JPH08267203A - Continuous casting method - Google Patents
Continuous casting methodInfo
- Publication number
- JPH08267203A JPH08267203A JP7074930A JP7493095A JPH08267203A JP H08267203 A JPH08267203 A JP H08267203A JP 7074930 A JP7074930 A JP 7074930A JP 7493095 A JP7493095 A JP 7493095A JP H08267203 A JPH08267203 A JP H08267203A
- Authority
- JP
- Japan
- Prior art keywords
- back pressure
- gaseous
- gas
- immersion nozzle
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、鋼の連続鋳造方法に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous steel casting method.
【0002】[0002]
【従来の技術】現在、連続鋳造においては、溶鋼を酸化
させることなくタンディッシュからモールド内に供給す
るために、アルミナグラファイト材質の浸漬ノズルが利
用されているが、このような浸漬ノズルでは、鋳造時間
の経過とともに鋼中析出物のアルミナ及び地金がノズル
内壁に付着し、激しい場合にはノズル閉塞を引き起こ
し、鋳造を停止する場合もあった。2. Description of the Related Art At present, in continuous casting, an immersion nozzle made of an alumina graphite material is used to supply molten steel into a mold from a tundish without oxidizing the molten steel. With the passage of time, alumina and metal ingots deposited in the steel adhered to the inner wall of the nozzle, and in severe cases, the nozzle was clogged and the casting was sometimes stopped.
【0003】この問題を解決する手段として、例えば、
特公昭58−3467号公報に示されるように、浸漬ノ
ズル内孔と同心円となる多孔質の筒状耐火物(内孔体)
を浸漬ノズル本体に内挿し、この多孔質耐火物内壁から
Arその他の不活性ガスを吹き込むことが知られてい
る。このガス吹き込みは、ノズル内壁と溶鋼との接触面
積を減少させ、さらに溶鋼を撹拌すること、あるいは付
着物をガス気泡により強制的に剥離させることによりノ
ズル内壁面へのアルミナ介在物の付着成長を防止する効
果がある。As means for solving this problem, for example,
As disclosed in JP-B-58-3467, a porous cylindrical refractory (inner hole body) that is concentric with the inner hole of the immersion nozzle.
It is known to insert into the main body of the immersion nozzle and blow Ar or another inert gas from the inner wall of the porous refractory. This gas blowing reduces the contact area between the inner wall of the nozzle and the molten steel, further stirs the molten steel, or forcibly separates the deposit by gas bubbles, so that the growth of alumina inclusions on the inner wall of the nozzle grows. It has the effect of preventing.
【0004】[0004]
【発明が解決しようとする課題】上記方法により吹き込
まれたArガスは、一部モールド内で浮上中に凝固界面
に捕捉され、気泡として鋳片内に残留する。この気泡
は、大きなものほど熱間圧延、冷間圧延後も圧着され
ず、鋼板表面にふくれ状の欠陥として現れる。このふく
れ状欠陥は、鋼板中の炭素濃度を極力低下させた、例え
ば炭素濃度が50ppm以下の極低炭素鋼において、とり
わけ多く発生し、製品歩留りの大幅な低下を招いてい
る。このため、鋳片品質を確保する上で、浸漬ノズル内
孔体の気孔径や気孔率を小さくし低通気化することによ
り、微細なArガスを安定して吹き込むことが極めて重
要となってきた。しかし、浸漬ノズル内孔体の気孔径や
気孔率を小さくし低通気化することによりArガス背圧
が大きくなり、鋳造後半で溶損した浸漬ノズルパウダー
ライン部に割れが発生するといった問題が生じる。The Ar gas blown by the above method is partially trapped at the solidification interface during floating in the mold and remains as bubbles in the slab. The larger the bubbles, the more they are not pressed after hot rolling or cold rolling, and appear as swelling defects on the surface of the steel sheet. This blister-like defect occurs particularly in extremely low carbon steel having a carbon concentration in the steel sheet as low as possible, for example, in an extremely low carbon steel having a carbon concentration of 50 ppm or less, resulting in a significant reduction in product yield. Therefore, in order to secure the quality of the slab, it has become extremely important to stably blow a fine Ar gas by reducing the pore diameter and the porosity of the submerged nozzle inner hole body to lower the air permeability. . However, by reducing the pore diameter and porosity of the submerged nozzle inner pores and lowering the air permeability, the Ar gas back pressure increases, and there arises a problem that cracks occur in the submerged nozzle powder line portion that has melted in the latter half of casting. .
