JPH08268745A - Refractory material for aluminum-lithium alloy - Google Patents

Refractory material for aluminum-lithium alloy

Info

Publication number
JPH08268745A
JPH08268745A JP7094453A JP9445395A JPH08268745A JP H08268745 A JPH08268745 A JP H08268745A JP 7094453 A JP7094453 A JP 7094453A JP 9445395 A JP9445395 A JP 9445395A JP H08268745 A JPH08268745 A JP H08268745A
Authority
JP
Japan
Prior art keywords
refractory material
aluminum
magnesia
lithium alloy
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7094453A
Other languages
Japanese (ja)
Other versions
JP3197780B2 (en
Inventor
Masayasu Toyoshima
雅康 豊嶋
Giichi Konishi
儀一 小西
Harushichi Washio
治七 鷲尾
Tomohito Kuroki
智史 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALITHIUM KK
Coorstek KK
Original Assignee
ALITHIUM KK
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALITHIUM KK, Toshiba Ceramics Co Ltd filed Critical ALITHIUM KK
Priority to JP09445395A priority Critical patent/JP3197780B2/en
Publication of JPH08268745A publication Critical patent/JPH08268745A/en
Application granted granted Critical
Publication of JP3197780B2 publication Critical patent/JP3197780B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE: To improve the resistance to thermal shock without deteriorating corrosion resistance and to prevent the intrusion of molten metal from a crack even when used in a large-sized melting furnace by incorporating magnesia, silica, boric anhydride and the balance alumina. CONSTITUTION: Magnesia chemically stable to lithium by 5-20wt.%, 2-8wt.% natural silica imparting permanent expansion to a refractory material and suppressing the cracking and 0.5-5wt.% boric anhydride functioning as a refractory binder are incorporated into the refractory material. The grain size of the three components is controlled to <=0.3mm. The refractory material further admixed with the fused alumina, sintered alumina, etc., constituting the skeletal part is placed in a mold, formed and heated at about 300 deg.C for about 6hr to obtain the refractory material for an aluminum-lithium alloy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウム−リチウ
ム合金用耐火材、詳しくは、数%のリチウムを含有する
アルミニウム−リチウム合金の溶湯と接触する溶解炉、
保持炉、取鍋などのライニング材として好適な耐火材に
関する。
FIELD OF THE INVENTION The present invention relates to a refractory material for aluminum-lithium alloys, and more specifically, a melting furnace for contacting with a molten aluminum-lithium alloy containing several% of lithium,
The present invention relates to a refractory material suitable as a lining material for a holding furnace, a ladle and the like.

【0002】[0002]

【従来の技術】アルミニウム−リチウム合金の溶湯は反
応性が強く、溶湯と接触する耐火材は侵食を受け易い。
例えば、アルミニウムの溶解において通常使用されてい
る黒鉛ルツボは、アルミニウム−リチウム合金の溶解に
用いた場合、激しく侵食されて熱的、構造的スポーリン
グにより亀裂が生じ易く、溶湯が亀裂に沿って深部まで
達するおそれがあるため安定して使用することができな
い。
2. Description of the Related Art A molten aluminum-lithium alloy is highly reactive, and a refractory material contacting the molten metal is easily corroded.
For example, a graphite crucible that is usually used for melting aluminum, when used for melting an aluminum-lithium alloy, is apt to undergo severe erosion to cause cracks due to thermal and structural spalling, and the molten metal is deep along the cracks. It may reach up to and cannot be used stably.

【0003】アルミニウム−リチウム合金の溶湯に対し
て耐食性や耐熱衝撃性を有する耐火物を得るために、従
来種々の研究が行われており、発明者らも先に、特定量
のマグネシアを含む、アルミニウム−リチウム合金溶湯
に対する耐食性に優れたアルミナ・マグネシア質の耐火
材を開発した。(特開平5-148014号公報)
In order to obtain a refractory having a corrosion resistance and a thermal shock resistance against a molten aluminum-lithium alloy, various studies have been conducted so far, and the inventors have previously included a specific amount of magnesia, We have developed an alumina-magnesia refractory material with excellent corrosion resistance against molten aluminum-lithium alloy. (JP-A-5-148014)

