment system for anti-dry powder pollution photocatalytic reaction device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6863019B2 (en) * 2000-06-13 2005-03-08 Applied Materials, Inc. Semiconductor device fabrication chamber cleaning method and apparatus with recirculation of cleaning gas
WO2003005428A1 (en) * 2001-06-14 2003-01-16 Tae-Gon Kim Method and apparatus for removing a reaction by-product in the semiconductor and the liquid crystal display manufactured field
KR100441622B1 (en) * 2001-10-11 2004-07-23 주식회사 케이피씨 Apparatus for filtering Particle and Fume gas in chamber
CN114062577A (en) * 2021-09-30 2022-02-18 泊菲莱(镇江)智能设备有限公司 Post-treatment system for anti-dry powder pollution photocatalytic reaction device

Similar Documents

Publication Publication Date Title
CA2087316C (en) An apparatus for filtering solid particles from a fluid
KR102243421B1 (en) Methods and apparatus for cleaning a substrate
GB2209005A (en) Exhaust processing apparatus
JPH0684875A (en) Method and apparatus for reduction of fine- particle concentration in working fluid
CN116272181A (en) Manifold assembly for a trapping filter system
KR100900091B1 (en) Metal element for high purity line and filter including the same
JPH08269721A (en) Method for removing dust in exhaust gas of cvd device
JP7064910B2 (en) Filter cloth, bug filter, and gas treatment equipment equipped with this
JP7360477B2 (en) Method and system for adsorbing organometallic vapors
KR100377605B1 (en) Method and apparatus for processing waste gas exhausted from chemical vapor deposition equipment
WO2003004133A1 (en) Exhaust gas pretreating method and exhaust gas pretreating device and dedusting device used therefor
JPH07506289A (en) Methods for converting reactive gases, dry multistage pumps, plasma scrubbers
JPH03229609A (en) Dry cvd waste gas treatment device
JP2005138083A (en) Wire net filter
JP2002118065A (en) Treatment method of semiconductor gas and filter device
KR20030081592A (en) Equipment for removing a by-product of exhast line in semiconductor product device
JPH09187612A (en) Gaseous impurity treating system and particle removing filter
JP2006005258A (en) Solid filter and compound semiconductor manufacturing method using same
JP4455719B2 (en) Exhaust gas filtration device
KR101765159B1 (en) Catalyst filter having function of removing carbon dust and fitering unit comprising the same and precipitation apparatus comprising the same
JPH09306846A (en) Exhausting apparatus
US20220112598A1 (en) Trap filter system for semiconductor equipment
KR102660643B1 (en) Method and system for adsorbing organometallic vapors
JP2003038922A (en) Bag filter-type dust collector
JP3462731B2 (en) Maintenance method of high temperature bag filter and filter membrane