JPH08267178A - Method for reducing center segregation in cast slab by fine oxide - Google Patents

Method for reducing center segregation in cast slab by fine oxide

Info

Publication number
JPH08267178A
JPH08267178A JP7209595A JP7209595A JPH08267178A JP H08267178 A JPH08267178 A JP H08267178A JP 7209595 A JP7209595 A JP 7209595A JP 7209595 A JP7209595 A JP 7209595A JP H08267178 A JPH08267178 A JP H08267178A
Authority
JP
Japan
Prior art keywords
mns
oxide
oxides
steel
cast slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7209595A
Other languages
Japanese (ja)
Inventor
Hironori Goto
裕規 後藤
Akito Kiyose
明人 清瀬
Mitsuo Uchimura
光雄 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7209595A priority Critical patent/JPH08267178A/en
Publication of JPH08267178A publication Critical patent/JPH08267178A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE: To provide a steel dispersing fine oxides controlled in the composition into the steel, restraining the development of harmful MnS in the center segregation part and excellent in a hydrogen induced cracking resistant characteristic and sulfric stress corrosion cracking resistant characteristic. CONSTITUTION: The oxide satisfying 0.5-5μm grain diameter and >=20 mass% Ti concn. is dispersed in the position of a cast slab in the range from the center position in the thickness direction to the surface direction corresponding to the center segregation part of the cast slab at 5-50 pieces/mm<2> to reduce the development of MnS.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、S含有量が限定され
た、低炭素鋼であり、主たる用途は厚板またはパイプ等
の鋼材であって、製鋼段階における微細酸化物による鋳
片中心偏析低減法に関する。
FIELD OF THE INVENTION The present invention is a low carbon steel having a limited S content, which is mainly used for steel materials such as thick plates or pipes. Regarding reduction methods.

【0002】[0002]

【従来の技術】海洋構造物、船舶、ラインパイプ等の高
級鋼に要求される材質特性は益々厳しくなっている。特
に耐水素誘起割れ特性、耐硫化物応力腐食割れ特性なら
びに溶接部における低温靭性の抜本的改善が望まれる。
連続鋳造の凝固末期において溶質元素が濃化し、凝固後
のこの組織は脆弱な硬化組織を形成するとともに、割れ
の起点となるMnS硫化物が生成する。
2. Description of the Related Art Material properties required for high-grade steels for marine structures, ships, line pipes, etc. are becoming more and more severe. In particular, drastic improvements in hydrogen-induced cracking resistance, sulfide stress corrosion cracking resistance, and low-temperature toughness at welds are desired.
At the end of solidification in continuous casting, solute elements are concentrated, and this structure after solidification forms a brittle hardened structure, and MnS sulfide that is the starting point of cracking is generated.

【0003】耐水素誘起割れ特性、耐硫化物応力腐食割
れ特性を満足するためには、溶鋼中のSを低減すること
が必要である。効率的に脱Sを行なうためにスラグ組成
を制御することが有効であり、このことは特開昭63−
19320号公報に開示されている。しかしながら、溶
鋼中のSを充分に低減しても、鋳片の中心偏析部では、
S,Mnの濃化が著しく、有害介在物であるMnSが容
易に生成する。
To satisfy the hydrogen-induced cracking resistance and the sulfide stress corrosion cracking resistance, it is necessary to reduce S in molten steel. It is effective to control the slag composition in order to efficiently remove S, which is disclosed in JP-A-63-
It is disclosed in Japanese Patent Publication No. 19320. However, even if S in molten steel is sufficiently reduced, in the center segregated portion of the slab,
Concentration of S and Mn is remarkable and MnS which is a harmful inclusion is easily formed.

【0004】[0004]

【発明が解決しようとする課題】本発明はこのような従
来の問題点を解消しようとするものであり、低S鋼を溶
鋼するに当たり、鋳片中心部に生成する有害なMnSの
生成を抑制すること、すなわち微細酸化物による鋳片中
心偏析低減法の提供を目的とする。
The present invention is intended to solve such conventional problems, and suppresses the generation of harmful MnS generated at the center of the slab when the low S steel is melted. That is, the object is to provide a method for reducing the segregation of the slab center with fine oxides.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明は、粒子径が0.5〜5μm、Ti濃度20ma
ss%以上を、満足する酸化物を、鋳片の中心偏析部に相
当する部位である鋳片の厚み方向の中心位置から表層方
向へ10mmの範囲の鋳片部位に、1mm2 当たり5〜50
個分散させることによって、MnSの生成を低減するこ
とを特徴とする微細酸化物による鋳片中心偏析低減法で
ある。
In order to achieve the above object, the present invention has a particle size of 0.5 to 5 μm and a Ti concentration of 20 ma.
An oxide satisfying ss% or more is added to the cast piece portion within a range of 10 mm in the surface layer direction from the center position in the thickness direction of the cast piece, which is a portion corresponding to the center segregated portion of the cast piece, in an amount of 5 to 50 per 1 mm 2.
It is a method for reducing segregation of the center of a cast slab using fine oxides, which is characterized by reducing the generation of MnS by dispersing the individual pieces.

【0006】以下に、本発明を詳細に記述する。MnS
の生成を低減させるためには、低S化処理が必要であ
り、通常の脱硫処理が工業的に比較的容易に達成される
S≦0.010mass%の低S鋼を対象とする。この鋼に
おいて、数μm程度の微小な酸化物を中心偏析部に相当
する鋳片位置に分散させMnSを酸化物上に晶出させる
と、MnSは酸化物とともに微細に分散され、有害な粗
大酸化物、例えば100μm以上の大きさのMnSの生
成を抑制することが可能である。酸化物の粒径分布を図
1に示すが、粒径が0.5〜5μmの酸化物個数が全体
の95%を占め、この大きさの酸化物のみを対象とする
ことにより、酸化物による反応制御が充分である。した
がって、酸化物の粒径は0.5〜5μmに限定される。
The present invention will be described in detail below. MnS
In order to reduce the generation of S, it is necessary to perform a low S treatment, and a low S steel with S ≦ 0.010 mass% that can be easily achieved by a normal desulfurization treatment industrially is targeted. In this steel, when a small oxide of about several μm is dispersed at the slab position corresponding to the central segregation part and MnS is crystallized on the oxide, MnS is finely dispersed together with the oxide, resulting in harmful coarse oxidation. It is possible to suppress the generation of an object, for example, MnS having a size of 100 μm or more. The particle size distribution of oxides is shown in FIG. 1. The number of oxides having a particle size of 0.5 to 5 μm occupies 95% of the whole, and by considering only oxides of this size, Reaction control is sufficient. Therefore, the particle size of the oxide is limited to 0.5 to 5 μm.

【0007】鋳片の中心偏析部位は、凝固末期の溶鋼流
動、バルジング、ロール配置等により変化するが、鋳片
の厚み方向の中心位置から鋳片の厚み方向で上下に各々
10mm以内の範囲を対象とし鋳片部位を制御する。この
場合、酸化物の分布および組成が重要である。酸化物を
鋼中に微細に分散させるためには、通常のAl脱酸の場
合ではアルミナが生成し、この酸化物はクラスター化し
やすく、浮上しやすいため適切な脱酸法となり得ない。
そこで、強脱酸元素であるAl濃度を低下させ、鋼が凝
固する過程において酸化物を生成させる方法を用いると
酸化物を微細に分散させやすく、Alの代わりにTiを
利用することが有効である。
The center segregation portion of the slab varies depending on the molten steel flow, bulging, roll arrangement, etc. at the end of solidification, but within a range of 10 mm vertically from the center position in the thickness direction of the slab to the thickness direction of the slab. The target slab site is controlled. In this case, the distribution and composition of the oxide are important. In order to finely disperse the oxide in the steel, alumina is generated in the case of normal Al deoxidation, and this oxide is likely to cluster and easily float, so that an appropriate deoxidation method cannot be performed.
Therefore, it is easy to finely disperse the oxide by using a method of reducing the Al concentration which is a strong deoxidizing element and generating an oxide in the process of solidification of steel, and it is effective to use Ti instead of Al. is there.

【0008】また、このTi酸化物はMnSの析出サイ
トとなり、特に酸化物中のTi濃度に強く支配されるこ
とが分かった。その結果を図2に示す。各鋼材において
25〜35個の酸化物の組成を分析し、その平均の酸化
物中のTi濃度を求めた。このTi濃度とMnSが晶出
した酸化物の割合(MnSが晶出した酸化物個数/酸化
物個数)を示す。酸化物中のTi濃度が低い場合にはM
nSが析出する酸化物の割合が小さく、Ti濃度が増加
するとMnSが晶出する酸化物の割合が増加し、特に酸
化物中のTi濃度が40mass%以上となると、その割合
は80%以上となる。図3に材質上有害となる中心偏析
部の50μm以上のMnSと酸化物中の平均Ti濃度と
の関係を示す。この場合の大型MnSは酸化物に晶出す
ることなく単独に晶出した硫化物である。MnSが0.
5〜5μmの微細な酸化物に晶出すると、MnSが分散
され、有害介在物である大型の単独のMnSの晶出は殆
どなくなる。
It was also found that this Ti oxide serves as a precipitation site for MnS, and is particularly strongly controlled by the Ti concentration in the oxide. The result is shown in FIG. The composition of 25 to 35 oxides in each steel material was analyzed, and the average Ti concentration in the oxide was determined. The Ti concentration and the ratio of oxides in which MnS was crystallized (number of oxides in which MnS was crystallized / number of oxides) are shown. When the Ti concentration in the oxide is low, M
The proportion of oxides in which nS precipitates is small, and the proportion of oxides in which MnS crystallizes increases as the Ti concentration increases. Especially when the Ti concentration in the oxides is 40 mass% or more, the proportion is 80% or more. Become. FIG. 3 shows the relationship between MnS of 50 μm or more in the central segregated portion and the average Ti concentration in the oxide, which is harmful to the material. The large MnS in this case is a sulfide that is crystallized independently without crystallizing into an oxide. MnS is 0.
When crystallized in a fine oxide of 5 to 5 μm, MnS is dispersed and crystallization of a large single MnS which is a harmful inclusion is almost eliminated.

【0009】この組成の酸化物の個数に適切な範囲が存
在する。すなわち、酸化物個数が5個/mm2 より少ない
と、Sと反応し吸収するサイトが不足する。また、酸化
物個数が50個/mm2 より多くなると、この酸化物個数
の増加に伴い割れの発生起点となる材質上有害な100
μm以上の大きさの酸化物の発生頻度が増加する。した
がって、酸化物の個数は、5〜50個/mm2 と限定され
る。
There is an appropriate range for the number of oxides of this composition. That is, when the number of oxides is less than 5 / mm 2 , there are insufficient sites for reacting with and absorbing S. If the number of oxides is more than 50 / mm 2 , the number of oxides increases and the number of oxides becomes 100, which is harmful to the material and becomes the starting point of cracking.
The frequency of generation of oxides having a size of μm or more increases. Therefore, the number of oxides is limited to 5 to 50 / mm 2 .

【0010】なお、本発明において対象とする鋼材の炭
素濃度は、靭性、溶接性の観点から、C≦0.20mass
%の低炭素鋼を対象とする。
In the present invention, the carbon concentration of the steel material is C≤0.20 mass from the viewpoint of toughness and weldability.
% Low carbon steel.

【0011】[0011]

【実施例】以下に、本発明の実施例を示す。酸化物の組
成と個数を変化させた鋼材において材質特性を支配する
中心部におけるMnSの生成状況と100μm以上の粗
大酸化物の生成状況を表1に示す。なお、今回の実施例
の鋼材の成分範囲を表2に示す。
EXAMPLES Examples of the present invention will be shown below. Table 1 shows the generation state of MnS in the central portion that governs the material properties and the generation state of coarse oxides of 100 μm or more in steel materials in which the composition and number of oxides are changed. Table 2 shows the composition range of the steel material of this example.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】本発明である,,においては、中心
偏析部においてMnSの生成が認められず、また、10
0μm以上の大型介在物も少なく清浄鋼が製造された。
According to the present invention ,, MnS formation was not observed in the central segregation portion, and 10
Clean steel was produced with few large inclusions of 0 μm or more.

【0015】[0015]

【発明の効果】Ti2 3 の組成が制御された微小な酸
化物を鋼中に分散することにより、中心偏析が低減さ
れ、かつ、有害介在物であるMnSが生成しない鋼材を
安定に製造できた。
EFFECTS OF THE INVENTION By dispersing a fine oxide having a controlled composition of Ti 2 O 3 in steel, central segregation is reduced and a steel material in which MnS, which is a harmful inclusion, is not produced is stably produced. did it.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋼中酸化物の粒径分布を示す図。FIG. 1 is a diagram showing a particle size distribution of oxides in steel.