【0004】アルミナ・マグネシア質耐火材は耐食性に
優れ、溶解量が200kg程度のアルミニウム−リチウ
ム合金小型誘導溶解炉に使用した場合には、亀裂発生も
軽微で安定した長寿命が得られるが、溶解量が4トン規
模の大型誘導炉に使用した場合、炉内径が200kg溶
解炉の約4倍と大きくなることもあって使用中における
亀裂の発生が避けられず、亀裂から侵入した溶湯がライ
ニング材の深部まで達するため、長期間安定して使用す
ることができないという問題点がある。
Alumina-magnesia refractory material has excellent corrosion resistance, and when it is used in a small induction melting furnace of aluminum-lithium alloy with a melting amount of about 200 kg, cracking is slight and stable long life can be obtained. When used in a large-scale induction furnace with a volume of 4 tons, the inner diameter of the furnace will be about 4 times larger than that of a 200 kg melting furnace, and cracks will inevitably occur during use. However, there is a problem that it cannot be used stably for a long period of time because it reaches the deep part.

【0005】[0005]

【発明が解決しようとする課題】本発明は、アルミニウ
ム−リチウム合金用として先に開発されたアルミナ・マ
グネシア系耐火材における上記の問題点を解消するため
に、アルミナ−マグネシアをベースとする耐火材の組成
とアルミニウム−リチウム合金溶湯による侵食性につい
て種々の実験検討を行った結果としてなされたものであ
り、その目的は、従来のアルミナ・マグネシア質耐火材
が有する優れた耐食性を損なうことなく、さらに耐熱衝
撃性を高め、大型溶解炉に使用された場合にも、亀裂か
らの溶湯侵入(湯差し)によるトラブルを防止すること
ができるアルミニウム−リチウム合金用耐火材を提供す
ることにある。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems in the alumina-magnesia-based refractory material previously developed for aluminum-lithium alloys, the present invention is directed to an alumina-magnesia-based refractory material. It was made as a result of conducting various experimental studies on the erosion property of the composition and the aluminum-lithium alloy molten metal, the purpose of which is not to impair the excellent corrosion resistance of conventional alumina-magnesia refractory materials, It is an object of the present invention to provide a refractory material for an aluminum-lithium alloy which has improved thermal shock resistance and can prevent troubles due to intrusion of molten metal from a crack (a jug) even when used in a large-scale melting furnace.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めの本発明によるアルミニウム−リチウム合金用耐火材
は、マグネシア5〜20重量%、シリカ2〜8重量%、
無水硼酸0.5〜5重量%を含有し、残部アルミナから
なる耐火材組成を構成上の基本的特徴とし、マグネシ
ア、シリカおよび無水硼酸の粒度がいずれも0.3mm
以下であることを発明構成上の第2の特徴とする。
The refractory material for an aluminum-lithium alloy according to the present invention for achieving the above object comprises 5 to 20% by weight of magnesia, 2 to 8% by weight of silica,
A basic refractory material composition that contains 0.5 to 5% by weight of boric anhydride and the balance is alumina, and the particle size of magnesia, silica, and boric anhydride is 0.3 mm.
The following is the second feature of the invention structure.

【0007】本発明の耐火材における各成分の含有の意
義およびそれらの限定理由について説明すると、マグネ
シアは、リチウムに対して化学的にきわめて安定な耐火
物で、リチウムと化合物を生成しないから、マグネシア
の含有によりアルミニウム−リチウム合金溶湯との反応
が抑制される。好ましい含有範囲は5〜20重量%であ
り、5重量%未満ではその効果が部分的にしか認められ
ず、20重量%を越えて含有されると、使用中における
耐火材の膨張率が大きくなり亀裂が増大するおそれがあ
る。
Explaining the significance of the inclusion of each component in the refractory material of the present invention and the reason for limiting them, magnesia is a refractory that is chemically extremely stable against lithium and does not form a compound with lithium. With the inclusion of Al, the reaction with the molten aluminum-lithium alloy is suppressed. A preferred content range is 5 to 20% by weight, and if the content is less than 5% by weight, the effect is partially recognized, and if it exceeds 20% by weight, the expansion rate of the refractory material during use becomes large. Cracks may increase.