【0005】以上のような問題点を鑑み、本発明は浸漬
ノズルの割れ発生を防止し、長時間にわたって使用して
もかかる欠点を生じない連続鋳造用ノズルの使用方法を
提供することを目的とするものである。In view of the above problems, it is an object of the present invention to provide a method for using a continuous casting nozzle which prevents cracking of the immersion nozzle and does not cause such a defect even when used for a long time. To do.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に本発明は、ガス吹き込み型浸漬ノズルを用いた鋼の連
続鋳造において、鋳造時間に応じて規定した浸漬ノズル
のパウダーライン部強度よりも低い圧力を示すようにガ
ス背圧を制御することを特徴とする連続鋳造方法を要旨
とする。In order to achieve the above object, the present invention is, in continuous casting of steel using a gas injection type immersion nozzle, more than the strength of the powder line portion of the immersion nozzle specified according to the casting time. The gist of the continuous casting method is characterized in that the gas back pressure is controlled so as to show a low pressure.
【0007】[0007]
【作用】発明者等は、実機での鋳造試験と浸漬ノズルの
応力解析により、低通気化した浸漬ノズルの割れ発生機
構を明らかにした。図1に浸漬ノズルの使用状態を説明
するための模式図、図2に浸漬ノズルのパウダーライン
部強度及びArガス背圧の経時変化を示す。図示のよう
に、モールド内には溶鋼1の酸化防止、モールド・凝固
シェル間の潤滑を目的としてパウダー2が使用されてお
り、浸漬ノズル3外周のパウダーライン部4には激しい
局部溶損が生じる。このため、鋳造時間が経過するにつ
れて、パウダーライン部4の厚みが薄くなり、強度が低
下する。The inventors of the present invention have clarified the crack generation mechanism of the submerged nozzle having a low air permeability by the casting test in the actual machine and the stress analysis of the submerged nozzle. FIG. 1 is a schematic diagram for explaining the usage state of the immersion nozzle, and FIG. 2 shows changes with time in the powder line strength and Ar gas back pressure of the immersion nozzle. As shown in the figure, powder 2 is used in the mold to prevent oxidation of molten steel 1 and to lubricate between the mold and the solidified shell, and the powder line 4 around the outer periphery of the immersion nozzle 3 undergoes severe local melting loss. . For this reason, as the casting time elapses, the thickness of the powder line portion 4 becomes thinner and the strength decreases.
【0008】一方、浸漬ノズル3のスリット5から内孔
体6を介して浸漬ノズル3内にArガスを吹き込んでい
るが、パウダーライン部4にArガス背圧9が作用して
いるため、浸漬ノズル3の低通気化によりArガス背圧
9が高くなると、鋳造後半でArガス背圧9がパウダー
ライン部4の強度と一致し、浸漬ノズル3に割れ7が発
生する。しかし、高通気の浸漬ノズルを使用する場合に
は、Arガス背圧は常にパウダーライン部の強度以下に
なっているため、割れは発生しない。On the other hand, although Ar gas is blown into the immersion nozzle 3 from the slit 5 of the immersion nozzle 3 through the inner hole body 6, since the Ar gas back pressure 9 acts on the powder line portion 4, the immersion is performed. When the Ar gas back pressure 9 increases due to the low ventilation of the nozzle 3, the Ar gas back pressure 9 matches the strength of the powder line portion 4 in the latter half of casting, and cracks 7 occur in the immersion nozzle 3. However, when using a highly-ventilated immersion nozzle, the Ar gas back pressure is always less than or equal to the strength of the powder line portion, so cracking does not occur.
【0009】以上の割れ発生機構から、本発明者らは、
低通気のガス吹き込み型浸漬ノズルの割れ発生を防止す
るためには、鋳造時間に応じて浸漬ノズルのパウダーラ
イン部強度を予測し、その強度以下になるようにArガ
ス背圧を制御することが有効であることを知見した。From the above crack generation mechanism, the present inventors have
In order to prevent the occurrence of cracks in the low-gassing gas-blowing immersion nozzle, it is necessary to predict the strength of the powder line part of the immersion nozzle according to the casting time and control the Ar gas back pressure so that it is below that strength. It was found to be effective.
【0010】本発明を実施するためには、鋳造時間に
応じて浸漬ノズルのパウダーライン部における溶損量を
推定する方法とパウダーライン部の溶損量から強度を
推定する方法が必要であり、との方法を組み合せる
ことにより、最終的には鋳造時間とパウダーライン部強
度との関係が予想できるわけである。In order to carry out the present invention, a method of estimating the amount of melt damage in the powder line portion of the dipping nozzle and a method of estimating the strength from the amount of melt loss in the powder line portion are required according to the casting time. By combining the above methods, the relationship between the casting time and the strength of the powder line part can be finally predicted.
【0011】については、実機鋳造後の浸漬ノズルを
回収しパウダーライン部の溶損量を詳細に調査した結
果、パウダーライン部の半径減少量で表した溶損量が鋳
造時間に比例することを見いだし、半径減少量を鋳造時
間で除した値を溶損速度と定義することにより、鋳造時
間に応じてパウダーライン部の溶損量を推定できること
を明らかにした。With respect to the above, as a result of collecting the immersion nozzle after actual casting and inspecting the amount of erosion in the powder line portion in detail, it was found that the amount of erosion amount represented by the radius decrease amount of the powder line portion is proportional to the casting time. It was clarified that it was possible to estimate the amount of erosion in the powder line part according to the casting time by defining the value obtained by dividing the radius reduction amount by the casting time as the erosion rate.
【0012】については、鋳造終了時に、熱間状態で
浸漬ノズルにArガスを流し、パウダーライン部に亀裂
が発生するArガス背圧(パウダーライン部の強度)を
測定した。この測定を繰り返すことにより、パウダーラ
イン部の溶損量と強度の関係を定量化できる。[0012] With respect to the above, at the end of casting, Ar gas was caused to flow through the immersion nozzle in a hot state, and the back pressure of Ar gas (the strength of the powder line portion) at which cracks were generated in the powder line portion was measured. By repeating this measurement, the relationship between the amount of erosion and the strength of the powder line portion can be quantified.
【0013】ここで述べたパウダーライン部における
溶損量の推定方法及び強度の推定方法は一例であり、
についてはオフラインでパウダーライン部の耐火物を
パウダー中に浸漬させ溶損速度を評価する方法、につ
いては有限要素法等により浸漬ノズルの応力解析を行
い、パウダーライン部の強度を算出する方法も考えられ
る。また、溶損速度はパウダーライン部の材質やモール
ドパウダーの種類に、強度はパウダーライン部の材質に
より変化するが、事前に各条件で溶損速度と強度を評価
しておけば良い。The method for estimating the amount of erosion and the method for estimating the strength in the powder line portion described above are merely examples.
For the method of off-line immersing the refractory in the powder line part in the powder to evaluate the melt loss rate, for the method of deciding the stress of the immersion nozzle by the finite element method etc., the method of calculating the strength of the powder line part is also considered. To be Further, the melting rate varies depending on the material of the powder line portion and the type of mold powder, and the strength varies depending on the material of the powder line portion, but it is sufficient to evaluate the melting rate and the strength under each condition in advance.
【0014】鋳造時における吹き込みArガス流量/A
rガス背圧(通気特性値)は、浸漬ノズル内孔体に劣化
がなければほぼ一定に、劣化があった場合でもその変化
は緩やかであるため、Arガス背圧を制御するためには
この特徴を利用してArガス流量を調整することが有効
である。Flow rate of Ar gas blown during casting / A
The r gas back pressure (aeration characteristic value) is almost constant if there is no deterioration in the submerged nozzle inner hole, and the change is gentle even if there is deterioration. It is effective to adjust the Ar gas flow rate by utilizing the characteristics.
【0015】具体的なArガス背圧制御方法については
以下の通りで、まず事前に評価した鋳造時間とパウダー
ライン部強度との関係から、パウダーライン部強度以下
の安全率を考慮した目標Arガス背圧を鋳造時間に応じ
て算出する。浸漬ノズルへのArガス導入管8の途中に
取り付けた圧力計からArガス背圧を読み取り、この値
を目標Arガス背圧と比較し、両者が一致した時点から
Arガス背圧の制御を開始する。鋳造時は連続的に通気
特性値を算出し、その通気特性値と目標Arガス背圧を
掛けた値にArガス流量を連続的または断続的に調整す
ることにより、Arガス背圧は目標Arガス背圧に制御
される。なお、本発明の制御は自動化しても、人が圧力
計と流量計を見ながら行っても十分な効果を発揮する。The specific Ar gas back pressure control method is as follows. First, from the relationship between the casting time and the powder line portion strength evaluated in advance, the target Ar gas considering the safety factor below the powder line portion strength is considered. The back pressure is calculated according to the casting time. The Ar gas back pressure is read from the pressure gauge attached in the middle of the Ar gas introduction pipe 8 to the immersion nozzle, this value is compared with the target Ar gas back pressure, and the control of the Ar gas back pressure is started from the time when both agree. To do. At the time of casting, the ventilation characteristic value is continuously calculated, and the Ar gas back pressure is adjusted to the target Ar gas back pressure by continuously or intermittently adjusting the value obtained by multiplying the ventilation characteristic value by the target Ar gas back pressure. Controlled by gas back pressure. It should be noted that the control of the present invention is fully effective even when it is automated or when a person looks at the pressure gauge and the flowmeter.
【0016】[0016]
【実施例】以下に、実施例及び比較例を挙げて、本発明
について説明する。 [実施例1]図1に示したガス吹き込み型浸漬ノズルを
用いて、成分C:50ppm 、Si:0.015%、M
n:0.25%、P:0.02%、S:0.01%、A
l:0.035%、温度1550℃(タンディッシュ
内)の溶鋼を400分間鋳造した。事前に測定した浸漬
ノズルのパウダーライン部における溶損速度は0.05
mm/min. であり、この時のパウダーライン部強度の経時
変化は図3に示した通りである。EXAMPLES The present invention will be described below with reference to Examples and Comparative Examples. Example 1 Using the gas injection type immersion nozzle shown in FIG. 1, component C: 50 ppm, Si: 0.015%, M
n: 0.25%, P: 0.02%, S: 0.01%, A
L: 0.035%, molten steel at a temperature of 1550 ° C. (in the tundish) was cast for 400 minutes. The pre-measured dissolution rate in the powder line part of the immersion nozzle is 0.05
mm / min., and the change over time in the strength of the powder line portion at this time is as shown in FIG.
【0017】浸漬ノズルの通気量を室温で背圧1.0kg
を加えた場合に流れるArガス流量(冷間通気量)で評
価したところ、0.05Nリットル(l)/min./cm2 以
下に低通気化すればふくれ状欠陥が防止できることが分
かった。そこで、冷間通気量を0.04Nl/min./cm2
の浸漬ノズルを用いると共に、Arガス吹き込み流量を
鋳造初期5.0Nl/min. に設定して鋳造を行ったとこ
ろ、初期Arガス背圧は2.0 kg/cm2 であった。鋳造
開始後250分を経過した時のArガス背圧がパウダー
ライン部強度の95%に達したため、これ以降はパウダ
ーライン部強度×0.95×通気特性値にArガス吹き
込み流量を連続的に調整することにより、Arガス背圧
をパウダーライン部強度の)95%(目標Arガス背
圧)に制御した。この時のArガス背圧の経時変化は図
3の実線で示す。その結果、浸漬ノズルには割れ発生は
なく、鋳片品質も良好であった。Aeration rate of immersion nozzle is 1.0kg at room temperature and back pressure
When evaluated by the flow rate of Ar gas (cold air flow rate) when the gas was added, it was found that the blistering defect can be prevented by lowering the air flow to 0.05 N liter (l) /min./cm 2 or less. Therefore, the cold air flow rate is 0.04 Nl / min. / Cm 2
When the immersion nozzle was used and the flow rate of Ar gas blown was set to 5.0 Nl / min. In the initial stage of casting, the initial Ar gas back pressure was 2.0 kg / cm 2 . Since the Ar gas back pressure reached 95% of the strength of the powder line section 250 minutes after the start of casting, the flow rate of Ar gas was continuously changed to the strength of the powder line section x 0.95 x ventilation characteristic value. By adjusting, the Ar gas back pressure was controlled to 95% (of the strength of the powder line portion) (target Ar gas back pressure). The change over time of the Ar gas back pressure at this time is shown by the solid line in FIG. As a result, the immersion nozzle was free from cracks and the slab quality was good.
【0018】[実施例2]図1に示したガス吹き込み型
浸漬ノズルを用いて、成分C:50ppm 、Si:0.0
15%、Mn:0.25%、P:0.02%、S:0.
01%、Al:0.035%、温度1550℃(タンデ
ィッシュ内)の溶鋼を400分間鋳造した。事前に測定
した浸漬ノズルのパウダーライン部における溶損速度は
0.05mm/min. であり、この時のパウダーライン部強
度の経時変化は図3に示した通りである。冷間通気量を
0.03Nl/min./cm2 の浸漬ノズルを用いると共に、
Arガス吹き込み流量を鋳造初期7.0Nl/min. に設
して鋳造を行ったところ、初期Arガス背圧は3.0 k
g/cm2 であった。鋳造開始後120分を経過した時のA
rガス背圧がパウダーライン部強度の95%に達したた
め、これ以降は(パウダーライン部強度×0.95×通
気特性値)にArガス吹き込み流量を連続的に調整する
ことにより、Arガス背圧をパウダーライン部強度の9
5%(目標Arガス背圧)に制御した。この時のArガ
ス背圧の経時変化は図3の点線で示す。その結果、浸漬
ノズルには割れ発生はなく、鋳片品質も良好であった。Example 2 Using the gas injection type immersion nozzle shown in FIG. 1, component C: 50 ppm, Si: 0.0
15%, Mn: 0.25%, P: 0.02%, S: 0.
Molten steel of 01%, Al: 0.035%, and a temperature of 1550 ° C. (in the tundish) was cast for 400 minutes. The dissolution rate in the powder line portion of the immersion nozzle measured in advance was 0.05 mm / min., And the change over time in the strength of the powder line portion at this time is as shown in FIG. While using a submerged nozzle with a cold flow rate of 0.03 Nl / min. / Cm 2 ,
When casting was performed with the Ar gas blowing flow rate set to 7.0 Nl / min. In the initial stage of casting, the initial Ar gas back pressure was 3.0 k.
It was g / cm 2 . A when 120 minutes have passed since the start of casting
Since the r gas back pressure has reached 95% of the strength of the powder line part, the Ar gas back pressure can be continuously adjusted by (powder line part strength x 0.95 x ventilation characteristic value) thereafter. The pressure is 9 of the powder line strength.
It was controlled to 5% (target Ar gas back pressure). The change over time in the Ar gas back pressure at this time is shown by the dotted line in FIG. As a result, the immersion nozzle was free from cracks and the slab quality was good.
【0019】[比較例1]図1に示したガス吹き込み型
浸漬ノズルを用いて、成分C:50ppm 、Si:0.0
15%、Mn:0.25%、P:0.02%、S:0.
01%、Al:0.035%、温度1550℃(タンデ
ィッシュ内)の溶鋼を400分間鋳造した。事前に測定
した浸漬ノズルのパウダーライン部における溶損速度は
0.05mm/min. であり、この時のパウダーライン部強
度の経時変化は図3に示した通りである。冷間通気量を
0.04Nl/min./cm2 の浸漬ノズルを用いると共に、
Arガス吹き込み流量を鋳造初期5.0Nl/min. に設
して鋳造を行ったところ、初期Arガス背圧は2.0 k
g/cm2 であった。この水準ではArガス背圧の制御を実
施せず、そのまま鋳造を継続した結果、鋳造開始後26
0分で浸漬ノズルに割れが発生し鋳造を停止した。Comparative Example 1 Using the gas injection type immersion nozzle shown in FIG. 1, component C: 50 ppm, Si: 0.0
15%, Mn: 0.25%, P: 0.02%, S: 0.
Molten steel of 01%, Al: 0.035%, and a temperature of 1550 ° C. (in the tundish) was cast for 400 minutes. The dissolution rate in the powder line portion of the immersion nozzle measured in advance was 0.05 mm / min., And the change over time in the strength of the powder line portion at this time is as shown in FIG. While using a dipping nozzle with a cold flow rate of 0.04 Nl / min. / Cm 2 ,
When casting was performed with the Ar gas blowing flow rate set to 5.0 Nl / min. In the initial stage of casting, the initial Ar gas back pressure was 2.0 k.
It was g / cm 2 . At this level, the back pressure of Ar gas was not controlled and the casting was continued as a result.
At 0 minutes, the immersion nozzle cracked and the casting was stopped.
【0020】[比較例2]図1に示したガス吹き込み型
浸漬ノズルを用いて、成分C:50ppm 、Si:0.0
15%、Mn:0.25%、P:0.02%、S:0.
01%、Al:0.035%、温度1550℃(タンデ
ィッシュ内)の溶鋼を400分間鋳造した。事前に測定
した浸漬ノズルのパウダーライン部における溶損速度は
0.05mm/min. であり、この時のパウダーライン部強
度の経時変化は図3に示した通りである。冷間通気量を
0.03Nl/min./cm2 の浸漬ノズルを用いると共に、
Arガス吹き込み流量を鋳造初期7.0Nl/min. に設
して鋳造を行ったところ、初期Arガス背圧は3.0 k
g/cm2 であった。この水準ではArガス背圧の制御を実
施せず、そのまま鋳造を継続した結果、鋳造開始後13
0分で浸漬ノズルに割れが発生し鋳造を停止した。[Comparative Example 2] Using the gas injection type immersion nozzle shown in FIG. 1, component C: 50 ppm, Si: 0.0
15%, Mn: 0.25%, P: 0.02%, S: 0.
Molten steel of 01%, Al: 0.035%, and a temperature of 1550 ° C. (in the tundish) was cast for 400 minutes. The dissolution rate in the powder line portion of the immersion nozzle measured in advance was 0.05 mm / min., And the change over time in the strength of the powder line portion at this time is as shown in FIG. While using a submerged nozzle with a cold flow rate of 0.03 Nl / min. / Cm 2 ,
When casting was performed with the Ar gas blowing flow rate set to 7.0 Nl / min. In the initial stage of casting, the initial Ar gas back pressure was 3.0 k.
It was g / cm 2 . At this level, the control of the Ar gas back pressure was not performed, and as a result of continuing the casting as it was, 13
At 0 minutes, the immersion nozzle cracked and the casting was stopped.
【0021】[0021]
【発明の効果】以上に説明したように、本発明により低
通気化したガス吹き込み型浸漬ノズルの割れ発生を確実
に防止できるため、鋳片の品質向上と安定化を実現で
き、歩留りも格段に良くなる。また、浸漬ノズルの割れ
発生に伴う種々の非定常作業を省略することができ、操
業性も良好となる。As described above, the present invention makes it possible to reliably prevent the occurrence of cracks in the gas-blown submerged nozzle having a low aeration rate, so that the quality and stability of the slab can be improved and the yield can be significantly improved. Get better. Further, various unsteady operations associated with the occurrence of cracks in the immersion nozzle can be omitted, and the operability becomes good.
【図1】浸漬ノズルの使用状態を説明するための模式
図。FIG. 1 is a schematic diagram for explaining a usage state of an immersion nozzle.
【図2】浸漬ノズルのパウダーライン部強度及びArガ
ス背圧の経時変化を示す図。FIG. 2 is a diagram showing changes over time in the powder line strength of an immersion nozzle and Ar gas back pressure.
【図3】実施例における浸漬ノズルのパウダーライン部
強度及びArガス背圧の経時変化を示す図。FIG. 3 is a diagram showing changes over time in the powder line strength of an immersion nozzle and Ar gas back pressure in Examples.
1…溶鋼 2…パウダー 3…浸漬ノズル 4…パウダーライン 5…スリット 6…内孔体 7…割れ 8…Arガス導入管 9…Arガス背圧 1 ... Molten Steel 2 ... Powder 3 ... Immersion Nozzle 4 ... Powder Line 5 ... Slit 6 ... Inner Porous Body 7 ... Cracking 8 ... Ar Gas Introducing Tube 9 ... Ar Gas Back Pressure
Claims (1)
連続鋳造において、鋳造時間に応じて規定した浸漬ノズ
ルのパウダーライン部強度よりも低い圧力を示すように
ガス背圧を制御することを特徴とする連続鋳造方法。1. In the continuous casting of steel using a gas injection type immersion nozzle, the gas back pressure is controlled so as to exhibit a pressure lower than the strength of the powder line portion of the immersion nozzle specified according to the casting time. And continuous casting method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07493095A JP3412955B2 (en) | 1995-03-31 | 1995-03-31 | Continuous casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07493095A JP3412955B2 (en) | 1995-03-31 | 1995-03-31 | Continuous casting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08267203A true JPH08267203A (en) | 1996-10-15 |
JP3412955B2 JP3412955B2 (en) | 2003-06-03 |
Family
ID=13561574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07493095A Expired - Fee Related JP3412955B2 (en) | 1995-03-31 | 1995-03-31 | Continuous casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3412955B2 (en) |
-
1995
- 1995-03-31 JP JP07493095A patent/JP3412955B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3412955B2 (en) | 2003-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08267203A (en) | Continuous casting method | |
JP2004001057A (en) | Dipping nozzle for continuous casting of thin slab | |
JPH0330461B2 (en) | ||
JP2991881B2 (en) | Immersion nozzle for continuous casting | |
JP2000052003A (en) | Molten steel continuous casting method | |
JP4815821B2 (en) | Continuous casting method of aluminum killed steel | |
JP3642284B2 (en) | How to prevent contamination of molten steel in tundish | |
JP3864698B2 (en) | Continuous casting method | |
JP3294940B2 (en) | Continuous casting method | |
JPH0341884Y2 (en) | ||
JPH11192539A (en) | Method for continuous casting of chromium-containing molten steel having excellent internal defect resistance | |
JPH06182513A (en) | Method for blowing gas from immersion nozzle for continuous casting | |
JPH08238547A (en) | Method for controlling blowing of argon gas in slab casting | |
JPH0494850A (en) | Submerged nozzle | |
JP2001276958A (en) | Cast-iron made by continuous casting and it's producing method | |
JPH05123840A (en) | Immersion nozzle for continuous casting | |
JPH02247052A (en) | Method for continuously casting cast slab for steel strip | |
JPH08252657A (en) | Method for preventing clogging of submerged nozzle for continuous casting | |
JPH0230122Y2 (en) | ||
JPH0133258Y2 (en) | ||
JP3260543B2 (en) | Operating methods for clean steel casting. | |
JPH0327300B2 (en) | ||
JPH06170505A (en) | Immersion nozzle for continuous casting | |
JP2001300702A (en) | Method for continuously casting steel and method for producing steel strip | |
JPH02307654A (en) | Tundish upper nozzle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030218 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080328 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090328 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090328 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100328 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110328 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120328 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |