JPH08268750A - Electrically conductive ceramics - Google Patents

Electrically conductive ceramics

Info

Publication number
JPH08268750A
JPH08268750A JP7038122A JP3812295A JPH08268750A JP H08268750 A JPH08268750 A JP H08268750A JP 7038122 A JP7038122 A JP 7038122A JP 3812295 A JP3812295 A JP 3812295A JP H08268750 A JPH08268750 A JP H08268750A
Authority
JP
Japan
Prior art keywords
conductive ceramics
fuel cell
present
lacro
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7038122A
Other languages
Japanese (ja)
Other versions
JP3245316B2 (en
Inventor
Yoshitake Terashi
吉健 寺師
Masahide Akiyama
雅英 秋山
Hidehiro Nanjiyou
英博 南上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP03812295A priority Critical patent/JP3245316B2/en
Publication of JPH08268750A publication Critical patent/JPH08268750A/en
Application granted granted Critical
Publication of JP3245316B2 publication Critical patent/JP3245316B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Resistance Heating (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE: To suppress expansion and shrinkage due to a change of an oxidizing- reducing atmosphere. CONSTITUTION: This electrically conductive ceramics is made of a multiple oxide contg. at least La and Cr as metallic elements. When the entire compsn. of the constituent metallic elements of the multiple oxide by atomic ratio is represented by the formula Lax (M1) (M2)z Crp (where M1 is at least one kind of element selected from among Mg, Ca, Sr and Ba and M2 is Zr or a combination of Zr with at least one kind of element selected from among Hf and the group IIIa element of the Periodic Table except La), (x), (y), (z) and (p) in the formula satisfy x+y+z+p=2, x >0, z>0, p>0, 0.002<=y<=0.9 and 0.001<=y-z<=0.8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質型燃料電池
セルのセパレータ、ガスディフューザー、およびインタ
ーコネクタなどの集電材料あるいはセラミック発熱素子
として好適なLaCrO3 系導電性セラミックスに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a LaCrO 3 -based conductive ceramic suitable as a current collecting material such as a separator, a gas diffuser, and an interconnector of a solid oxide fuel cell, or a ceramic heating element.

【0002】[0002]

【従来技術】LaCrO3 で表される化合物は、高温に
おいて化学的安定性に優れ、また電子伝導性が大きいこ
とから固体電解質型燃料電池セルのセパレータ、ガスデ
ィフューザ、およびインターコネクタなどの集電材料あ
るいはセラミック発熱素子への応用が検討されている。
また、最近では電気伝導性を高めるためにCa、Sr、
BaあるいはMg等により、LaあるいはCrの一部を
置換したLaCrO3系材料も提案されている。
2. Description of the Related Art A compound represented by LaCrO 3 is excellent in chemical stability at high temperature and has high electron conductivity, and therefore, it is a current collecting material such as a separator, a gas diffuser, and an interconnector of a solid oxide fuel cell. Alternatively, application to a ceramic heating element is under consideration.
Recently, in order to improve electric conductivity, Ca, Sr,
A LaCrO 3 -based material in which a part of La or Cr is replaced by Ba or Mg is also proposed.

【0003】固体電解質型燃料電池セルにおいては、図
1に示すようにY2 3 安定化ZrO2 の電解質1の一
面に多孔性のLaをCa、Srで置換したLaMnO3
を空気極2として形成し、他方の面に多孔性のNi−Z
rO2 (Y2 3 含有)からなる燃料極3を形成して単
セルが構成されている。この単セルは上述のLaCrO
3 系のセパレータ4で挟みこまれている。なお、発電は
セルの空気極側に空気(酸素)、燃料極側に燃料(水
素)を供給して1000〜1050℃の温度で行われ
る。
In the solid oxide fuel cell, as shown in FIG. 1, one surface of the electrolyte 1 of Y 2 O 3 -stabilized ZrO 2 is LaMnO 3 in which porous La is replaced with Ca and Sr.
Is formed as the air electrode 2, and porous Ni-Z is formed on the other surface.
A single cell is formed by forming a fuel electrode 3 made of rO 2 (containing Y 2 O 3 ). This single cell is the above-mentioned LaCrO.
It is sandwiched between 3 series separators 4. In addition, power generation is performed at a temperature of 1000 to 1050 ° C. by supplying air (oxygen) to the air electrode side of the cell and fuel (hydrogen) to the fuel electrode side.

【0004】一方、高温作動のセラミックの発熱素子に
おいては、チタン酸バリウムなどに代表されるPTCサ
ーミスタと呼ばれる抵抗素子が知られている。この素子
は、高温で電気抵抗が大きいため自己温度制御機能を有
するのが特徴であるが、使用温度が350℃程度までの
比較的低温領域で使用される。これに対して使用温度が
400℃〜1200℃のセラミック発熱素子として特願
平5−103117号に記載されるようにLaCrO3
系材料の自己発熱型のセラミック発熱素子も提案されて
いる。
On the other hand, as a ceramic heating element which operates at a high temperature, a resistance element called a PTC thermistor typified by barium titanate is known. This element is characterized in that it has a self-temperature control function because it has a high electric resistance at high temperatures, but it is used in a relatively low temperature range up to about 350 ° C. On the other hand, as a ceramic heating element whose operating temperature is 400 ° C. to 1200 ° C., as described in Japanese Patent Application No. 5-103117, LaCrO 3 is used.
A self-heating type ceramic heating element made of a system material has also been proposed.