【0008】シリカは本発明における最も特徴的な成分
であり、耐火材に残存膨張性を与え、熱的スポーリング
による亀裂発生を抑制する機能を有する。添加は天然シ
リカの型で行われる。天然シリカは、573℃でα−石
英からβ−石英に結晶転移し、この際の体積膨張によっ
て、冷却時、耐火物の線変化率がプラス(残存膨張)と
なる結果、亀裂発生が抑制されることとなる。
Silica is the most characteristic component in the present invention, and has the function of imparting residual expansivity to the refractory material and suppressing the occurrence of cracks due to thermal spalling. The addition is done in the form of natural silica. Natural silica undergoes a crystal transition from α-quartz to β-quartz at 573 ° C., and the volume expansion at this time causes the linear change rate of the refractory substance to become positive (residual expansion) during cooling, thereby suppressing crack generation. The Rukoto.

【0009】また天然シリカはリチウムと反応してLi
2 O・SiO2 を生成する。この反応生成物が溶湯接触
面に粘調な薄い被膜を形成し、溶湯による侵食を抑えて
耐食性の低下を防ぐよう機能する。シリカは2〜8重量
%の範囲で含有させるのが好ましく、2重量%未満では
その効果が十分でなく、8重量%を越えると耐食性が著
しく低下する傾向がある。
Natural silica also reacts with lithium to react with Li.
2 O · SiO 2 is produced. This reaction product forms a viscous thin film on the molten metal contact surface, and functions to suppress corrosion by the molten metal and prevent deterioration of corrosion resistance. Silica is preferably contained in the range of 2 to 8% by weight, and if it is less than 2% by weight, the effect is not sufficient, and if it exceeds 8% by weight, the corrosion resistance tends to be remarkably lowered.

【0010】無水硼酸(B2 3 )は、主として耐火材
を強固に硬化させるための結合材として機能するが、さ
らに無水硼酸はリチウムと反応して、2Li2 O・B2
3、Li2 O・B2 3 などの反応生成物を生成さ
せ、これらの化合物が溶出して耐火材表面に粘調な薄い
被膜を形成し、耐火材を保護してアルミニウム−リチウ
ム合金溶湯による侵食を抑制するよう作用する。無水硼
酸の含有量は0.5〜5重量%の範囲が好ましい。0.
5重量%未満ではその効果が小さく、5重量%の添加で
その効果が飽和し、5重量%を越えて含有してもそれ以
上の効果は期待できず、耐火材の耐食性が劣化する傾向
もある。
Boric anhydride (B 2 O 3 ) mainly functions as a binder for firmly hardening the refractory material, but boric anhydride further reacts with lithium to produce 2Li 2 O.B 2
O 3, Li 2 O · B to produce a reaction product, such as a 2 O 3, and these compounds are eluted to form a viscous thin film on the refractory surface, the aluminum to protect the refractory material - lithium alloy It acts to suppress erosion by the molten metal. The content of boric anhydride is preferably in the range of 0.5 to 5% by weight. 0.
If it is less than 5% by weight, its effect is small, and if it is added in an amount of more than 5% by weight, the effect is saturated, and if it exceeds 5% by weight, no further effect can be expected and the corrosion resistance of the refractory material tends to deteriorate. is there.

【0011】本発明においては、耐火物の含有成分であ
るマグネシア、シリカおよび無水硼酸の粒度をいずれも
0.3mm以下に限定することにより、一層優れた効果
を発揮させることができる。アルミニウム−リチウム合
金と耐火材との反応、および耐火材組織中への溶湯の浸
透は、主として耐火材の骨格部分であるアルミナを結合
する微粉部分で行われることからマグネシアの粒度は
0.3mm以下とするのが望ましく、α−石英からβ−
石英への結晶転移の速度を早めて耐火材に対する残存膨
張の付与を促進させるために、シリカの粒度も0.3m
m以下に限定するのが好ましい。
In the present invention, by further limiting the particle sizes of magnesia, silica and boric anhydride, which are the components contained in the refractory, to 0.3 mm or less, more excellent effects can be exhibited. Since the reaction between the aluminum-lithium alloy and the refractory material and the infiltration of the molten metal into the refractory material structure are mainly performed in the fine powder portion that binds alumina, which is the skeleton portion of the refractory material, the particle size of magnesia is 0.3 mm or less. It is desirable that α-quartz be β-
The particle size of silica is 0.3 m in order to accelerate the rate of crystal transition to quartz and accelerate the application of residual expansion to the refractory material.
It is preferably limited to m or less.