【図2】酸化物組成と酸化物上へのMnSの析出率の関
係を示す図。
FIG. 2 is a diagram showing a relationship between an oxide composition and a precipitation rate of MnS on an oxide.

【図3】酸化物組成と50μm以上の単独MnSの個数
の関係を示す図。
FIG. 3 is a diagram showing a relationship between an oxide composition and the number of individual MnS having a size of 50 μm or more.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 粒子径が0.5〜5μm、Ti濃度20
mass%以上を、満足する酸化物を、鋳片の中心偏析部に
相当する部位である鋳片の厚み方向の中心位置から表層
方向へ10mmの範囲の鋳片部位に、1mm2 当たり5〜5
0個分散させることによって、MnSの生成を低減する
ことを特徴とする微細酸化物による鋳片中心偏析低減
法。
1. A particle size of 0.5 to 5 μm and a Ti concentration of 20.
An oxide satisfying mass% or more is added to a cast piece within a range of 10 mm from the center position in the thickness direction of the cast piece, which is a portion corresponding to the center segregation portion of the cast piece, to the surface layer direction in an amount of 5 to 5 per 1 mm 2.
A method for reducing segregation of the center of a cast slab by a fine oxide, characterized in that the generation of MnS is reduced by dispersing 0 pieces.
JP7209595A 1995-03-29 1995-03-29 Method for reducing center segregation in cast slab by fine oxide Pending JPH08267178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7209595A JPH08267178A (en) 1995-03-29 1995-03-29 Method for reducing center segregation in cast slab by fine oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7209595A JPH08267178A (en) 1995-03-29 1995-03-29 Method for reducing center segregation in cast slab by fine oxide

Publications (1)

Publication Number Publication Date
JPH08267178A true JPH08267178A (en) 1996-10-15

Family

ID=13479517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7209595A Pending JPH08267178A (en) 1995-03-29 1995-03-29 Method for reducing center segregation in cast slab by fine oxide

Country Status (1)

Country Link
JP (1) JPH08267178A (en)

Similar Documents

Publication Publication Date Title
EP1257673B1 (en) Method for grain refining of steel, grain refining alloy for steel and method for producing grain refining alloy
JP5202031B2 (en) Steel material excellent in toughness of weld heat-affected zone and method for producing the same
JP2005509740A (en) Welded structural steel with excellent weld heat affected zone toughness, manufacturing method thereof, and welded structure using the same
EP2308616B1 (en) Cast steel and steel material with excellent workability, method for processing molten steel therefor and method for manufacturing the cast steel and steel material
JP2011219797A (en) Thick steel plate excellent in toughness of weld heat-affected zone
JPH10298708A (en) High tensile strength steel for welding excellent in toughness in superhigh heat input heat-affected zone
JP2008163416A (en) Steel sheet having excellent weld heat-affected zone toughness in superhigh heat input welding
JP3633515B2 (en) Hot-rolled steel sheet having excellent resistance to hydrogen-induced cracking and method for producing the same
WO2021172378A1 (en) Stainless steel, stainless steel material, and stainless steel production method
JP3323414B2 (en) Steel with excellent heat-affected zone toughness in large heat input welding and method for producing the same
JPH08267178A (en) Method for reducing center segregation in cast slab by fine oxide
JP3852118B2 (en) Steel material with excellent toughness of weld heat affected zone
JPH08325635A (en) Production of high strength and high toughness steel excellent in hic resistance
JPH09176730A (en) Production of thick steel plate excellent in toughness
JP6791008B2 (en) Manufacturing method of carbon steel slabs and carbon steel shards
JP2001303197A (en) Steel with fine solidification structure
JP4369267B2 (en) Cold-rolled steel sheet, hot-rolled steel sheet, and cast steel ingot with high ductility
JPH08260092A (en) Steel in which fine oxide is dispersed
JP3399125B2 (en) Steel material with excellent toughness of weld heat affected zone
CA2147614C (en) Continuous-cast and steel product having dispersed fine particles
JP4357080B2 (en) Solidified grain refined steel and solidified grain refined austenitic stainless steel and their welded joints
JP2003286540A (en) Thick steel plate showing excellent toughness at heat affected zone in extra-large heat input welding and its manufacturing process
JPH091303A (en) Manufacture of low temperature use steel excellent in ctod property of heat affected zone
JPH0763821B2 (en) Finer and more uniform dispersion of inclusions in steel
JP4418119B2 (en) Method for dispersing fine oxides in molten steel

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030430