【0005】[0005]

【発明が解決しようとする問題点】このLaCrO3
材料は、上述のように固体電解質型燃料電池セルの集電
材料や各種セラミック発熱素子として好適な材料である
が、酸化雰囲気で作製されたLaCrO3 系材料は、還
元雰囲気中において膨張するという致命的な欠点を有し
ている。そのため、雰囲気を酸化状態/還元状態に繰り
返すと膨張と収縮を繰り返し材料中にクラックが発生
し、その結果、燃料電池セルや発熱素子が破壊するとい
う問題があった。
This LaCrO 3 type material is suitable as a current collecting material for solid oxide fuel cell and various ceramic heating elements as described above, but it was produced in an oxidizing atmosphere. The LaCrO 3 based material has a fatal defect that it expands in a reducing atmosphere. Therefore, when the atmosphere is repeatedly changed to the oxidized state / reduced state, expansion and contraction are repeated, and cracks are generated in the material, resulting in the problem that the fuel cell and the heating element are destroyed.

【0006】[0006]

【問題点を解決するための手段】本発明者らは、上記の
問題に対して膨張/収縮を抑制するための方法について
検討を重ねた結果、少なくともLaとCrを含む複合酸
化物において、LaあるいはCrの一部をMg、Caな
どのアルカリ土類元素により置換すると同時に、Zrに
より置換することにより、膨張、収縮挙動が抑制されこ
の問題が解決できるとことを見いだし本発明に至った。
The inventors of the present invention have repeatedly studied a method for suppressing expansion / contraction with respect to the above problems, and as a result, in a composite oxide containing at least La and Cr, La Alternatively, they have found that the problem of expansion and shrinkage can be suppressed and the problem can be solved by substituting Zr at the same time as substituting a part of Cr with alkaline earth elements such as Mg and Ca.

【0007】即ち、本発明の導電性セラミックスは、金
属元素として少なくともLaおよびCrを含む複合酸化
物からなる導電性セラミックスであって、該複合酸化物
を構成する金属元素の原子比による全体組成を下記化1
That is, the conductive ceramics of the present invention is a conductive ceramics composed of a composite oxide containing at least La and Cr as metal elements, and has an overall composition based on the atomic ratio of the metal elements constituting the composite oxide. The following formula 1

【0008】[0008]

【化1】 Embedded image

【0009】で表した時、化1中のx、y、zおよびp
が、 x+y+z+p=2 0<x、0<z、0<p 0.002≦y≦0.9 0.001≦y−z≦0.8 を満足することを特徴とするものである。
X, y, z and p in the chemical formula 1
However, x + y + z + p = 20 <x, 0 <z, 0 <p 0.002 ≦ y ≦ 0.9 0.001 ≦ yz ≦ 0.8 is satisfied.

【0010】本発明の導電性セラミックスにおいて、化
1中のx、y、zおよびpの値を上記に限定した理由に
ついて説明する。まず、Mg、Ca、SrおよびBaの
群から選ばれる少なくとも1種の量を示すy値が0.0
02より小さいと電気伝導度が小さくなり、導電性セラ
ミックスとしての本質的特性が得られず、燃料電池セル
のサパレータ、インターコネクタ、発熱素子として使用
できない。また、このy値が0.9より大きいと電気伝
導度が小さくなるとともに、焼結性も悪くなる。さら
に、上記y値とZr、あるいはZrと、Laを除く周期
律表第3a族元素およびHfの群から選ばれる少なくと
も1種との組み合わせの量を示すz値との差(y−z)
が0.001より小さいと電気伝導度が小さく、逆に
0.8を超えると焼結性が低下する。また、z値が0で
は膨張/収縮の抑制効果が得られない。本発明によれ
ば、上記の観点からさらに望ましい範囲は x+y+z+p=2 0<x、0<p、 0.3≦y≦0.6 0.1≦z≦0.3 0.1≦y−z≦0.4 である。
The reason why the values of x, y, z and p in Chemical formula 1 are limited to the above values in the conductive ceramics of the present invention will be explained. First, the y value indicating the amount of at least one selected from the group consisting of Mg, Ca, Sr and Ba is 0.0
When it is less than 02, the electric conductivity becomes small, and the essential characteristics as a conductive ceramic cannot be obtained, so that it cannot be used as a separator of a fuel cell, an interconnector, or a heating element. Further, when the y value is larger than 0.9, the electric conductivity is reduced and the sinterability is deteriorated. Furthermore, the difference (yz) between the above y value and Zr, or the z value indicating the amount of Zr and the combination of Zr and at least one selected from the group consisting of elements of Group 3a of the periodic table excluding La and Hf (yz).
Is less than 0.001, the electric conductivity is small, and conversely, if it exceeds 0.8, the sinterability is deteriorated. Further, when the z value is 0, the effect of suppressing expansion / contraction cannot be obtained. According to the present invention, a more desirable range from the above viewpoint is x + y + z + p = 20 <x, 0 <p, 0.3 ≦ y ≦ 0.6 0.1 ≦ z ≦ 0.3 0.1 ≦ yz ≦ 0.4.

【0011】なお、本発明の導電性セラミックスによれ
ば、Crの一部をCrに対して30原子%以下の割合で
Mn、Fe、Coで置換することもできる。この場合、
Mn、Fe、Co等はpとして計算される。
According to the conductive ceramics of the present invention, a part of Cr can be replaced with Mn, Fe or Co at a ratio of 30 atomic% or less with respect to Cr. in this case,
Mn, Fe, Co, etc. are calculated as p.