【0012】[0012]

【作用】本発明においては、骨格部となるアルミナが、
リチウムに対して安定なマグネシアを主体とする境界部
で結合され、シリカの含有により、耐火材に残存膨張性
が与えられて亀裂発生が抑制され、さらにシリカとリチ
ウムとの反応で生成するLi2 O・SiO2 および無水
硼酸とLiとの高融点反応生成物が耐火材の表面に粘調
な被膜を形成するから、耐火材に対するアルミニウム−
リチウム合金溶湯による侵食が効果的に抑制され、湯差
しに起因する作業上のトラブルを避けることが可能とな
る。
In the present invention, the skeleton alumina is
Bonded at the boundary mainly composed of magnesia that is stable against lithium, the inclusion of silica gives the refractory material residual expansiveness and suppresses crack generation, and further, Li 2 generated by the reaction between silica and lithium. Since the high melting point reaction product of O.SiO 2 and boric anhydride and Li forms a viscous film on the surface of the refractory material, aluminum-
Corrosion due to the molten lithium alloy is effectively suppressed, and it is possible to avoid troubles in work due to the jug.

【0013】[0013]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。 実施例1 表1に示す組成に配合された耐火材を、内径200m
m、外径300mm、高さ200mmの空隙部を有する
金型内に装入し、手搗きによりスタンプして、上記寸法
のスリーブ形状に成形し、300℃の温度に6時間加熱
して耐火材試料を得た。
Hereinafter, examples of the present invention will be described in comparison with comparative examples. Example 1 A refractory material compounded in the composition shown in Table 1 was used, with an inner diameter of 200 m.
m, outer diameter 300 mm, height 200 mm, and charged into a mold having a void, stamped by hand and molded into a sleeve shape of the above dimensions, heated to a temperature of 300 ° C. for 6 hours, and a refractory material. A sample was obtained.

【0014】得られたスリーブ形状の耐火材試料を、図
1に示すように、誘導コイル5、コイル保護用耐火物6
を備えた300kg高周波誘導炉4内に装入し、耐火材
試料1内に黒鉛電極2をセットして、黒鉛電極2を断熱
材3で覆い、900℃まで1時間で昇温して30分保持
後、切電して700℃まで降温してから炉外に取り出し
急冷するという条件でスポーリング試験を行い、耐火材
試料の割れ発生状況を観察した。結果を表1に示す。表
1に示されるように、本発明に従う耐火材試料はいずれ
も、スリーブ形状の試料の内面に縦方向に軽微な割れが
みられるのみで、その幅も0.1mm以下と実用上全く
問題がなく、優れた耐熱衝撃性を有している。
As shown in FIG. 1, the obtained sleeve-shaped sample of refractory material was used as an induction coil 5 and a refractory 6 for coil protection.
It is charged into a 300 kg high-frequency induction furnace 4 equipped with, the graphite electrode 2 is set in the refractory material sample 1, the graphite electrode 2 is covered with the heat insulating material 3, and the temperature is raised to 900 ° C. in 1 hour and 30 minutes. After the holding, the spalling test was performed under the condition that the refractory material sample was cut off, cooled to 700 ° C., taken out of the furnace, and rapidly cooled to observe the crack generation state of the refractory material sample. The results are shown in Table 1. As shown in Table 1, in all of the refractory material samples according to the present invention, only minor cracks were observed in the longitudinal direction on the inner surface of the sleeve-shaped sample, and the width thereof was 0.1 mm or less, which was a practical problem. And has excellent thermal shock resistance.

【0015】[0015]

【表1】 《表注》評価:実用上問題なく使用できるものを○とした。[Table 1] << Table Note >> Evaluation: The ones that can be used without problems in practical use are marked with "○".

【0016】比較例1 表2に示す組成に配合された耐火材を、実施例1と同一
形状、同一寸法の金型に装入し、実施例1と同一のスタ
ンプおよび加熱工程を経て、耐火材試料を作製した。得
られた耐火材試料について、実施例1と同一条件でスポ
ーリング試験を行い、耐火材試料の割れ発生状況を観察
した。結果を表2に示す。なお、表2において、本発明
の条件を外れたものには下線を付した。
Comparative Example 1 A refractory material having the composition shown in Table 2 was placed in a mold having the same shape and dimensions as in Example 1, and the same stamping and heating steps as in Example 1 were carried out to obtain fire resistance. A material sample was prepared. The obtained refractory material sample was subjected to a spalling test under the same conditions as in Example 1 to observe the occurrence of cracks in the refractory material sample. Table 2 shows the results. In Table 2, those that do not satisfy the conditions of the present invention are underlined.

【0017】[0017]

【表2】 《表注》評価 △:実用上問題有り ×:実用上使用不可[Table 2] << Table Note >> Evaluation △: Practically problematic ×: Practically unusable

【0018】表2にみられるように、シリカの含有量が
本発明の範囲より少ない試料No.4は、外面および底
部にも多くの亀裂が生じ、その最大幅も実用上問題とな
る程度に大きく、またシリカを含有しない試料No.6
は、亀裂最大幅が0.4mmに達し、実用上使用不可と
判断された。シリカの含有量およびマグネシアの含有量
が本発明の範囲を越えている試料No.5は耐食性が劣
化して、外面、内面、底部にきわめて多くの亀裂発生が
観察され、亀裂の最大幅も0.6mmと大きく、アルミ
ニウム−リチウム合金用として使用不可と認められた。
As can be seen from Table 2, sample No. 3 having a silica content lower than the range of the present invention. Sample No. 4 has many cracks on the outer surface and the bottom, and the maximum width thereof is large enough to be a practical problem, and does not contain silica. 6
The maximum crack width reached 0.4 mm, and was judged to be practically unusable. Sample No. in which the content of silica and the content of magnesia exceeded the range of the present invention. In No. 5, the corrosion resistance was deteriorated, and an extremely large number of cracks were observed on the outer surface, the inner surface, and the bottom, and the maximum width of the crack was as large as 0.6 mm, which was confirmed to be unusable for an aluminum-lithium alloy.

【0019】実施例2、比較例2 表1に示す組成に配合された耐火材(試料No. 1〜
3)に、成形用バインダーとしてアラビアゴムの3%溶
液を2.5%添加し、油圧プレスにより面圧40MPa
の圧力で内径30mm、外径70mm、深さ35mmの
ルツボ形状に成形した。
Example 2, Comparative Example 2 Refractory materials (Sample No. 1 to No. 1) compounded in the composition shown in Table 1.
To 3), 2.5% of a 3% solution of gum arabic was added as a binder for molding, and the surface pressure was 40 MPa by a hydraulic press.
The pressure was used to form a crucible having an inner diameter of 30 mm, an outer diameter of 70 mm and a depth of 35 mm.

【0020】成形したルツボにAl−2.3%Li合金
を装入し、雰囲気調整可能な電気炉で15分間真空脱気
したのち、アルゴンガスを炉内に吹き込み、酸素濃度を
20ppm以下に管理しながら加熱溶解し、850℃の
温度で24時間保持した。ついで室温まで冷却して溶湯
を除去し、ルツボの侵食状況を観察したが、いずれも溶
湯による侵食は全くみられなかった。
An Al-2.3% Li alloy was charged into the molded crucible and vacuum deaeration was performed for 15 minutes in an electric furnace capable of adjusting the atmosphere, and then argon gas was blown into the furnace to control the oxygen concentration to 20 ppm or less. While heating and melting, the mixture was kept at a temperature of 850 ° C. for 24 hours. Then, the molten metal was removed by cooling to room temperature, and the erosion state of the crucible was observed, but no corrosion by the molten metal was observed at all.

【0021】一方、表2に示す組成に配合された耐火材
(試料No.4〜6)について、同様にルツボ形状に成
形し、同一の試験を行った結果、No.4およびNo.
6については侵食が認められなかったが、No.5には
深さが2mmに達する侵食が観察された。
On the other hand, the refractory materials (Sample Nos. 4 to 6) having the compositions shown in Table 2 were similarly molded into crucible shapes and subjected to the same test. 4 and No.
No erosion was observed for No. 6, but No. 6 was used. Erosion reaching a depth of 2 mm was observed in No. 5.

【0022】[0022]

【発明の効果】以上のとおり、本発明によれば、従来の
アルミナ・マグネシア質耐火材と同等の耐食性に加え、
さらに改善された耐熱衝撃性を有するアルミニウム−リ
チウム合金用耐火材が提供される。当該耐火材は、アル
ミニウム−リチウム合金の4トン規模の大型溶解炉に適
用された場合にも亀裂の発生が軽微で湯差しのおそれが
なく、長期間にわたり安定して使用することが可能であ
る。
As described above, according to the present invention, in addition to the corrosion resistance equivalent to that of the conventional alumina-magnesia refractory material,
Further provided is a refractory material for aluminum-lithium alloy having improved thermal shock resistance. Even when the refractory material is applied to a large-scale melting furnace of aluminum-lithium alloy of 4 tons scale, cracks are minimal, there is no fear of pouring, and it can be used stably for a long period of time. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明におけるスポーリング試験の概要を要部
断面図である。
FIG. 1 is a cross-sectional view of a main part of an outline of a spalling test in the present invention.

【符号の説明】[Explanation of symbols]

1 スリーブ形状試料 2 黒鉛電極 3 断熱材 4 高周波誘導炉 5 誘導コイル 6 コイル保護用耐火物 1 sleeve-shaped sample 2 graphite electrode 3 heat insulating material 4 high frequency induction furnace 5 induction coil 6 refractory for coil protection

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小西 儀一 三重県四日市市小古曽東2−2−2 株式 会社アリシウム内 (72)発明者 鷲尾 治七 愛知県刈谷市小垣江町南藤1番地 東芝セ ラミックス株式会社内 (72)発明者 黒木 智史 愛知県刈谷市小垣江町南藤1番地 東芝セ ラミックス株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshikazu Konishi 2-2-2 Kogiso East, Yokkaichi-shi, Mie Within Alicium Co., Ltd. Within Mix Co., Ltd. (72) Inventor Satoshi Kuroki 1st Nanto, Ogakie-cho, Kariya city, Aichi Toshiba Ceramix Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 マグネシア5〜20重量%、シリカ2〜
8重量%、無水硼酸0.5〜5重量%を含有し、残部ア
ルミナからなることを特徴とするアルミニウム−リチウ
ム合金用耐火材。
1. Magnesia 5 to 20% by weight, silica 2 to
A refractory material for an aluminum-lithium alloy, containing 8% by weight and 0.5 to 5% by weight of boric anhydride, and the balance being alumina.
【請求項2】 マグネシア、シリカおよび無水硼酸の粒
度がいずれも0.3mm以下であることを特徴とする請
求項1記載のアルミニウム−リチウム合金用耐火材。
2. The refractory material for an aluminum-lithium alloy according to claim 1, wherein the particle sizes of magnesia, silica and boric anhydride are all 0.3 mm or less.
JP09445395A 1995-03-28 1995-03-28 Refractory material for aluminum-lithium alloy Expired - Lifetime JP3197780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09445395A JP3197780B2 (en) 1995-03-28 1995-03-28 Refractory material for aluminum-lithium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09445395A JP3197780B2 (en) 1995-03-28 1995-03-28 Refractory material for aluminum-lithium alloy

Publications (2)

Publication Number Publication Date
JPH08268745A true JPH08268745A (en) 1996-10-15
JP3197780B2 JP3197780B2 (en) 2001-08-13

Family

ID=14110691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09445395A Expired - Lifetime JP3197780B2 (en) 1995-03-28 1995-03-28 Refractory material for aluminum-lithium alloy

Country Status (1)

Country Link
JP (1) JP3197780B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006053A (en) * 2010-06-25 2012-01-12 Kobe Steel Ltd Ladle for conveying molten steel
US8365808B1 (en) 2012-05-17 2013-02-05 Almex USA, Inc. Process and apparatus for minimizing the potential for explosions in the direct chill casting of aluminum lithium alloys
US8479802B1 (en) 2012-05-17 2013-07-09 Almex USA, Inc. Apparatus for casting aluminum lithium alloys
US9764380B2 (en) 2013-02-04 2017-09-19 Almex USA, Inc. Process and apparatus for direct chill casting
US9936541B2 (en) 2013-11-23 2018-04-03 Almex USA, Inc. Alloy melting and holding furnace

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006053A (en) * 2010-06-25 2012-01-12 Kobe Steel Ltd Ladle for conveying molten steel
US8365808B1 (en) 2012-05-17 2013-02-05 Almex USA, Inc. Process and apparatus for minimizing the potential for explosions in the direct chill casting of aluminum lithium alloys
US8479802B1 (en) 2012-05-17 2013-07-09 Almex USA, Inc. Apparatus for casting aluminum lithium alloys
US9849507B2 (en) 2012-05-17 2017-12-26 Almex USA, Inc. Process and apparatus for minimizing the potential for explosions in the direct chill casting of aluminum lithium alloys
US9895744B2 (en) 2012-05-17 2018-02-20 Almex USA, Inc. Process and apparatus for direct chill casting
US10646919B2 (en) 2012-05-17 2020-05-12 Almex USA, Inc. Process and apparatus for direct chill casting
US10946440B2 (en) 2012-05-17 2021-03-16 Almex USA, Inc. Process and apparatus for minimizing the potential for explosions in the direct chill casting aluminum alloys
US9764380B2 (en) 2013-02-04 2017-09-19 Almex USA, Inc. Process and apparatus for direct chill casting
US9950360B2 (en) 2013-02-04 2018-04-24 Almex USA, Inc. Process and apparatus for minimizing the potential for explosions in the direct chill casting of lithium alloys
US10864576B2 (en) 2013-02-04 2020-12-15 Almex USA, Inc. Process and apparatus for minimizing the potential for explosions in the direct chill casting of lithium alloys
US9936541B2 (en) 2013-11-23 2018-04-03 Almex USA, Inc. Alloy melting and holding furnace
US10932333B2 (en) 2013-11-23 2021-02-23 Almex USA, Inc. Alloy melting and holding furnace

Also Published As

Publication number Publication date
JP3197780B2 (en) 2001-08-13

Similar Documents

Publication Publication Date Title
US4812372A (en) Refractory metal substrate and coatings therefor
US3734480A (en) Lamellar crucible for induction melting titanium
JPS63195235A (en) Fiber-reinforced metallic composite material
AU2003219230B2 (en) Products for the protection of continuous cast moulds for cast-iron pipes
JP3197780B2 (en) Refractory material for aluminum-lithium alloy
JPH11302073A (en) Zirconia-graphite refractory excellent in corrosion resistance and nozzle for continuous casting using the same
JPH0753600B2 (en) Molten steel container
JP3197781B2 (en) Refractory material for aluminum-lithium alloy
AU3784393A (en) Vibratable refractory composition
EP0245107A1 (en) Steel making flux
CN1181000C (en) Carbon-containing refractory article having protective coating
US4006891A (en) Crucible for melting super-alloys
US4375371A (en) Method for induction melting
JPH06287057A (en) Carbon-containing refractory
RU2136633C1 (en) Raw mix for manufacturing refractory products
JP3045630B2 (en) Ramming material for induction furnace
JPH05148014A (en) Refractory material for aluminum-lithium alloy
JP3176836B2 (en) Irregular refractories
JPH1071491A (en) Ceramic backing material for carbon dioxide gas arc welding
JP2552982B2 (en) Castable refractories
CN117187649A (en) Preparation method of high-strength damping magnesium-based composite material
RU2130440C1 (en) Spinel-containing refractory material with carbon binder
KR19990052230A (en) Graphite Refractories with Excellent Oxidation and Corrosion Resistance
JP2004123449A (en) Carbon-containing basic brick
JPH0987007A (en) Magnesia noncalcined brick