【0012】また、前記化1におけるLa量を示すxに
ついては、A元素がMgの場合、 1.6/(1.8+x+y)≦x≦3.2/(1.8+
x+y) の範囲がよい。これは、xが3.0/(1.8+x+
y)を超えると焼成条件によりLa2 3 の析出量が多
くなり、空気中の水分あるいは炭酸ガスと反応して材料
が分解する場合がある。また、xが1.6/(1.8+
x+y)より小さいと焼結性が低下し、材料を焼結させ
るためには1700℃以上の温度が必要となり経済的で
ない。
Regarding x, which represents the La amount in the above chemical formula 1, when the A element is Mg, 1.6 / (1.8 + x + y) ≤x≤3.2 / (1.8+
The range of x + y) is good. This means that x is 3.0 / (1.8 + x +
If it exceeds y), the amount of La 2 O 3 precipitated increases depending on the firing conditions, and the material may decompose by reacting with moisture in the air or carbon dioxide gas. Also, x is 1.6 / (1.8+
If it is smaller than (x + y), the sinterability is lowered, and a temperature of 1700 ° C. or higher is required to sinter the material, which is not economical.

【0013】一方、A元素がCa、Ba、Srの場合
は、Mgの場合と同様な理由により 1.6/(1.7+x+y)≦x≦3.2/(1.7+
x+y) を満足することが望ましい。
On the other hand, when the A element is Ca, Ba or Sr, 1.6 / (1.7 + x + y) ≤x≤3.2 / (1.7+) for the same reason as in the case of Mg.
It is desirable to satisfy x + y).

【0014】本発明の導電性セラミックスは、主結晶相
は、一般式ABO3 で表されるペロブスカイト型結晶か
らなるもので、M1 中のCa、Sr,BaはLaととも
にAサイトを構成し、MgはCrとともにBサイトを構
成する。さらに、M2 のZrあるいは周期律表第3a族
元素は、添加量にもよるがほとんどの場合、Bサイトを
構成する。
In the conductive ceramics of the present invention, the main crystal phase is composed of a perovskite type crystal represented by the general formula ABO 3 , and Ca, Sr and Ba in M 1 form an A site together with La and Mg. Constitutes the B site with Cr. Further, the Zr of M2 or the Group 3a element of the periodic table almost always constitutes the B site, although it depends on the added amount.

【0015】また、組織構造としては、M1 がMgの場
合、y値がほぼ0.2を、M1 がCa、Sr,Baの場
合、y値がほぼ0.3をそれぞれ超えると、LaCrO
3 のペロブスカイト主結晶中に少なくともMgO、Ca
O、SrO、BaOなどの結晶が分散析出する。また、
本発明の導電性セラミックスによれば、MgOやCaa
Oの他に、場合によってはごくわずかなLa2 3 、Y
2 3 、ZrO2 、あるいはLaと周期律表第3a族元
素との固溶体酸化物が析出する場合があるが、これらの
材料は焼結性や電気伝導度に影響しないために特に問題
はない。
As for the microstructure, when M1 is Mg, the y value is about 0.2, and when M1 is Ca, Sr, or Ba, the y value exceeds about 0.3.
At least MgO, Ca in the perovskite main crystal of 3
Crystals of O, SrO, BaO, etc. are dispersed and precipitated. Also,
According to the conductive ceramics of the present invention, MgO or Caa
In addition to O, in some cases only a slight amount of La 2 O 3 , Y
There are cases where solid solution oxides of 2 O 3 , ZrO 2 or La and elements of Group 3a of the Periodic Table are precipitated, but there is no particular problem because these materials do not affect the sinterability and electrical conductivity. .

【0016】MgO、CaO、BaOの析出は、セラミ
ックスの熱膨張係数を制御する効果を有している。La
CrO3 固溶体の熱膨張係数は固体電解質と比較して小
さく、燃料電池セルを構成した場合に熱応力が発生し、
場合によってはセルが破壊する場合がある。本発明によ
れば、MgO、CaO等の結晶を析出させることにより
LaCrO3 固溶体とMgOあるいはCaOの複合酸化
物として熱膨張係数を固体電解質の熱膨張係数に一致さ
せることができる。
Precipitation of MgO, CaO and BaO has the effect of controlling the coefficient of thermal expansion of ceramics. La
The thermal expansion coefficient of CrO 3 solid solution is smaller than that of the solid electrolyte, and thermal stress occurs when a fuel cell is constructed,
The cell may be destroyed in some cases. According to the present invention, by precipitating crystals of MgO, CaO or the like, the coefficient of thermal expansion can be made to match the coefficient of thermal expansion of the solid electrolyte as a composite oxide of LaCrO 3 solid solution and MgO or CaO.

【0017】分散析出したMgO、CaOの平均結晶粒
径は、強度の点から50μm以下、特に10μm以下で
あることが望ましい。主結晶相であるLaCrO3 固溶
体相も、強度の点から50μm以下、特に20μm以下
が好ましい。これらの結晶相の平均結晶粒径が50μm
を超えると材料の機械的強度が小さくなり熱衝撃により
破壊される場合があるためである。
From the standpoint of strength, the average crystal grain size of MgO and CaO dispersed and precipitated is preferably 50 μm or less, and more preferably 10 μm or less. The LaCrO 3 solid solution phase, which is the main crystal phase, is also preferably 50 μm or less, particularly preferably 20 μm or less, from the viewpoint of strength. The average crystal grain size of these crystal phases is 50 μm
This is because the mechanical strength of the material decreases and the material may be destroyed by thermal shock if it exceeds.

【0018】また、本発明の導電性セラミックスは、高
温で使用される場合には、高い耐クリープ特性が要求さ
れる。この耐クリープ特性は、セラミックス中にAlや
Siにより大きく影響され、耐クリープ特性を高くする
にはAl、Siの総量を5重量%以下、特に2重量%以
下に制御することが望ましい。
The conductive ceramics of the present invention are required to have high creep resistance when used at high temperatures. The creep resistance is greatly affected by Al and Si in the ceramics, and it is desirable to control the total amount of Al and Si to 5% by weight or less, particularly 2% by weight or less in order to improve the creep resistance.

【0019】本発明の導電性セラミックスを燃料電池セ
ルのインターコネクタやセパレータとして使用する場合
には、このセラミックスの熱膨張係数は、固体電解質で
あるY2 3 或いはYb2 3 により安定化されたZr
2 や、CaO、SrO等を添加してなるLaMnO3
系空気極と一致させることで熱応力の発生を抑制し、セ
ルの破壊を防止することができる。そのため、導電性セ
ラミックスの熱膨張係数は、室温から1000℃の温度
範囲で10〜11×10-6/℃の範囲に調整することが
必要である。かかる点から化1の望ましい範囲としては x+y+z+p=2 0<x、0<z、0<p、 0.3≦y≦0.6 0.1≦y−z≦0.4 がよい。
When the conductive ceramic of the present invention is used as an interconnector or a separator of a fuel cell, the thermal expansion coefficient of this ceramic is stabilized by Y 2 O 3 or Yb 2 O 3 which is a solid electrolyte. Zr
LaMnO 3 formed by adding O 2 , CaO, SrO, etc.
By making it coincide with the system air electrode, generation of thermal stress can be suppressed and cell destruction can be prevented. Therefore, it is necessary to adjust the coefficient of thermal expansion of the conductive ceramics in the range of 10 to 11 × 10 −6 / ° C. in the temperature range of room temperature to 1000 ° C. From such a point, a desirable range of Chemical Formula 1 is x + y + z + p = 20 <x, 0 <z, 0 <p, 0.3 ≦ y ≦ 0.6 0.1 ≦ yz−0.4.

【0020】本発明の導電性セラミックスにおいて、M
2 の一部を構成する周期律表第3a族元素としては、具
体的にはY、Yb、Sc、Sm、Dy、Nd、Pr、C
e、GdおよびErの群から選ばれる少なくとも1種が
挙げられる。
In the conductive ceramic of the present invention, M
Specific examples of the Group 3a element of the periodic table constituting a part of 2 include Y, Yb, Sc, Sm, Dy, Nd, Pr and C.
At least one selected from the group consisting of e, Gd, and Er.

【0021】本発明の導電性セラミックスを製造するに
は、出発原料としてLa2 3 、Cr2 3 の粉末の
他、M1 およびM2 を構成する金属の酸化物あるいは熱
処理により酸化物を形成する炭酸塩、硝酸塩などの化合
物を用いて、それらの金属元素比が前述した化1を満足
するように調合しジルコニアボールを用いたボールミ
ル、振動ミルで混合した後、この粉末をさらに所定の粉
末粒子径になるように粉砕し、これを所望の成形手段、
例えば、金型プレス,冷間静水圧プレス,押出し成形等
により任意の形状に成形し、1400〜1700℃の温
度で大気中あるいはAr等の不活性雰囲気中で2〜7時
間焼成して作製する。製品の寸法精度を高めるために
は、成形前に一度1300〜1600℃の温度で2〜5
時間仮焼処理して一部が固溶体粉末となった粉末を用い
て成形焼成すればよい。また、予め、Mg、Ca等を含
有するLaCrO3 固溶体粉末を作製した後、MgO、
La2 3 、Y2 3 、ZrO2 等を所定量添加して調
製してもよい。
For producing the conductive ceramics of the present invention
Is La as the starting material2O3, Cr2O3Of powder
Others, oxides or heat of the metals that make up M1 and M2
Compounds such as carbonates and nitrates that form oxides by treatment
And the metal element ratios of them satisfy the above-mentioned chemical formula 1.
Ball mix using zirconia balls
After mixing with a vibrating mill, add this powder to the desired powder.
Pulverize to a powder particle size, and use this as the desired molding means,
For example, die press, cold isostatic press, extrusion molding, etc.
Molded into an arbitrary shape with a temperature of 1400 to 1700 ° C
2 to 7 o'clock in the air or in an inert atmosphere such as Ar
It is made by firing for a while. To improve product dimensional accuracy
2 to 5 at a temperature of 1300 to 1600 ° C once before molding
Using powder that has been partially calcined for a period of time to form a solid solution powder
It may be molded and fired. In addition, Mg, Ca, etc. are included in advance.
Having LaCrO3After preparing the solid solution powder, MgO,
La2O 3, Y2O3, ZrO2Add a specified amount of
May be manufactured.

【0022】次に、本発明の導電性セラミックスを燃料
電池のインターコネクタやセパレータなどの集電部材と
して用いる場合について説明する。図1に示した平板型
燃料電池セルにおいて、3〜15モル%のY2 3 、Y
2 3 、Sc2 3 あるいはEr2 3 を含有した安
定化ZrO2 または5〜30モル%のY2 3 、Yb2
3 、Gd2 3 のうちの1種を含有したCeO2 から
なる固体電解質1の片面に例えば、Laを10〜20原
子%のSr、Caで置換した多孔性のLaMnO3 また
は特願平5−66935号などの材料からなる空気極2
を、他方の面には燃料極3として多孔性の60体積%N
i−40体積%ZrO2 (Y2 3 含有) サーメットを
形成する。これを単セルとしてセル間を接続するセパレ
ータと呼ばれる集電部材4が、空気極と隣接するセルの
燃料極とを電気的に接続する。本発明の導電性セラミッ
クスをこの集電部材4として用いる。かかるセルにおい
ては、空気極2には空気あるいは酸素ガス、燃料極に水
素、COおよびCO2 ガス等が供給される。このため、
集電部材4の一方の面が酸化性ガス、他方の面が還元性
ガスと接触し、これらを完全に隔離する必要性から、高
電気伝導性の他、高緻密質が要求され、そのため開気孔
率としては1%以下、特に0.5%以下が好ましい。ま
た、円筒型燃料電池セルにおいては、本発明の導電性セ
ラミックスは、円筒状燃料電池セルのインターコネクタ
としても使用することができる。
Next, the case where the conductive ceramics of the present invention is used as a current collecting member such as an interconnector or a separator of a fuel cell will be described. In the flat type fuel cell shown in FIG. 1, 3 to 15 mol% of Y 2 O 3 , Y
Stabilized ZrO 2 containing b 2 O 3 , Sc 2 O 3 or Er 2 O 3 or 5 to 30 mol% Y 2 O 3 , Yb 2
On one surface of the solid electrolyte 1 made of CeO 2 containing one of O 3 and Gd 2 O 3 , for example, porous LaMnO 3 in which La is replaced with 10 to 20 atomic% of Sr and Ca or Japanese Patent Application No. Air electrode 2 made of materials such as 5-66935
On the other side as the fuel electrode 3, which is porous 60% by volume N
i-40 volume% ZrO 2 (containing Y 2 O 3 ) A cermet is formed. A current collecting member 4 called a separator that connects the cells with each other as a single cell electrically connects the air electrode and the fuel electrode of the adjacent cell. The conductive ceramics of the present invention is used as the current collecting member 4. In such a cell, air or oxygen gas is supplied to the air electrode 2, hydrogen, CO, CO 2 gas, etc. are supplied to the fuel electrode. For this reason,
Since one surface of the current collecting member 4 is in contact with the oxidizing gas and the other surface is in contact with the reducing gas, and it is necessary to completely isolate these from each other, high electrical conductivity and high compactness are required. The porosity is preferably 1% or less, particularly preferably 0.5% or less. Further, in a cylindrical fuel cell, the conductive ceramics of the present invention can also be used as an interconnector of a cylindrical fuel cell.

【0023】次に、本発明の導電性セラミックスを円筒
状の発熱素子として用いた場合について説明する。図2
に示す発熱素子は、円筒状焼結体からなる抵抗体5と両
端に形成した電極6、7により構成される。本発明の導
電性セラミックスは抵抗体5として使用される。この発
熱素子は電極6、7に50V以下の電圧を印加すること
により400〜1200℃の温度で作動させることが可
能である。発熱素子としては図2の円筒状の他、平板形
状をはじめ円筒スパイラル、ハニカム構造などの任意に
作製することができる。発熱素子においては、必ずしも
緻密質であることは要求されないが、素子の高温強度や
耐クリープ性の観点からは開気孔率としては20%以
下、特に10%以下であることが好ましい。
Next, the case where the conductive ceramics of the present invention is used as a cylindrical heating element will be described. Figure 2
The heating element shown in (1) is composed of a resistor 5 made of a cylindrical sintered body and electrodes 6 and 7 formed at both ends. The conductive ceramic of the present invention is used as the resistor 5. This heating element can be operated at a temperature of 400 to 1200 ° C. by applying a voltage of 50 V or less to the electrodes 6 and 7. As the heating element, in addition to the cylindrical shape shown in FIG. 2, a flat plate shape, a cylindrical spiral, a honeycomb structure, or the like can be arbitrarily manufactured. The heating element is not necessarily required to be dense, but from the viewpoint of high temperature strength and creep resistance of the element, the open porosity is preferably 20% or less, particularly 10% or less.

【0024】[0024]

【作用】LaCrO3 の重要な特性は酸化雰囲気から還
元雰囲気において電気伝導性を有することである。例え
ば、LaCrO3 において、Crの一部をMgにより置
換すると下記化2に従い、ホールが生成し、これが電気
伝導が発現する。
The important characteristic of LaCrO 3 is that it has electrical conductivity in an oxidizing atmosphere to a reducing atmosphere. For example, in LaCrO 3 , when a part of Cr is replaced with Mg, holes are generated according to the following chemical formula 2, and this causes electric conduction.

【0025】[0025]

【化2】 Embedded image

【0026】しかしながら、LaCrO3 は高温の還元
雰囲気中において膨張することが知られている。この膨
張は、下記化3
However, LaCrO 3 is known to expand in a reducing atmosphere at high temperature. This expansion is

【0027】[0027]

【化3】 Embedded image

【0028】に示すように、還元雰囲気中で酸素が結晶
中から抜けて、陽イオン同士の斥力が大きくなり、その
結果結晶格子が膨張することによると考えられる。La
CrO3 は雰囲気の変化による膨張/収縮が繰り返し生
じるような操作を行うと最終的には破壊に至る。具体的
な例を挙げると、燃料電池セルのセパレータあるいはイ
ンターコネクタは一方を酸素雰囲気に、また他方は水素
などの還元雰囲気に曝されるため、還元雰囲気に曝され
た方は膨張して材料表面に引っ張り応力が発生するが、
燃料電池セルの停止により、水素を停止して酸化雰囲気
に戻されると逆に収縮する。従って、このような燃料電
池セルの運転停止を繰り返すとLaCrO3 は破壊しそ
の結果、セル自体も破壊されることになる。
It is considered that oxygen is released from the crystal in the reducing atmosphere, the repulsive force between the cations is increased, and as a result, the crystal lattice is expanded, as shown in FIG. La
CrO 3 will eventually be destroyed if an operation is performed such that expansion / contraction is repeatedly caused by changes in the atmosphere. To give a specific example, one of the separators or interconnectors of a fuel cell is exposed to an oxygen atmosphere and the other is exposed to a reducing atmosphere such as hydrogen. Tensile stress occurs on the
When the fuel cell is stopped and hydrogen is stopped and returned to the oxidizing atmosphere, the fuel cell contracts. Therefore, if such operation stop of the fuel cell is repeated, LaCrO 3 is destroyed and, as a result, the cell itself is also destroyed.

【0029】本発明では、酸化/還元雰囲気の変化に伴
う膨張/収縮を抑制する方法について種々検討した結
果、Mg、Ca,Sr、BaによりLaあるいはCrの
一部を置換すると同時に、少なくともZrを置換するこ
とにより、この還元雰囲気における膨張を小さくするこ
とができることを見いだした。この理由は明確ではない
が、Zrを置換することによりLaとMg、Ca等の陽
イオン間の相互作用が小さくなったことによるか、また
は酸素イオン空孔の生成が抑制されたことによると推定
される。
In the present invention, as a result of various studies on methods for suppressing expansion / contraction associated with changes in the oxidizing / reducing atmosphere, Mg, Ca, Sr, Ba partially replaces La or Cr, and at the same time, at least Zr is reduced. It has been found that the substitution can reduce the expansion in the reducing atmosphere. The reason for this is not clear, but it is presumed that by substituting Zr, the interaction between cations such as La and Mg, Ca, etc. was reduced, or the generation of oxygen ion vacancies was suppressed. To be done.

【0030】[0030]

【実施例】【Example】

実施例1 市販の純度99.9%の周期律表第3a族元素酸化物、
SrCO3 、CaCO3 、BaCO3 、MgO、Cr2
3 、ZrO2 を用い、これらを表1、2の第1の複合
酸化物組成になるように調合し、ジルコニアボールを用
いたボールミルにて24時間混合した後、これを5×5
×45mmの長さに成形した後、大気中1500℃で5
時間焼成した。
Example 1 Commercially available 99.9% pure Group 3a element oxide of the periodic table,
SrCO 3 , CaCO 3 , BaCO 3 , MgO, Cr 2
O 3 and ZrO 2 were blended so as to have the first composite oxide composition shown in Tables 1 and 2, and the mixture was mixed for 24 hours in a ball mill using zirconia balls.
After molding to a length of × 45mm, it is heated at 1500 ° C in air for 5
Burned for hours.

【0031】得られた焼結体に対して、アルキメデス法
により開気孔率の測定を行い焼結性を判断した。またこ
の焼結体にPt電極を焼き付け、これを電極として電圧
端子間距離を20mmとして直流4端子法により100
0℃、大気中の電気伝導度を測定した。さらに、100
0℃、24時間水素中に試料を放置した後、室温にて焼
結体の膨張率を測定した。また、比較のために2000
℃、Ar中で焼成したLaMg0.2 Cr0.8 3 とLa
0.8 Ca0.2 CrO3 についても上記と同様に評価を行
った。結果は表1、表2に示した。
The open porosity of the obtained sintered body was measured by the Archimedes method to determine the sinterability. Further, a Pt electrode was baked on this sintered body, and using this as an electrode, the distance between the voltage terminals was set to 20 mm, and the Pt electrode was set to 100 by the DC 4-terminal method.
The electrical conductivity in the atmosphere was measured at 0 ° C. In addition, 100
After allowing the sample to stand in hydrogen at 0 ° C. for 24 hours, the expansion coefficient of the sintered body was measured at room temperature. Also, for comparison, 2000
LaMg 0.2 Cr 0.8 O 3 and La calcined in Ar at ℃
0.8 Ca 0.2 CrO 3 was also evaluated in the same manner as above. The results are shown in Tables 1 and 2.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】表1、2の結果から明らかなように、Mg
の原子比率yが0.002より小さい試料No.4では電
気伝導度が低い。Mg,Caの原子比率yが0.9を超
える試料No.18は電気伝導度が悪く、開気孔率が15
%を超え、焼結性も悪くなることがわかる。MgとZr
との原子比の差(y−z)が0.001より小さい試料
No.3、No.31も同様に電気伝導度が低い。(y−
z)が0.8より大きい試料No.17では焼結性が極め
て悪くなり開気孔率が30%を超えている。さらにz値
が0の試料No.1および2の従来品では膨張率が0.2
%を超えるものであるが、本発明に基づき、組成制御さ
れたセラミックスは、いずれも膨張率が0.1%以下、
特に0.08%以下の優れた特性を示した。これらの中
で0<x、0<z、0<p、0.3≦y≦0.6、0.
1≦y−z≦0.4を満足する試料は10〜11×10
-6/℃の熱膨張係数を有するものであった。
As is clear from the results shown in Tables 1 and 2, Mg
Sample No. 4 having an atomic ratio y of 0.002 smaller than 0.002 has low electric conductivity. Sample No. 18, in which the atomic ratio y of Mg and Ca exceeds 0.9, has poor electrical conductivity and an open porosity of 15
%, The sinterability also deteriorates. Mg and Zr
Similarly, Samples No. 3 and No. 31 having an atomic ratio difference (yz) smaller than 0.001 also have low electric conductivity. (Y-
In Sample No. 17 in which z) is larger than 0.8, the sinterability is extremely poor and the open porosity exceeds 30%. Furthermore, the expansion coefficient is 0.2 in the conventional products of Sample No. 1 and 2 with z value of 0.
%, But the ceramics of which composition is controlled according to the present invention all have a coefficient of expansion of 0.1% or less,
In particular, it showed excellent characteristics of 0.08% or less. Among these, 0 <x, 0 <z, 0 <p, 0.3 ≦ y ≦ 0.6, 0.
10 to 11 × 10 for samples satisfying 1 ≦ yz ≦ 0.4
It had a coefficient of thermal expansion of -6 / ° C.

【0035】実施例2 実施例1の表1中、試料No.1、2、9、12および2
5の組成粉末を用いて、1500℃で5時間焼成して厚
み2mm、大きさ50mmで、1mm間隔で幅1mm、
深さ1mmの溝が格子状に形成されたセパレータを作製
した。また、市販の純度99.9%で厚み0.2mm、
大きさ50mmの8モル%Y2 3 を含有する安定化Z
rO2 シートの一面に粉末粒子径が約2μmのLa0.8
Sr0.2MnO3 空気極粉末を、また他方の面には70
体積%Ni−30体積%ZrO2(8モル%Y2 3
有)燃料極粉末をそれぞれ30μmの厚みにスクリーン
印刷して、1300℃で3時間焼き付けた。これを上述
のセパレータで挟み、空気極側に酸素ガス、燃料極側に
水素ガスを流し、1000℃で発電したところ、従来品
である試料No.1、2では0.18〜0.20W/cm
2 の発電性能を示したのに対して、本発明品の試料No.
9、12、25では0.21〜0.25W/cm2 の良
好な発電特性を示した。
Example 2 In Table 1 of Example 1, samples No. 1, 2, 9, 12 and 2 were used.
5 composition powder was fired at 1500 ° C. for 5 hours, the thickness was 2 mm, the size was 50 mm, and the width was 1 mm at 1 mm intervals.
A separator having grooves with a depth of 1 mm formed in a grid pattern was produced. In addition, a commercially available purity of 99.9% and a thickness of 0.2 mm,
Stabilized Z containing 8 mol% Y 2 O 3 having a size of 50 mm
On one surface of the rO 2 sheet, La 0.8 having a powder particle size of about 2 μm
Sr 0.2 MnO 3 cathode powder and 70 on the other side
Each of the volume% Ni-30 volume% ZrO 2 (containing 8 mol% Y 2 O 3 ) fuel electrode powder was screen-printed to a thickness of 30 μm and baked at 1300 ° C. for 3 hours. This was sandwiched between the separators described above, oxygen gas was flown on the air electrode side, and hydrogen gas was flown on the fuel electrode side, and power was generated at 1000 ° C., which was 0.18 to 0.20 W / in conventional samples No. 1 and 2. cm
2 shows the power generation performance, while the sample No.
In Nos. 9, 12, and 25, good power generation characteristics of 0.21 to 0.25 W / cm 2 were exhibited.

【0036】また、1000℃で100時間発電した
後、N2 雰囲気中で室温まで冷却し、さらに雰囲気を水
素雰囲気として1000℃に昇温し発電した。これを1
0回繰り返した結果、従来品の試料No.1では6回、試
料No.2では5回の繰り返しでセパレータは破壊した
が、本発明品の試料No.9、12、25ではいずれも1
0回後においても破壊することなく、優れた安定性を示
した。
After power was generated at 1000 ° C. for 100 hours, it was cooled to room temperature in an N 2 atmosphere and further heated to 1000 ° C. in a hydrogen atmosphere to generate power. This one
As a result of repeating 0 times, the separator was destroyed 6 times for the conventional sample No. 1 and 5 times for the sample No. 2, but all 1 in the samples No. 9, 12, 25 of the present invention.
It showed excellent stability without breaking even after 0 times.

【0037】[0037]

【発明の効果】以上説明したように、本発明の導電性セ
ラミックスは、高い導電率を維持しつつ、従来の材料に
比較して還元雰囲気中での膨張を抑制することができる
ため、例えば燃料電池のセパレータ等や発熱素子として
使用した場合においても、繰り返し運転においても膨張
収縮が抑制され安定した特性が得られる。また、発熱素
子としての製造をより容易にするとともにその製造コス
トも低減することができる。
As described above, the conductive ceramics of the present invention can suppress expansion in a reducing atmosphere as compared with conventional materials while maintaining high conductivity, and therefore, for example, fuel Even when it is used as a battery separator or a heating element, expansion and contraction are suppressed even during repeated operation, and stable characteristics are obtained. Further, manufacturing as a heating element can be facilitated and the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】平板型燃料電池セルの構造を説明するための図
である。
FIG. 1 is a diagram for explaining the structure of a flat plate type fuel cell unit.

【図2】発熱素子の構造を説明するための図である。FIG. 2 is a diagram for explaining the structure of a heating element.

【符号の説明】[Explanation of symbols]

1 電解質 2 空気極 3 燃料極 4 集電部材 5 抵抗体 6、7 電極 1 Electrolyte 2 Air electrode 3 Fuel electrode 4 Current collecting member 5 Resistor 6, 7 Electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // H05B 3/14 0380−3K H05B 3/14 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location // H05B 3/14 0380-3K H05B 3/14 B

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】金属元素として少なくともLaおよびCr
を含む複合酸化物からなる導電性セラミックスであっ
て、該複合酸化物を構成する金属元素の原子比による全
体組成を下記化1 【化1】 で表した時、化1中のx、y、zおよびpが、 x+y+z+p=2 0<x、0<z、0<p、 0.002≦y≦0.9 0.001≦y−z≦0.8 を満足することを特徴とする導電性セラミックス。
1. A metal element containing at least La and Cr.
It is a conductive ceramics composed of a complex oxide containing, and the overall composition based on the atomic ratio of metal elements constituting the complex oxide is represented by the following chemical formula 1. In the formula 1, x, y, z and p are x + y + z + p = 2 0 <x, 0 <z, 0 <p, 0.002 ≦ y ≦ 0.9 0.001 ≦ y−z ≦ Conductive ceramics characterized by satisfying 0.8.
JP03812295A 1995-02-01 1995-02-27 Conductive ceramics Expired - Fee Related JP3245316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03812295A JP3245316B2 (en) 1995-02-01 1995-02-27 Conductive ceramics

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1495495 1995-02-01
JP7-14954 1995-02-01
JP03812295A JP3245316B2 (en) 1995-02-01 1995-02-27 Conductive ceramics

Publications (2)

Publication Number Publication Date
JPH08268750A true JPH08268750A (en) 1996-10-15
JP3245316B2 JP3245316B2 (en) 2002-01-15

Family

ID=26351005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03812295A Expired - Fee Related JP3245316B2 (en) 1995-02-01 1995-02-27 Conductive ceramics

Country Status (1)

Country Link
JP (1) JP3245316B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000159571A (en) * 1998-11-26 2000-06-13 Ngk Spark Plug Co Ltd Conductive sintered article and its production
US6737182B2 (en) * 2001-06-18 2004-05-18 Delphi Technologies, Inc. Heated interconnect
JP2005314142A (en) * 2004-04-27 2005-11-10 Nippon Steel Corp Oxide-ion mixed conductor, composite structure, oxygen separator, and chemical reactor
WO2009019833A1 (en) * 2007-08-03 2009-02-12 Mitsubishi Materials Corporation Metal oxide sintered body for thermistor, thermistor element, thermistor temperature sensor, and method for producing metal oxide sintered body for thermistor
JP2018111635A (en) * 2017-01-12 2018-07-19 日本特殊陶業株式会社 Electrically conductive oxide sintered body and ceramic element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000159571A (en) * 1998-11-26 2000-06-13 Ngk Spark Plug Co Ltd Conductive sintered article and its production
US6737182B2 (en) * 2001-06-18 2004-05-18 Delphi Technologies, Inc. Heated interconnect
JP2005314142A (en) * 2004-04-27 2005-11-10 Nippon Steel Corp Oxide-ion mixed conductor, composite structure, oxygen separator, and chemical reactor
WO2009019833A1 (en) * 2007-08-03 2009-02-12 Mitsubishi Materials Corporation Metal oxide sintered body for thermistor, thermistor element, thermistor temperature sensor, and method for producing metal oxide sintered body for thermistor
US8446246B2 (en) 2007-08-03 2013-05-21 Mitsubishi Materials Corporation Metal oxide sintered compact for thermistor, thermistor element, thermistor temperature sensor, and manufacturing method for metal oxide sintered compact for thermistor
JP2018111635A (en) * 2017-01-12 2018-07-19 日本特殊陶業株式会社 Electrically conductive oxide sintered body and ceramic element

Also Published As

Publication number Publication date
JP3245316B2 (en) 2002-01-15

Similar Documents

Publication Publication Date Title
JP4178610B2 (en) Oxide ion conductors and their applications
EP0188868A1 (en) Ceramic compound and air electrode materials for high-temperature electrochemical cells
EP0885466A1 (en) Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells
EP1864955B1 (en) Ion conductor
JP3245316B2 (en) Conductive ceramics
JP3121982B2 (en) Conductive ceramics
JP2000251533A (en) Oxide-ion mixed conductor and its application
JPH09180731A (en) Solid electrolyte fuel cell
JP3121993B2 (en) Method for producing conductive ceramics
JPH04219364A (en) Lanthanum chromite-based oxide and its use
JP3091100B2 (en) Method for producing conductive ceramics
JPH07249414A (en) Solid electrolytic fuel cell
JP2003238154A (en) Complex oxide, oxide ion conductor, oxide ion conducting membrane and electrochemical cell
WO2002013296A1 (en) Composite oxide for air electrode and material of collector of solid electrolyte fuel cell, method for preparation thereof, and solid electrolyte fuel cell
JP3085632B2 (en) Method for producing conductive ceramics
JP3370460B2 (en) Method for producing conductive ceramics
JP3342571B2 (en) Solid oxide fuel cell
JP3311872B2 (en) Conductive ceramics
JP2553296B2 (en) Method for manufacturing porous sintered body
JP2000251534A (en) Oxide ion conductor, its production and its use
JP3359421B2 (en) Solid oxide fuel cell
JP3121991B2 (en) Conductive ceramics
JP3220320B2 (en) Fuel cell and method for producing conductive ceramics
JP3398213B2 (en) Solid oxide fuel cell
JP3339936B2 (en) Method for producing conductive ceramics

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071026

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091026

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees