JPH08266257A - High frequency thawing device - Google Patents

High frequency thawing device

Info

Publication number
JPH08266257A
JPH08266257A JP7152095A JP7152095A JPH08266257A JP H08266257 A JPH08266257 A JP H08266257A JP 7152095 A JP7152095 A JP 7152095A JP 7152095 A JP7152095 A JP 7152095A JP H08266257 A JPH08266257 A JP H08266257A
Authority
JP
Japan
Prior art keywords
thawed
type
defrosted
electrodes
dielectric heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7152095A
Other languages
Japanese (ja)
Other versions
JP2905717B2 (en
Inventor
Koji Yamamoto
康二 山本
Yoshio Akesaka
芳生 明坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAMOTO BINITAA KK
YAMAMOTO VINYTER
Original Assignee
YAMAMOTO BINITAA KK
YAMAMOTO VINYTER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAMOTO BINITAA KK, YAMAMOTO VINYTER filed Critical YAMAMOTO BINITAA KK
Priority to JP7152095A priority Critical patent/JP2905717B2/en
Publication of JPH08266257A publication Critical patent/JPH08266257A/en
Application granted granted Critical
Publication of JP2905717B2 publication Critical patent/JP2905717B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Freezing, Cooling And Drying Of Foods (AREA)
  • Storage Of Fruits Or Vegetables (AREA)

Abstract

PURPOSE: To provide a high frequency thawing device capable of automatically setting a dielectric heating condition in response to the kind of a thawing material to always thaw the thawing material under a suitable condition for each of various kinds of the thawing materials. CONSTITUTION: A high frequency thawing device is provided with a feeding member 8 and a high frequency section (5) comprising a pair of upper and lower counter electrodes (55a, 55b). Further, a kind-detecting sensor 9 is disposed in the feeding member 8, and a lifting motor (56a) capable of changing the setting of a distance between the electrodes is disposed on the counter electrodes. When a kind of material to be thawed is thawed, the next material to be thawed is set in the feeding member, and the kind of the thawing material is detected. When the kind of the detected material is different from the thawing material F on the thawing treatment, a dielectric heating condition corresponding to the detected kind is read out from a table memory 10 to change the dielectric heating condition in the high frequency section (5).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高周波電力が供給され
る上下の対向電極間を搬送される被解凍物に対して誘電
加熱を行う解凍部を有する高周波解凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high frequency defrosting apparatus having a defrosting section for performing dielectric heating on an object to be defrosted conveyed between upper and lower counter electrodes supplied with high frequency power.

【0002】[0002]

【従来の技術】従来、二枚の対向電極を配置し、その間
に冷凍食品等を載置して高周波を印加する誘電加熱解凍
技術を利用し、急速解凍を可能にする高周波解凍装置が
提案されている(特公昭51−15100号公報、特公
昭55−46152号公報、特公昭60−09784号
公報、特開昭58−61592号公報、特公昭62−3
4386号公報、特公平04−70757号公報、特開
平04−325073号公報、特公平05−00840
号公報)。
2. Description of the Related Art Conventionally, there has been proposed a high-frequency defrosting device that enables rapid thawing by using a dielectric heating and thawing technique in which two opposed electrodes are arranged, frozen foods, etc. are placed between them and a high frequency is applied. (JP-B-51-15100, JP-B-55-46152, JP-B-60-09784, JP-A-58-61592, JP-B-62-3)
4386, Japanese Patent Publication No. 04-70757, Japanese Patent Application Laid-Open No. 04-325073, Japanese Patent Publication No. 05-08840.
Issue).

【0003】この誘電加熱解凍技術を利用した高周波解
凍装置は、急速解凍でありながら表面から内部に亘つて
均一解凍ができるとともに、ドリップロスが少ない等の
利点を有することから実用化されている。すなわち、高
周波発生回路からの高周波信号を変成器で電力増幅し、
更に、同調をとった状態で上記対向電極間に高周波電界
を発生させ、介設される冷凍食品等を誘電加熱するもの
である。
A high-frequency defrosting apparatus utilizing this dielectric heating and thawing technique has been put into practical use because it has the advantages of being capable of uniform thawing from the surface to the inside while being a quick thawing and having little drip loss. That is, the high frequency signal from the high frequency generation circuit is power-amplified by the transformer,
Further, a high-frequency electric field is generated between the opposed electrodes in a synchronized state to dielectrically heat the frozen food or the like interposed therein.

【0004】また、解凍の作業効率を上げる点から、冷
凍食品をコンベアに載置して、連続的な解凍を可能にす
る高周波解凍装置も提案されている(特公昭51−15
100号公報、特公昭55−46152号公報)。
Further, in order to improve the work efficiency of thawing, a high-frequency thawing device which puts frozen food on a conveyor and enables continuous thawing has been proposed (Japanese Patent Publication No. 51-15).
No. 100, Japanese Patent Publication No. 55-46152).

【0005】[0005]

【発明が解決しようとする課題】特公昭55−4615
2号公報記載のコンベア式の高周波解凍装置は、上部電
極板を昇降可能にする構成を備えているものの、この電
極板が何時、如何なる条件に基づいて昇降されるかに関
しては記載されていない。
[Problems to be Solved by the Invention] Japanese Patent Publication Sho 55-4615
Although the conveyor-type high-frequency defroster described in Japanese Patent Publication No. 2 has a configuration that allows the upper electrode plate to move up and down, there is no description as to when and under what conditions this electrode plate is moved up and down.

【0006】本発明は、上記に鑑みてなされたもので、
被解凍物の種類に応じて誘電加熱条件を自動設定し、種
々の被解凍物に対しても常に好適な条件下での解凍を可
能にする高周波解凍装置を提供することを目的とする。
The present invention has been made in view of the above,
It is an object of the present invention to provide a high-frequency defrosting device that automatically sets dielectric heating conditions according to the type of an object to be thawed and that enables various types of objects to be thawed to always be thawed under suitable conditions.

【0007】[0007]

【課題を解決するための手段】本発明は、高周波電力が
供給される対向電極間を搬送される被解凍物に対して誘
電加熱を行う解凍部を有する高周波解凍装置において、
上記対向電極に向けて被解凍物を給送する給送手段と、
この給送手段の途中に配置され、被解凍物の種類を検出
する種類検出手段と、被解凍物の種類と誘電加熱条件と
を対応して記憶する記憶手段と、上記解凍部に対して誘
電加熱条件を設定する条件設定手段と、上記解凍部が上
記種類検出手段で検出された被解凍物の種類に対応する
誘電加熱条件となるように上記条件設定手段を作動させ
る制御手段とを備えたものである(請求項1)。
The present invention relates to a high frequency defrosting apparatus having a defrosting unit for performing dielectric heating on an object to be defrosted conveyed between opposed electrodes to which high frequency power is supplied.
Feeding means for feeding the object to be thawed toward the counter electrode,
A type detection unit, which is disposed in the middle of the feeding unit, detects the type of the defrosted object, a storage unit that stores the type of the defrosted item and the dielectric heating condition in association with each other, and a dielectric for the defrosting unit. And a control means for operating the condition setting means so that the defrosting section has a dielectric heating condition corresponding to the type of the object to be defrosted detected by the type detecting means. (Claim 1).

【0008】また、本発明は、上記被解凍物の種類は被
解凍物の厚みであり、上記種類検出手段は被解凍物の厚
みを検出するセンサであり、上記条件設定手段は対向電
極の電極間距離を設定するものである(請求項2)。
Further, according to the present invention, the type of the object to be thawed is the thickness of the object to be thawed, the type detecting means is a sensor for detecting the thickness of the object to be thawed, and the condition setting means is the electrode of the counter electrode. The distance is set (claim 2).

【0009】また、本発明は、上記対向電極は被解凍物
の通過方向に少なくとも2個並設されてなるものであ
り、上記条件設定手段は上記各対向電極に対して電極間
距離を変更設定するものであり、上記制御手段は上記種
類検出手段が異なる厚みの被解凍物を検出したときは、
対向電極間を通過中の被解凍物が該対向電極間を通過し
終わる毎に上記条件設定手段を作動させて電極間距離を
変更設定させるようになされているものである(請求項
3)。
Further, according to the present invention, at least two counter electrodes are arranged in parallel in the passage direction of the object to be defrosted, and the condition setting means changes and sets the inter-electrode distance for each counter electrode. When the type detecting means detects an object to be thawed having a different thickness, the control means,
Each time the object to be thawed passing between the opposed electrodes has finished passing between the opposed electrodes, the condition setting means is activated to change and set the distance between the electrodes (claim 3).

【0010】[0010]

【作用】請求項1記載の発明によれば、対向電極には高
周波電力が供給されており、電極間に高周波電界が生成
されている。被解凍物はこの電極間をコンベア等によっ
て所要の速度で通過し、この通過中に高周波電界の照射
を受けて誘電加熱され、例えば−25℃程度の温度から
−2℃〜−5℃まで昇温(解凍)される。対向電極の入
口側には給送手段が設けられており、ここに被解凍物が
載置等された状態で対向電極に向けて給送される。被解
凍物はこの給送途中で種類検出手段によってその種類が
検出される。種類の要素としては、対向電極が上下(左
右)に配設されているタイプでは、被解凍物の高さ
(幅)、いわゆる厚みである。厚み情報は誘電加熱の条
件に最も影響を与える要素である。また、種類の要素と
して、被解凍物の容積、重量及び材料(例えば肉の種
類)等を考慮してもよい。誘電加熱条件は、種々の態様
があり、例えば電極間距離の他、電力レベルやコンベア
速度(電界照射時間)でもよく、あるいはこれらの適宜
な組み合わせでもよい。
According to the first aspect of the present invention, the high frequency electric power is supplied to the counter electrode, and the high frequency electric field is generated between the electrodes. The material to be thawed passes between the electrodes at a required speed by a conveyor or the like, and is irradiated with a high-frequency electric field during this passage to be dielectrically heated. For example, the temperature rises from about -25 ° C to -2 ° C to -5 ° C. It is warmed (thawed). Feeding means is provided on the inlet side of the counter electrode, and the object to be thawed is fed to the counter electrode while being placed thereon. The type of the object to be defrosted is detected by the type detecting means during the feeding. As an element of the type, in the type in which the counter electrodes are arranged vertically (left and right), the height (width) of the defrosted object, that is, the so-called thickness. The thickness information is an element that most affects the conditions of dielectric heating. Further, as the type factor, the volume, weight, material (for example, type of meat) of the thawed material may be considered. There are various modes of dielectric heating conditions. For example, in addition to the distance between electrodes, the power level and the conveyor speed (electric field irradiation time) may be used, or an appropriate combination thereof may be used.

【0011】そして、複数種類の被解凍物がそれぞれ各
種類毎にまとめられて給送され、解凍されるに際し、現
在解凍中(すなわち電極間を移動中)の被解凍物の種類
に対して、次に解凍予定の(給送手段上にある)被解凍
物が種類検出手段によって異なる種類の被解凍物である
ことが検出されると、現解凍中の解凍終了後から、次の
解凍予定の被解凍物が対向電極間に搬入されるまでの間
に誘電加熱条件が変更設定される。
[0011] When a plurality of types of thawed objects are collected and fed for each type and thawed, the types of thawed objects currently being thawed (that is, moving between electrodes) are: Next, when the type detecting means detects that the thaw target to be thawed (on the feeding means) is a different type of thaw target, after the end of the current thaw, the next thaw target is set. The dielectric heating conditions are changed and set until the object to be thawed is carried between the opposing electrodes.

【0012】請求項2記載の発明によれば、種類検出手
段が次の解凍予定の被解凍物の厚みが現在解凍中の被解
凍物の厚みと異なることを検出すると、対向電極の電極
間距離がそれに対応して変更設定される。
According to the second aspect of the present invention, when the type detecting means detects that the thickness of the next thawed object to be thawed is different from the thickness of the currently thawed object, the distance between the counter electrodes Is changed and set accordingly.

【0013】請求項3記載の発明によれば、種類検出手
段が異なる厚みの被解凍物を新たに検出したときは、現
在、対向電極間を通過中の被解凍物が該対向電極間を通
過し終わる毎に電極間距離が変更される。これによれ
ば、全ての対向電極を通過し終わるまで待機することな
く、最初の対向電極を通過し終わった後に、続いて次の
解凍予定の被解凍物の搬入が行えるので、解凍作業効率
がより向上する。
According to the third aspect of the present invention, when the type detecting means newly detects an object to be thawed having a different thickness, the object to be thawed which is currently passing between the counter electrodes passes between the counter electrodes. The distance between the electrodes is changed each time. According to this, without waiting until all the counter electrodes have passed, after passing through the first counter electrode, the next thaw target to be thawed can be carried in next, so the thaw work efficiency is improved. To improve.

【0014】[0014]

【実施例】図2〜図4は、本発明に係る高周波解凍装置
の一例を示す構成図で、図2は一部破断正面図、図3は
平面図、図4は右側面図である。本高周波解凍装置は、
出入口を有する解凍室を有する解凍部30、解凍部内に
入口から出口に向けて配設されたコンベア部40及びコ
ンベア部40の移動方向に沿って入口側から順に配設さ
れた3台の高周波部5,6,7を備える。解凍部30
は、入口31と出口32を有し、その間は所定の上下左
右寸法であって、好ましくは直線状に形成された内空間
を有する解凍室33を備え、電磁シールド効果が確保し
得るようにしている。
2 to 4 are schematic views showing an example of a high-frequency decompressor according to the present invention. FIG. 2 is a partially cutaway front view, FIG. 3 is a plan view, and FIG. 4 is a right side view. This high frequency defroster
Thawing section 30 having a thawing room having an entrance, a conveyor section 40 disposed in the thawing section from the entrance to the exit, and three high-frequency sections sequentially arranged from the entrance side along the moving direction of the conveyor section 40. It is equipped with 5, 6 and 7. Decompression unit 30
Is provided with a defrosting chamber 33 having an inlet 31 and an outlet 32, and having a predetermined vertical and horizontal dimensions between them, and preferably having a linearly formed inner space, so that an electromagnetic shield effect can be secured. There is.

【0015】コンベア部40は、テフロン材等からな
る、例えば無端ベルト41を有し、被解凍物の重量によ
っても下方撓みを生じない程度の強度を有する材料で形
成され、解凍室33の入口31と出口32間で定速周回
するように張設されている。無端ベルト41は、図2に
示すように、入口31と出口32とで方向反転し得るよ
うに反転ローラ42,43が配設され、その間の下半部
には、所要の張力を持たせて滑りを生ずることのない回
転を確保し得るように必要に応じた数のローラ44が無
端ベルト41の表裏面に対して交互に接し、テンション
を与えるように配設されている。また、無端ベルト41
は後述する被解凍物が充分載置可能な幅を有するととも
に、反転ローラ42,43で反転可能及びローラ44で
屈曲可能なように法線方向に対して屈曲変形自在な薄層
の絶縁性樹脂(図5参照)とか、円筒部材がその周面で
互いに公転可能に数珠状に連結されたもの、あるいは比
較的短い長さの平板や無端二重平板の前後端にて連結棒
で噛み合わせ状にして数珠状に連結するようにして形成
されたものである。
The conveyor section 40 has, for example, an endless belt 41 made of a Teflon material or the like, and is made of a material having a strength that does not cause downward deflection due to the weight of the object to be defrosted. It is stretched so as to rotate at a constant speed between the outlet 32 and the exit 32. As shown in FIG. 2, the endless belt 41 is provided with reversing rollers 42 and 43 so that the direction can be reversed between the inlet 31 and the outlet 32, and the lower half portion between them is provided with a required tension. As many rollers 44 as necessary are arranged so as to alternately come into contact with the front and back surfaces of the endless belt 41 so as to provide tension so as to ensure rotation without slipping. In addition, the endless belt 41
Is a thin-layer insulating resin that has a width sufficient to mount an object to be thawed, which will be described later, and can be bent and deformed in the normal direction so that it can be reversed by the reversing rollers 42 and 43 and can be bent by the roller 44. (See Fig. 5), cylindrical members that are connected to each other in a bead shape on their peripheral surfaces so as to be able to revolve with each other, or meshed with connecting rods at the front and rear ends of a flat plate having a relatively short length or an endless double flat plate. It is formed so as to be connected in a beaded shape.

【0016】なお、無端ベルト41が図5に示すような
裏面溝構造を有するものでは、反転ローラ42,43ま
たローラ44はその周面に等ピッチで溝が周設されて効
果的な滑り止めを図っている。また、上記円筒部材や平
板から構成される無端ベルト41にあって、幅方向両側
にスプロケットを形成し、あるいはそのための端部材が
設けられたものでは、この部分で反転ローラ42,43
及びローラ44の周面両端のスプロケットギアと噛み合
うようにして同期を取るようにすればよい。また、無端
ベルト41が下半部を周回するときに、該無端ベルトの
表面を洗浄すべく、例えばジェット水流を噴射する如き
洗浄装置を配設してもよい。あるいは、また、無端ベル
ト41はメッシュ状に形成されたものでもよい。
If the endless belt 41 has a rear surface groove structure as shown in FIG. 5, the reversing rollers 42, 43 and the roller 44 are provided with grooves at equal pitches on their peripheral surfaces to effectively prevent slipping. I am trying to Further, in the endless belt 41 composed of the cylindrical member or the flat plate described above, the sprocket is formed on both sides in the width direction, or the end members for that are provided, the reversing rollers 42, 43 are provided at this portion.
Also, the sprocket gears at both ends of the peripheral surface of the roller 44 may be engaged with each other so as to be synchronized with each other. Further, when the endless belt 41 goes around the lower half portion, a cleaning device for injecting a jet water stream may be provided to clean the surface of the endless belt. Alternatively, the endless belt 41 may be formed in a mesh shape.

【0017】45は無端ベルト41に周回回転力を与え
るためのモータ等のコンベア駆動源で、同期ベルト45
aにより、例えば反転ローラ43を同期回転させるよう
に結合されている。46は入口31側の下方位置に配置
され、洗浄等によって濡れた無端ベルト41を乾燥させ
る温風吹き付け乃至は送風吹き付けのための送風器であ
る。
Reference numeral 45 denotes a conveyor drive source such as a motor for applying a revolving rotational force to the endless belt 41.
By a, for example, the reversing roller 43 is coupled so as to rotate synchronously. An air blower 46 is arranged at a lower position on the inlet 31 side and blows warm air or blows air to dry the endless belt 41 wet by cleaning or the like.

【0018】高周波部5〜7は同一構成を有してなるも
のである。ここで、高周波部5について、その構造を説
明すると、図3に示すように解凍部30の後部に電源部
を収納する筐体50が配設され、かつ、図2に示すよう
に対向配設された平板状の上部電極55aと下部電極5
5bを有するとともに、上部電極55aを昇降可能にす
る昇降機構56を備えている。各電極55a,55bに
は上記筐体50内の電源部から電力が供給されるように
なっている。下部電極55bは、その下面に立設された
所要本数の絶縁性支持部材155bを介して解凍部30
の下フレーム35等に連結されて、解凍室33の下方適
所で水平に支持固定されている。また、支持部材155
bの内の中央の1本は、例えば筒状に形成されており、
その筒内に配線を施すことで、下部電極55bに高周波
が供給可能になされている。あるいは、単に、この支持
部材155bに沿うようにして配線してもよい。
The high frequency parts 5 to 7 have the same structure. Here, the structure of the high-frequency unit 5 will be described. As shown in FIG. 3, a casing 50 for accommodating a power supply unit is provided at the rear of the defrosting unit 30, and as shown in FIG. Flat plate-shaped upper electrode 55a and lower electrode 5
In addition to having 5b, it is provided with an elevating mechanism 56 capable of elevating the upper electrode 55a. Electric power is supplied to each of the electrodes 55a and 55b from a power source unit inside the housing 50. The lower electrode 55b is provided with a required number of insulative support members 155b that are erected on the lower surface of the lower electrode 55b, and the defrosting unit 30 is provided.
It is connected to the lower frame 35 and the like and is horizontally supported and fixed at a proper place below the thawing chamber 33. In addition, the support member 155
One in the center of b is formed in a tubular shape, for example,
By providing wiring inside the cylinder, a high frequency can be supplied to the lower electrode 55b. Alternatively, wiring may be simply performed along the supporting member 155b.

【0019】なお、相隣合う対向電極55a,55bと
対向電極65a,65b及び対向電極65a,65bと
対向電極75a,75bとの離間距離は、それぞれの対
向電極への供給電力や間欠駆動時の位相が相違する場合
があることを考慮し、これにより生ずる電界分布の乱れ
に伴う不均一加熱を構造的に防止すべく、好ましくは各
対向電極の対向距離程度あるいはそれ以上に設定されて
いる。
The distances between the opposing electrodes 55a and 55b, the opposing electrodes 65a and 65b, and the opposing electrodes 65a and 65b, and the opposing electrodes 75a and 75b, which are adjacent to each other, are determined by the power supply to the opposing electrodes and the intermittent driving. Considering that the phases may be different from each other, the distance is preferably set to about the opposing distance of each opposing electrode or more in order to structurally prevent the non-uniform heating due to the disturbance of the electric field distribution.

【0020】上記無端ベルト41は、図5に示すように
下部電極55bの上面から僅かに離間した位置を対向す
るようにして出口32側に向けて移動するようになされ
ている。上部電極55aはその上面に立設された所要本
数の絶縁性支持部材155aを介して昇降機構56の支
持板56eに結合されている。
As shown in FIG. 5, the endless belt 41 moves toward the outlet 32 side so that the positions slightly separated from the upper surface of the lower electrode 55b face each other. The upper electrode 55a is coupled to the support plate 56e of the elevating mechanism 56 via a required number of insulating support members 155a provided on the upper surface of the upper electrode 55a.

【0021】昇降機構56は、上フレーム34に取り付
けられており、昇降モータ56a、この昇降モータ56
aの出力軸56bの回転運動を直線運動に変換する左右
一対のウォームギア部56c,56c及びウォームギア
部56c,56cで出力軸56bと噛合され、下端が支
持板56eに連結された一対の昇降軸56d,56dを
備えている。昇降モータ56aが回転駆動されると、そ
の回転量、方向に応じて昇降軸56d,56dの上フレ
ーム34からの高さ位置が変更され、これにより上部電
極55aが一体的かつ安定水平姿勢を維持しつつ昇降さ
れるようになっている。
The elevating mechanism 56 is attached to the upper frame 34 and includes an elevating motor 56a and the elevating motor 56.
a, a pair of left and right worm gear portions 56c, 56c for converting the rotational movement of the output shaft 56b into a linear movement, and a pair of lifting shafts 56d meshed with the output shaft 56b by the worm gear portions 56c, 56c and having their lower ends connected to the support plate 56e. , 56d. When the elevating motor 56a is driven to rotate, the height position of the elevating shafts 56d and 56d from the upper frame 34 is changed in accordance with the rotation amount and direction, whereby the upper electrode 55a maintains an integral and stable horizontal posture. It is designed to be lifted up and down.

【0022】なお、解凍部30の正面であって、高周波
部5,6,7の各対向電極位置には解凍室33内が見え
るように、窓36がそれぞれ形成されており、解凍状態
の監視が行えるようになされている。
A window 36 is formed on the front surface of the thawing unit 30 so that the inside of the thawing chamber 33 can be seen at each counter electrode position of the high frequency units 5, 6 and 7, and the thawing state can be monitored. It is designed to be able to.

【0023】図5は、解凍食品等の被解凍物Fと対向電
極55a,55b及び無端ベルト41との位置関係を示
す図で、図(a)は斜視図、図(b)は図(a)のA−
A断面図ある。
FIGS. 5A and 5B are views showing the positional relationship between the object F to be thawed such as thawed food, the counter electrodes 55a and 55b, and the endless belt 41. FIG. 5A is a perspective view and FIG. ) A-
FIG.

【0024】無端ベルト41上に2列にして載置された
被解凍物Fは、無端ベルト41の移動とともに搬送さ
れ、対向電極55a,55b間に位置する期間だけ高周
波を照射されて加熱解凍される。対向電極55a,55
bは被解凍物Fの載置寸法に比して多少大きい幅及び長
さ寸法のものが採用され、被解凍物F内部に均一に電界
が分布するようにしている。また、無端ベルト41の幅
を対向電極55a,55bの幅寸法より少なくとも広く
設定すれば、無端ベルト41の両端に図略のガイドレー
ル等の配設が可能となり、これにより対向電極55a,
55b位置での無端ベルト41の僅かな下方撓みも防止
できて被解凍物Fと対向電極55a,55bとの平行と
等距離が保持可能になるとともに、無端ベルト41のス
ムーズな移動が可能となる。なお、下部電極55bの
(無端ベルト41の移動方向)前後で、かつ同じ高さ位
置に下方撓み防止の、例えばローラの如き低摩擦の支持
板を介設するようにしてもよい。
The objects to be defrosted F placed in two rows on the endless belt 41 are conveyed as the endless belt 41 moves, and are heated and thawed by being irradiated with high frequency for a period between the opposing electrodes 55a and 55b. It Counter electrodes 55a, 55
b has a width and a length that are slightly larger than the mounting dimensions of the object to be defrosted F, and the electric field is evenly distributed inside the object to be defrosted F. If the width of the endless belt 41 is set to be at least wider than the width dimension of the counter electrodes 55a and 55b, it is possible to dispose guide rails or the like (not shown) at both ends of the endless belt 41.
Even a slight downward bending of the endless belt 41 at the position 55b can be prevented, the object F to be defrosted and the counter electrodes 55a and 55b can be kept equidistant from each other, and the endless belt 41 can be smoothly moved. . A low-friction support plate such as a roller that prevents downward deflection may be provided before and after the lower electrode 55b (in the moving direction of the endless belt 41) and at the same height position.

【0025】被解凍物Fの均一な加熱解凍を行うために
は、被解凍物Fの上面と下面とに等強度の電界が印加さ
れることが望ましい。本実施例では、図5(b)に示す
ように、下部電極55bと無端ベルト41の上面、すな
わち被解凍物Fの底面との距離d2は固定されている。
そこで、昇降モータ56aを駆動させて被解凍物Fの上
面と上部電極55aとの距離をd1に設定する。この距
離d1は絶縁物である無端ベルト41の存在を考慮する
とともに、被解凍物Fの円滑搬入を確保する(同種の被
解凍物間での厚み寸法のバラツキに対処)べく設定され
たものである。なお、上部電極55a側にコンベアと等
価な絶縁物を配設して、d1=d2に設定するようにす
ることもできる。また、対向電極55bにも昇降機構を
設けて、被解凍物Fの下面との距離を調整可能にしても
よい。
In order to uniformly heat and defrost the object to be thawed F, it is desirable to apply an electric field of equal strength to the upper surface and the lower surface of the object to be thawed F. In the present embodiment, as shown in FIG. 5B, the distance d2 between the lower electrode 55b and the upper surface of the endless belt 41, that is, the bottom surface of the object F to be defrosted is fixed.
Therefore, the lifting motor 56a is driven to set the distance between the upper surface of the object to be defrosted F and the upper electrode 55a to d1. This distance d1 is set in consideration of the existence of the endless belt 41 which is an insulator, and for ensuring the smooth carry-in of the defrosted object F (to cope with the variation in the thickness dimension between the defrosted objects of the same kind). is there. It is also possible to dispose an insulator equivalent to a conveyor on the side of the upper electrode 55a and set d1 = d2. Further, the counter electrode 55b may also be provided with an elevating mechanism so that the distance to the lower surface of the object to be defrosted F can be adjusted.

【0026】図6は、高周波解凍装置の搬入部の構成を
示す平面図、図7は同搬入部の正面図である。搬入部8
は被解凍物Fをコンベア部40に自動搬入させるための
もので、第1給送部81と第2給送部82とから構成さ
れている。第1給送部81はコンベア部40に対して直
交する方向に向けられており、第2給送部82はコンベ
ア部40と平行かつ連続するように配設されている。
FIG. 6 is a plan view showing the construction of the carry-in section of the high-frequency defroster, and FIG. 7 is a front view of the carry-in section. Carry-in section 8
Is for automatically loading the object to be defrosted F onto the conveyor section 40, and is composed of a first feeding section 81 and a second feeding section 82. The first feeding section 81 is oriented in a direction orthogonal to the conveyor section 40, and the second feeding section 82 is arranged so as to be parallel and continuous with the conveyor section 40.

【0027】第1給送部81は全体として被解凍物Fの
自重とローラの回転を利用して滑り落ちるように第2給
送部82側に向けて多少の下方への傾斜を有するととも
に該第2給送部82に近い部分がより傾斜されて加速用
として構成され、平行側板811,812間に多数配列
配置されたローラ813からなるコンベアである。ロー
ラ813を水平に配置し、駆動手段により積極的に回転
駆動させるとともに、第2給送部82に近い部分のロー
ラ回転速度(ローラ周速度)を上昇するよう(加速用)
にしてもよい。そして、この第1給送部81の端から順
次配列載置された被解凍物Fが順次第2給送部82に好
適に供給されるようになっている。この第1給送部81
の給送方向の途中、好ましくはほぼ中間位置には被解凍
物Fの種類を検出する種類検出センサ9が設けられてい
る。種類検出センサ9は、被解凍物Fの厚み(高さや
幅、すなわち電極55a,55bの対向方向に対応する
寸法)を検出するもの、容積を検出するもの、あるいは
重量を検出するものでもよい。
The first feeding portion 81 has a slight downward inclination toward the second feeding portion 82 side so as to slide down by utilizing the weight of the object to be defrosted F and the rotation of the roller as a whole. The conveyor is composed of a plurality of rollers 813 arranged in parallel between the parallel side plates 811 and 812. The roller 813 is arranged horizontally, and the driving means actively drives the roller 813 to increase the roller rotation speed (roller peripheral speed) near the second feeding portion 82 (for acceleration).
You may Then, the objects to be defrosted F which are sequentially arranged and mounted from the end of the first feeding section 81 are sequentially and suitably supplied to the second feeding section 82. This first feeding section 81
A type detection sensor 9 for detecting the type of the object to be defrosted F is provided midway in the feeding direction, preferably at a substantially intermediate position. The type detection sensor 9 may be a sensor that detects the thickness (height or width, that is, a dimension corresponding to the facing direction of the electrodes 55a and 55b) of the object to be defrosted F, a sensor that detects the volume, or a sensor that detects the weight.

【0028】厚みを検出するセンサは、給送される被解
凍物Fの上方位置に、給送方向に平行な垂直面内で揺動
可能な作動片と、その基端側に作動片の揺動角を検出す
るポテンショメータとを有してなり、この揺動片が給送
される被解凍物Fの上面に当接して回動する際の回動量
をポテンショメータで電圧に換算して得るようにしたも
のである。幅を検出する場合には、上記構成のセンサを
横向けにすればよい。あるいは、斜め下向に光を発光す
る発光素子と、被解凍物Fの上面で反射して斜め上方に
帰来する光を受光する、発光光と反射光とが形成する面
と同一面内でライン状に配列された受光素子とを有して
なり、反射する高さ位置に応じてどの受光センサが反射
光を受光したかにより該被解凍物Fの厚みを求めるよう
にしてもよい。
The sensor for detecting the thickness includes an actuating piece which is swingable in a vertical plane parallel to the feeding direction above the object to be thawed F to be fed, and a swinging piece of the actuating piece on the base end side thereof. A potentiometer for detecting a moving angle is provided, and the amount of rotation when this rocking piece comes into contact with the upper surface of the object to be defrosted F to be rotated and is rotated is converted into a voltage by the potentiometer and obtained. It was done. When detecting the width, the sensor having the above configuration may be turned sideways. Alternatively, a light emitting element that emits light obliquely downward and a line that receives the light that is reflected on the upper surface of the object to be thawed F and returns obliquely upward are formed in the same plane as the surface formed by the emitted light and the reflected light. The light receiving elements may be arranged in a line, and the thickness of the object to be thawed F may be obtained depending on which light receiving sensor receives the reflected light in accordance with the height position of reflection.

【0029】容積は上記センサを高さ方向及び幅方向の
双方に設けることで(長さ方向の寸法はセンサの検出持
続時間(給送速度は既知))求まる。
The volume can be obtained by providing the sensor in both the height direction and the width direction (the dimension in the length direction is the detection duration of the sensor (the feeding speed is known)).

【0030】重量は、ローラ813の連続する複数本に
対して下方から、円滑給送に支障がない程度に圧縮され
るスプリング等で付勢状態にしておき、被解凍物Fがこ
の上を通過する際にスプリングの圧縮寸法を検出するこ
とで、いわゆる体重計と同様な原理で求めることができ
る。あるいは解凍対象物が基本的に肉であって比重にほ
とんど差異がない場合には、容積に比重を乗算して求め
てもよい。逆に、体積から容積を換算することも可能で
ある。
The weight of the roller 813 is urged from below by a spring or the like, which is compressed to such an extent that smooth feeding is not hindered, and the object to be defrosted F passes therethrough. By detecting the compression size of the spring when performing, it is possible to obtain the same principle as a so-called weight scale. Alternatively, when the object to be thawed is basically meat and there is almost no difference in specific gravity, the volume may be multiplied by the specific gravity. Conversely, it is also possible to convert the volume from the volume.

【0031】また、種類検出センサ9は上記の情報に加
えて材料自体の検出を行うものでもよい。この材料自体
の検出は、例えば、被解凍物を梱包する梱包材表面に予
め表記された材料マーク、例えばコードを自動的に読み
取る磁気的、光学的センサが利用可能である。また、か
かる材料マーク方式を被解凍物Fの厚み、容積、重量情
報の表記にも適用することで、上述の如きセンサに代え
て、マーク読み取りセンサが利用可能であり、読み取っ
た情報から被解凍物Fの厚み、容積、重量等の種類を知
ることができる。
The type detecting sensor 9 may detect the material itself in addition to the above information. For the detection of the material itself, for example, a magnetic or optical sensor that automatically reads a material mark, for example, a code, which is described in advance on the surface of the packaging material for packaging the object to be thawed can be used. Further, by applying the material mark method to the notation of the thickness, volume, and weight information of the object to be defrosted F, a mark reading sensor can be used instead of the sensor as described above, and the object to be defrosted is read from the read information. It is possible to know the type of the object F such as thickness, volume, and weight.

【0032】ストッパ814は第1給送部81の直ぐ下
流側に設けられ、ローラ813間であってその下方から
図略の駆動手段によって昇降可能にされた板状部材で、
給送途中の被解凍物Fの給送を一時的に停止させるもの
である。このストッパ814は、種類検出センサ9が異
なる種類の被解凍物Fの検出をしたとき、先に給送され
ている異種の被解凍物Fが解凍処理され、高周波部5に
よる誘電加熱条件が変更設定されるまでに次の種類の被
解凍物Fが高周波部5に搬入されないようにするための
ものである。より確実のためには、前の異種の被解凍物
Fの最終のものが高周波部5を通過し終わり、かつ誘電
加熱条件の変更設定の時点でストッパ814を解除する
ようにすればよい。
The stopper 814 is a plate-like member which is provided immediately downstream of the first feeding section 81 and which is movable between the rollers 813 and below the roller 813 by a driving means (not shown).
This is to temporarily stop the feeding of the object to be defrosted F during feeding. When the type detection sensor 9 detects different kinds of defrosted objects F, the stopper 814 defrosts the different kinds of defrosted objects F previously fed, and changes the dielectric heating condition by the high frequency unit 5. This is to prevent the next type of object to be defrosted F from being carried into the high-frequency unit 5 before being set. In order to be more certain, the stopper 814 may be released at the time when the last of the different objects to be thawed F of the previous different type has finished passing through the high frequency part 5 and the dielectric heating condition is changed and set.

【0033】このようにして、第2給送部82に給送さ
れた解凍予定の被解凍物Fは所定個数ずつ給送される毎
にコンベア部40側に向けて給送される。すなわち、第
2給送部82は第1給送部と面一の載置テーブル821
を有し、その面上の後端に棒状のプッシャー822を有
する。このプッシャー822は図6の左側をホームポジ
ションとするとともに、例えば正逆転可能なモータ等の
駆動手段823及びこの駆動手段823で周回駆動され
る張架された2連のチェーン824の一部に連結されて
往復動可能にされている。そして、1個あるいは並列給
送されてきた2個乃至は複数個の被解凍物Fをコンベア
部40側に押し出すようにしている。なお、2連のチェ
ーン824間の隙間及びその両側に搬入ローラ825が
設けられており、プッシャー822は被解凍物Fを少な
くともこの搬入ローラ825(搬入ローラ825が回転
駆動されるタイプのとき)まで押し出すようにしてい
る。搬入ローラ825が回転駆動されないタイプであれ
ば、コンベア部40まで押し出せる押出しストロークが
設定されている。この場合には、搬入ローラ825は姿
勢揃えや位置揃えとして作用する。
In this way, the defrosting target F to be defrosted, which has been fed to the second feeding section 82, is fed toward the conveyor section 40 every time a predetermined number of pieces are fed. That is, the second feeding unit 82 has the placement table 821 that is flush with the first feeding unit.
And a rod-shaped pusher 822 at the rear end on the surface. The pusher 822 has the home position on the left side in FIG. 6, and is connected to a driving means 823 such as a motor capable of rotating in the forward and reverse directions and a part of a chain of two chains 824 stretched by the driving means 823. It can be reciprocated. Then, one or two or a plurality of objects to be thawed F that have been fed in parallel are pushed out to the conveyor section 40 side. A carry-in roller 825 is provided in the gap between the two chains 824 and on both sides thereof, and the pusher 822 extends the object F to be defrosted to at least this carry-in roller 825 (when the carry-in roller 825 is of a type driven to rotate). I try to push it out. If the carry-in roller 825 is of a type that is not rotationally driven, an extrusion stroke that allows it to be pushed to the conveyor section 40 is set. In this case, the carry-in roller 825 acts as alignment and alignment.

【0034】図1は、本発明に係る高周波解凍装置の回
路図である。1は本高周波解凍装置の動作を統括的に制
御する制御回路で、操作部2を介して操作者により入力
された操作データを取り込み、あるいは後述するように
テーブルメモリ10からの読み出しデータに基づいて各
部の駆動及び高周波部5〜7への電力供給を制御する。
操作部2は装置の起動及び停止ボタン2a,2b、昇降
モータ56aを正逆回転させるアップ、ダウンボタン2
c、コンベア駆動源45の速度設定用ボタン2d、高周
波部5〜7へのそれぞれの供給電力指示ボタン乃至は調
整ダイヤルである電力設定用部材2eが設けられてい
る。データ入力部3は、例えばキーボード等を備え、制
御回路1内のテーブルメモリ10に所要のデータを書き
込ませるものである。制御部1のテーブルメモリ10に
は、被解凍物の種類と各種類に応じた誘電加熱条件との
関係が記憶されている。テーブルメモリ10の内容は予
め書き込むようにしてもよく、必ずしもデータ入力部3
でデータ入力が行われる必要はない。また、このテーブ
ルメモリ10には、各誘電加熱条件に対応する目安的な
同調点を書き込ませておいてもよい。これらの点につい
ては後述する。
FIG. 1 is a circuit diagram of a high frequency decompressor according to the present invention. Reference numeral 1 is a control circuit for comprehensively controlling the operation of the high-frequency decompressor, which fetches operation data input by an operator through the operation unit 2 or, based on read data from the table memory 10 as described later. The drive of each part and the power supply to the high frequency parts 5 to 7 are controlled.
The operation unit 2 includes start and stop buttons 2a and 2b for the apparatus, and up and down buttons 2 for rotating the lifting motor 56a forward and backward.
c, a speed setting button 2d of the conveyor drive source 45, and a power setting member 2e which is a power supply instruction button or adjustment dial for each of the high frequency units 5 to 7. The data input unit 3 includes, for example, a keyboard and the like, and writes required data in the table memory 10 in the control circuit 1. The table memory 10 of the control unit 1 stores the relationship between the types of objects to be thawed and the dielectric heating conditions according to each type. The contents of the table memory 10 may be written in advance, and the data input unit 3 is not always necessary.
No data entry has to be done in. Further, the table memory 10 may be written with reference tuning points corresponding to respective dielectric heating conditions. These points will be described later.

【0035】高周波部5〜7は、前述したように、対向
電極に高周波を供給するものである。高周波部5の構成
について説明すると、51は電源を供給する電源回路
で、例えば220V商用電源を所要レベルの直流電源に
変換するものである。52は所要レベルの高周波エネル
ギーを発生する自励式の高周波発生回路で、これらによ
り高周波電源部が構成されている。53は高周波発生回
路52と負荷側との整合をとる整合回路で、出力側の回
路との結合を図るための変成器54の他、不図示の整合
用コンデンサ等を有している。変成器54の入力側コイ
ルL1は一端で接地され、一方、負荷側コイルL2の一
端は上部電極55aに、他端は下部電極55bに接続さ
れ、負荷側回路として平衡形回路が採用されている。な
お、高周波部6,7も同様な構成を備えている。
The high frequency sections 5 to 7 supply high frequencies to the counter electrodes as described above. Explaining the configuration of the high frequency unit 5, reference numeral 51 is a power supply circuit for supplying power, which converts, for example, a 220V commercial power supply into a DC power supply of a required level. Reference numeral 52 denotes a self-excited high-frequency generator circuit that generates a required level of high-frequency energy, which constitutes a high-frequency power supply section. 53 is a matching circuit for matching the high frequency generation circuit 52 and the load side, and has a transformer 54 for coupling with the output side circuit, a matching capacitor and the like not shown. The input side coil L1 of the transformer 54 is grounded at one end, while one end of the load side coil L2 is connected to the upper electrode 55a and the other end is connected to the lower electrode 55b, and a balanced circuit is adopted as the load side circuit. . The high frequency units 6 and 7 have the same configuration.

【0036】制御回路1のテーブルメモリ10には、被
解凍物の種類(厚み(高さか幅)、容積、重量、材料等
の要素)毎に誘電加熱条件(電極間距離、コンベア速
度、供給電力レベル)が対応して書き込まれている。対
応する誘電加熱条件は、被解凍物の各種類毎に予め解凍
実験等を行って決定されているものである。なお、誘電
加熱は対向電極間に介在される被解凍物の大きさの内、
特に電極間方向の寸法により大きく左右される。従っ
て、被解凍物の種類の要素として厚みを採用し、誘電加
熱の条件として電極間距離を採用するようにしたもので
も充分に対応し得る。この場合、種類検出センサ9で被
解凍物の厚みが検出されると、制御回路1はテーブルメ
モリ10から、今回検出した厚みに対応して記憶されて
いる電極間距離データを読み出し、現距離と新たに設定
すべき距離とから昇降方向及び昇降量を求めて、あるい
は一旦最上(基準)位置に戻してから電極間距離に対応
する下降量だけ昇降モータ56a(66a,76aも同
様)に駆動信号を出力するようにしている。
The table memory 10 of the control circuit 1 stores dielectric heating conditions (distance between electrodes, conveyor speed, power supply) for each type (thickness (height or width), volume, weight, material, etc.) of the object to be defrosted. Level) is written correspondingly. Corresponding dielectric heating conditions are determined in advance by performing a thawing experiment or the like for each type of object to be thawed. Dielectric heating is the size of the object to be thawed that is interposed between the opposing electrodes.
Especially, it is greatly influenced by the dimension in the direction between the electrodes. Therefore, the thickness can be adopted as an element of the type of the object to be thawed, and the distance between the electrodes can be adopted as the condition of the dielectric heating. In this case, when the thickness of the object to be defrosted is detected by the type detection sensor 9, the control circuit 1 reads out the inter-electrode distance data stored corresponding to the thickness detected this time from the table memory 10 to determine the current distance. The vertical direction and the vertical movement amount are obtained from the distance to be newly set, or the driving signal is sent to the vertical movement motor 56a (66a and 76a are the same) by the lowering amount corresponding to the inter-electrode distance after returning to the uppermost (reference) position once. Is output.

【0037】また、要素として容積が採用されるとき
は、被解凍物の形状の点から厚みと同様に考えられるこ
とから電極間距離の変更設定を行わせればよい。要素と
して重量が採用されるときは、解凍に適した単位当たり
の電力が予め知られていることから、そのデータを利用
して設定された、重量に応じた供給電力に変更設定し、
あるいはコンベア駆動源45を用いてコンベア速度を変
更設定してもよい。要素として材料が採用されるとき
は、解凍に適した単位当たりの電力が予め分かっている
ので、電極間距離、供給電力あるいはコンベア速度を変
更設定すればよい。
Further, when the volume is adopted as the element, it can be considered that it is similar to the thickness from the viewpoint of the shape of the object to be defrosted, and therefore the distance between the electrodes may be changed and set. When weight is adopted as an element, since the electric power per unit suitable for thawing is known in advance, it is set using the data, and is changed and set to the supplied electric power according to the weight,
Alternatively, the conveyor drive source 45 may be used to change and set the conveyor speed. When the material is adopted as the element, the electric power per unit suitable for thawing is known in advance, and therefore the distance between the electrodes, the supplied electric power or the conveyor speed may be changed and set.

【0038】電力の供給は連続あるいは間欠駆動によっ
て、それぞれ供給電力の設定が可能である。例えば間欠
的に高周波を供給する場合、駆動時間を長短し、あるい
は休止時間を短長し、あるいは双方を調整することで、
平均電力レベルの設定が可能となる。また、間欠駆動で
は、駆動期間に与えられた熱が、休止期間に拡散するこ
ととなるので、その分、温度分布の均一化、すなわち均
一加熱が行われるという利点がある。
The power supply can be set continuously or by intermittent drive. For example, when supplying a high frequency intermittently, by shortening the driving time, shortening the dwell time, or adjusting both,
The average power level can be set. Further, in the intermittent driving, the heat given during the driving period diffuses during the rest period, so that there is an advantage that the temperature distribution is made uniform, that is, uniform heating is performed.

【0039】次に、各誘電加熱条件に対する同調点の制
御について、図8に示す各誘電加熱条件に対応する同調
波形を用いて説明する。電極間に介在される被解凍物F
の種類により電極間距離を変更する場合、電極部分が持
つ容量成分がそれに応じて変化することとなるため、被
解凍物の種類毎に再同調を行うために整合回路53で自
動同調(オートマッチング)が行われる。
Next, the control of the tuning point for each dielectric heating condition will be described using the tuning waveform corresponding to each dielectric heating condition shown in FIG. Thawed material F interposed between electrodes
When the distance between the electrodes is changed depending on the type, the capacitance component of the electrode portion changes accordingly. Therefore, in order to perform retuning for each type of the defrosted object, the matching circuit 53 performs automatic tuning (auto matching). ) Is done.

【0040】図8において、共振点fc1やfc2の付近
は感度が敏感過ぎるため、同調制御としてはリニア性を
備えた傾斜部分が利用される。そして、各誘電加熱条件
下での負荷電流Ipは図略の電力計等によりこのときの
電力が電流値等に基づいて計測され、制御回路1で監視
されている。被解凍物の種類に応じて電極間距離が変更
され、これに基づいて同調点を変更制御する場合、一旦
同調が完全にずれた初期点(例えば図8における各曲線
の左端)から同調点fpに近づける自動同調制御を行う
と同調するまでに長時間を要し、次の異種の被解凍物の
高周波部5への搬入がその分だけ余計に待機させられる
(遅れる)こととなって解凍作業の効率上で好ましくな
い。
In FIG. 8, the sensitivity is too sensitive in the vicinity of the resonance points fc 1 and fc 2 , and therefore, an inclined portion having linearity is used for tuning control. The load current Ip under each dielectric heating condition is measured by a power meter (not shown) or the like at this time based on the current value or the like, and is monitored by the control circuit 1. When the distance between the electrodes is changed according to the type of the object to be defrosted and the tuning point is changed and controlled based on this, the tuning point fp is adjusted from the initial point (for example, the left end of each curve in FIG. 8) once the tuning is completely deviated. If you perform automatic tuning control to get closer to, it will take a long time to synchronize, and the next loading of the different kinds of defrosted objects to the high-frequency section 5 will be made to wait an additional amount (delay), and the defrosting work Is not preferable in terms of efficiency.

【0041】そこで、被解凍物の種類毎に、予め実験的
に求めた好ましい同調点を目安周波数として、各誘電加
熱条件毎に例えばfp1,fp2,……のようにテーブル
メモリ10に書き込ませておき、電極間距離の変更設定
が指示される毎に、整合回路53はその変更された電極
間距離に対応した同調点をテーブルメモリ10から読み
出して、この同調点の周波数で整合回路53を立ち上げ
させれば、設定された目安周波数から実際の同調周波数
に自動同調されるまでの時間を著しく短縮することが可
能となり、これにより次の被解凍物の搬入を迅速化する
ことができる。
Therefore, for each type of object to be defrosted, a preferable tuning point experimentally obtained in advance is used as a reference frequency, and is written in the table memory 10 for each dielectric heating condition, for example, fp 1 , fp 2 ,. Every time the change setting of the inter-electrode distance is instructed, the matching circuit 53 reads the tuning point corresponding to the changed inter-electrode distance from the table memory 10, and the matching circuit 53 at the frequency of this tuning point. By starting up, it is possible to significantly shorten the time from the set reference frequency to the automatic tuning to the actual tuning frequency, which can speed up the loading of the next object to be defrosted. .

【0042】続いて、解凍中における誘電加熱条件の変
更設定動作について説明する。なお、説明の便宜上、被
解凍物の種類の要素を厚みとし、誘電加熱条件は電極間
距離とする。先ず、起動ボタン2aが操作され、第1給
送部81に載置された所要個数(一群)の被解凍物Fの
厚みが、その給送中に種類検出センサ9で検出される
と、その厚みに応じた電極間距離が昇降モータ56a,
66a,76aで設定される。続いて、被解凍物Fが第
2給送部82を経て高周波部5〜7へ向けて、設定され
たコンベア速度で搬入される。
Next, the operation of changing and setting the dielectric heating condition during the thawing will be described. For convenience of explanation, the element of the type of the thawed material is the thickness, and the dielectric heating condition is the distance between the electrodes. First, when the activation button 2a is operated and the thickness of the required number (a group) of the objects to be thawed F placed on the first feeding section 81 is detected by the type detection sensor 9 during the feeding, The distance between the electrodes depending on the thickness is the lifting motor 56a,
It is set by 66a and 76a. Then, the object F to be defrosted is carried in through the second feeding section 82 toward the high frequency sections 5 to 7 at the set conveyor speed.

【0043】なお、上記において、被解凍物はそれぞれ
所要の大きさ毎にパック等されており(煮え汁の滴り防
止)、通常、同種の被解凍物は同一の大きさに形成され
ている。従って、これら各被解凍物の複数種類を用い
て、例えばハンバーグを解凍準備する場合、ハンバーグ
の生産量に応じた量ずつ(パック個数ずつ)それぞれの
種類の被解凍物を解凍する必要がある。この場合、解凍
処理は各被解凍物の必要パック数ずつまとめて行われ、
同種類の解凍物が一群として処理される。
In the above, the items to be thawed are packed in a required size (prevention of dripping of boiling juice), and the items to be thawed of the same kind are usually formed in the same size. Therefore, for example, when preparing a hamburger by using a plurality of kinds of these thawed objects, it is necessary to thaw each kind of thawed object by the amount (each pack) corresponding to the production amount of the hamburger. In this case, the decompression process is performed collectively for each required pack of decompressed items.
Thawed products of the same type are processed as a group.

【0044】被解凍物Fが高周波部5の対向電極55
a,55bまで進んでくると、その先端側から順次加熱
され、更に全体が加熱されていく。この後、被解凍物F
が対向電極55a,55bを通過するまで加熱が継続さ
れる。被解凍物Fは続いて、2段目の高周波部6の対向
電極65a,65bで加熱され、更に、3段目の高周波
部7の対向電極75a,75bで加熱された後、出口3
2から搬出される。このようにして最初の一群の被解凍
物Fに対する解凍処理が進行している間に、第1給送部
に、次に解凍予定の一群の被解凍物Fが載置され、同様
に種類検出センサ9でその種類の検出が行われる。
The object F to be defrosted is the counter electrode 55 of the high frequency section 5.
When it reaches a and 55b, it is heated sequentially from the tip side, and the whole is further heated. After this, the defrosted product F
Is continued to be heated until it passes through the counter electrodes 55a and 55b. The object to be thawed F is subsequently heated by the counter electrodes 65a, 65b of the second-stage high-frequency section 6 and further heated by the counter electrodes 75a, 75b of the third-stage high-frequency section 7, and then the outlet 3
It is carried out from 2. In this way, while the thawing process for the first group of objects to be thawed F is in progress, a group of objects to be thawed F to be defrosted next is placed on the first feeding unit, and the type detection is performed similarly. The type of detection is performed by the sensor 9.

【0045】検出の結果、現解凍中の被解凍物Fの種類
と今回の種類との異同を判別し、一致するときは誘電加
熱条件は同じなので設定変更は行われない。一方、異な
るときは新たな種類に応じた誘電加熱条件がテーブルメ
モリ10から読み出される。この場合、先の種類の被解
凍物の最終のものが高周波部5を通過し終わった時点
で、昇降モータ56aによって電極間距離の変更設定が
開始される。ストッパ814は次の種類の被解凍物Fを
前の種類の被解凍物Fと分離して、次の種類の被解凍物
が、誘電加熱条件(例えば電極間距離の変更)の変更設
定が完了する前に、高周波部5に搬入されないように待
機処理を行わせるためのものである。従って、ストッパ
814の解除は、先の種類の被解凍物の最終のものが高
周波部5を通過し終わった時点より前、すなわち最終の
ものの通過予定時点と誘電加熱条件の変更設定に要する
時間とから逆算して得られたより早い時点で行わせても
よい。
As a result of the detection, it is determined whether the type of the object F to be thawed is currently the same as the type to be thawed. If they coincide with each other, the dielectric heating conditions are the same and the setting is not changed. On the other hand, when different, the dielectric heating condition according to the new type is read from the table memory 10. In this case, when the last thing to be defrosted of the previous type has passed through the high-frequency section 5, the lifting motor 56a starts changing and setting the inter-electrode distance. The stopper 814 separates the next type of object to be thawed F from the previous type of object to be thawed F, and the next type of object to be thawed completes the change setting of the dielectric heating condition (for example, change of the distance between electrodes). Before carrying out, it is for carrying out a standby process so as not to be carried into the high frequency section 5. Therefore, the stopper 814 is released before the time when the last thing to be thawed of the previous type has finished passing through the high-frequency unit 5, that is, the time when the last thing is to be passed and the time required for changing and setting the dielectric heating conditions. It may be performed at an earlier time point obtained by back calculation from.

【0046】高周波部5の電極間距離の変更が終了する
と、続いて高周波部6に対する電極間距離の変更設定
が、被解凍物Fが高周波部6を通過し終わった時点で行
われ、更にこの後、高周波部7に対して同様に被解凍物
Fが高周波部7を通過し終わった時点で変更設定が行わ
れる。被解凍物Fの各高周波部の通過時点の監視はコン
ベア速度と時間とで行われる。すなわちプッシャー82
2の押出し時点乃至は高周波部5の入口付近適所に設け
られた機械的あるいは光学的な通過センサが被解凍物F
の通過を検出した時点等の基準時点からの経過時間で行
えばよい。あるいは高周波部5〜7のそれぞれの出口に
通過センサを配設して直接的に検出すればタイマが不要
になるとともに、より確実な監視が行える。電力レベル
の変更設定も同様に被解凍物Fがそれぞれの高周波部を
通過する毎に行うことができる。
When the change of the inter-electrode distance of the high-frequency section 5 is completed, the change of the inter-electrode distance for the high-frequency section 6 is set at the time when the object to be thawed F has finished passing through the high-frequency section 6. After that, the change setting is similarly performed on the high frequency section 7 when the object to be defrosted F has finished passing through the high frequency section 7. Monitoring of the time point when the object to be defrosted F passes through each high-frequency part is performed by the conveyor speed and time. That is, the pusher 82
The mechanical or optical passage sensor provided at the time of extrusion of No. 2 or at an appropriate position near the entrance of the high-frequency unit 5 is the object to be defrosted F.
The time elapsed from the reference time point such as the time point at which the passage of is detected is detected. Alternatively, if a passage sensor is provided at each of the outlets of the high frequency units 5 to 7 for direct detection, a timer becomes unnecessary and more reliable monitoring can be performed. Similarly, the power level can be changed and set every time the object to be defrosted F passes through the respective high frequency parts.

【0047】なお、本実施例では3台の高周波部を用い
て説明したが、高周波部の台数は1台でもよいし、2台
以上の所要台数でもよい。
In this embodiment, three high-frequency units are used for description, but the number of high-frequency units may be one, or two or more required units.

【0048】また、本実施例では、種類検出センサ9を
用いて順次搬入される被解凍物の種類を検出するように
したが、例えば前述のハンバーグの場合のように、解凍
準備する食品のための各被解凍物に対し予め決定した順
番で搬入するようにしておけば、種類検出センサ9は前
の被解凍物と今回検出の被解凍物とが異種かどうかの判
別を行うだけで済み、異種であれば、予め設定されてい
る順番に沿って誘電加熱条件を変更設定するようにすれ
ばよい。従って、それぞれの種類を特定する必要がない
分、センサの簡易化が期待できる。
Further, in the present embodiment, the type detection sensor 9 is used to detect the type of the thawed objects to be successively loaded. However, for the food to be thawed as in the case of the hamburger described above, for example. If the items to be thawed are loaded in a predetermined order, the type detection sensor 9 only has to determine whether the previously thawed substance and the thawed substance detected this time are different, If they are of different types, the dielectric heating conditions may be changed and set according to a preset order. Therefore, since it is not necessary to specify each type, simplification of the sensor can be expected.

【0049】更に、解凍準備する食品の種類と量に必要
な種類の被解凍物の量と解凍順番とを予め対応付けてテ
ーブル化しておけば、食品名(例えばハンバーグ)及び
その量を入力設定すれだけで、各被解凍物の搬入に沿っ
て誘電加熱条件を変更設定させるようにすることもでき
る。この場合には、種類検出センサ9として、単に搬入
される各被解凍物の既知のパック個数を確認的にカウン
トするものを用いてもよく、センサの簡易化が同様に期
待できる。
Furthermore, if the amount and the order of defrosting of the type of food required for the type and amount of food to be thawed are associated in advance in a table, the food name (for example, hamburger) and its amount are input and set. It is also possible to change and set the dielectric heating conditions along with the loading of each object to be defrosted by simply sliding. In this case, as the type detection sensor 9, a type that simply counts the known number of packs of each decompressed object to be carried in may be used, and simplification of the sensor can be similarly expected.

【0050】[0050]

【発明の効果】以上説明したように、本発明によれば、
対向電極に向けて被解凍物を給送する給送手段と、この
給送手段の途中に配置され、被解凍物の種類を検出する
種類検出手段と、被解凍物の種類と誘電加熱条件とを対
応して記憶する記憶手段と、解凍部に対して誘電加熱条
件を設定する条件設定手段と、上記解凍部が上記種類検
出手段で検出された被解凍物の種類に対応する誘電加熱
条件となるように上記条件設定手段を作動させる制御手
段とを備えたので、被解凍物の種類に応じて誘電加熱条
件が自動的に設定され、これによって種々の被解凍物に
対しても常に好適な条件下で解凍を可能にすることがで
きる。
As described above, according to the present invention,
Feeding means for feeding the object to be thawed toward the counter electrode, type detecting means arranged in the middle of the feeding means to detect the type of the object to be thawed, type of the object to be thawed and dielectric heating conditions And a condition setting means for setting a dielectric heating condition for the defrosting unit, and a dielectric heating condition corresponding to the type of the defrosted object detected by the type detecting unit by the defrosting unit. Therefore, the dielectric heating condition is automatically set according to the type of the thawed object, and the control means for operating the condition setting means is provided, which is always suitable for various thawed objects. It can allow thawing under conditions.

【0051】請求項2記載の発明によれば、被解凍物の
種類は被解凍物の厚みとし、種類検出手段は被解凍物の
厚みを検出するセンサで、誘電加熱条件も電極間距離の
変更のみで済むので条件変更設定のために構成の簡素化
を図ることができる。
According to the second aspect of the present invention, the type of the thawed object is the thickness of the thawed object, the type detecting means is a sensor for detecting the thickness of the thawed object, and the dielectric heating condition is also the change of the distance between the electrodes. Since only this is required, the configuration can be simplified for the condition change setting.

【0052】請求項3記載の発明によれば、少なくとも
2個並設された対向電極間を通過中の被解凍物が該対向
電極間を通過し終わる毎に上記条件設定手段を作動させ
て電極間距離を変更設定させるように構成したので、解
凍作業効率の向上を図ることができる。
According to the third aspect of the invention, each time the object to be thawed passing between at least two counter electrodes arranged side by side has finished passing between the counter electrodes, the condition setting means is operated to operate the electrodes. Since the distance is changed and set, the defrosting work efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る高周波解凍装置の回路図である。FIG. 1 is a circuit diagram of a high-frequency decompression device according to the present invention.

【図2】本発明に係る高周波解凍装置の一例を示す一部
破断正面図である。
FIG. 2 is a partially cutaway front view showing an example of the high-frequency defrosting device according to the present invention.

【図3】本発明に係る高周波解凍装置の一例を示す平面
図である。
FIG. 3 is a plan view showing an example of a high-frequency decompression device according to the present invention.

【図4】本発明に係る高周波解凍装置の一例を示す右側
面図である。
FIG. 4 is a right side view showing an example of the high-frequency defrosting device according to the present invention.

【図5】被解凍物と対向電極及び無端ベルトとの位置関
係を示す図で、図(a)は斜視図、図(b)は図(a)
のA−A断面図ある。
5A and 5B are views showing the positional relationship between the object to be defrosted, the counter electrode and the endless belt, FIG. 5A being a perspective view and FIG.
FIG.

【図6】高周波解凍装置の搬入部の構成を示す平面図で
ある。
FIG. 6 is a plan view showing a configuration of a carry-in section of the high-frequency defroster.

【図7】高周波解凍装置の搬入部の構成を示す正面図で
ある。
FIG. 7 is a front view showing a configuration of a carry-in unit of the high-frequency defroster.

【図8】各誘電加熱条件に対応する同調波形を示す図で
ある。
FIG. 8 is a diagram showing a tuning waveform corresponding to each dielectric heating condition.

【符号の説明】[Explanation of symbols]

1 制御回路(制御手段) 5,6,7 高周波部 8 給送部 81 第1給送部(給送手段) 82 第2給送部(給送手段) 9 種類検出センサ(種類検出手段) 10 テーブルメモリ(記憶手段) 30 解凍部 40 コンベア部 45 コンベア駆動源(条件設定手段) 51,61,71 電源回路(条件設定手段) 52,62,72 高周波発振回路 53,63,73 整合回路 54,64,74 変成器 55a,65a,75a 上部電極 55b,65b,75b 下部電極 56,66,76 昇降機構(条件設定手段) F 被解凍物 1 Control Circuit (Control Means) 5, 6, 7 High Frequency Section 8 Feeding Section 81 First Feeding Section (Feeding Means) 82 Second Feeding Section (Feeding Means) 9 Type Detection Sensor (Type Detecting Means) 10 Table memory (storage means) 30 defrosting section 40 conveyor section 45 conveyor drive source (condition setting means) 51, 61, 71 power supply circuit (condition setting means) 52, 62, 72 high frequency oscillation circuit 53, 63, 73 matching circuit 54, 64,74 Transformers 55a, 65a, 75a Upper electrodes 55b, 65b, 75b Lower electrodes 56, 66, 76 Lifting mechanism (condition setting means) F Thawed material

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高周波電力が供給される対向電極間を搬
送される被解凍物に対して誘電加熱を行う解凍部を有す
る高周波解凍装置において、上記対向電極に向けて被解
凍物を給送する給送手段と、この給送手段の途中に配置
され、被解凍物の種類を検出する種類検出手段と、被解
凍物の種類と誘電加熱条件とを対応して記憶する記憶手
段と、上記解凍部に対して誘電加熱条件を設定する条件
設定手段と、上記解凍部が上記種類検出手段で検出され
た被解凍物の種類に対応する誘電加熱条件となるように
上記条件設定手段を作動させる制御手段とを備えたこと
を特徴とする高周波解凍装置。
1. A high-frequency defrosting apparatus having a defrosting unit for performing dielectric heating on an object to be defrosted conveyed between opposed electrodes to which high-frequency power is supplied, wherein the object to be defrosted is fed toward the counter electrode. A feeding means, a type detecting means arranged in the middle of the feeding means, for detecting the type of the defrosted object, a storage means for storing the type of the defrosted object and the dielectric heating condition in association with each other, Setting means for setting a dielectric heating condition for a part and a control for operating the condition setting means so that the defrosting part has a dielectric heating condition corresponding to the type of the object to be defrosted detected by the type detecting means. And a high-frequency defrosting device.
【請求項2】 上記被解凍物の種類は被解凍物の厚みで
あり、上記種類検出手段は被解凍物の厚みを検出するセ
ンサであり、上記条件設定手段は対向電極の電極間距離
を設定するものであることを特徴とする請求項1記載の
高周波解凍装置。
2. The type of the object to be thawed is the thickness of the object to be thawed, the type detecting means is a sensor for detecting the thickness of the object to be thawed, and the condition setting means sets the inter-electrode distance of the counter electrodes. The high frequency defrosting device according to claim 1, wherein
【請求項3】 上記対向電極は被解凍物の通過方向に少
なくとも2個並設されてなるものであり、上記条件設定
手段は上記各対向電極に対して電極間距離を変更設定す
るものであり、上記制御手段は上記種類検出手段が異な
る厚みの被解凍物を検出したときは、対向電極間を通過
中の被解凍物が該対向電極間を通過し終わる毎に上記条
件設定手段を作動させて電極間距離を変更設定させるよ
うになされているものであることを特徴とする請求項2
記載の高周波解凍装置。
3. The at least two counter electrodes are arranged side by side in the passage direction of the object to be thawed, and the condition setting means changes and sets the inter-electrode distance for each of the counter electrodes. When the type detecting means detects objects to be thawed having different thicknesses, the control means actuates the condition setting means each time the object to be thawed passing between the counter electrodes has finished passing between the counter electrodes. 3. The distance between the electrodes is set to be changed and set.
The described high-frequency defroster.
JP7152095A 1995-03-29 1995-03-29 High frequency thawing equipment Expired - Fee Related JP2905717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7152095A JP2905717B2 (en) 1995-03-29 1995-03-29 High frequency thawing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7152095A JP2905717B2 (en) 1995-03-29 1995-03-29 High frequency thawing equipment

Publications (2)

Publication Number Publication Date
JPH08266257A true JPH08266257A (en) 1996-10-15
JP2905717B2 JP2905717B2 (en) 1999-06-14

Family

ID=13463087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7152095A Expired - Fee Related JP2905717B2 (en) 1995-03-29 1995-03-29 High frequency thawing equipment

Country Status (1)

Country Link
JP (1) JP2905717B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000051450A1 (en) * 1999-03-03 2000-09-08 Yamamoto Vinita Co., Ltd. High-frequency thawing device
KR100528652B1 (en) * 2001-01-26 2005-11-15 니혼하이콤 가부시키가이샤 Apparatus and method for thawing using the micro wave
US7470878B2 (en) 2005-12-21 2008-12-30 Yamamoto Vinita Co., Ltd. High-frequency thawing apparatus and thawing method with electrodes
WO2015107100A1 (en) * 2014-01-16 2015-07-23 Gea Food Solutions Bakel B.V. Measurement of dielectric properties during thawing or freezing of a food product
KR20180110263A (en) * 2017-03-27 2018-10-10 서울대학교산학협력단 Pulse ohmic heating apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000051450A1 (en) * 1999-03-03 2000-09-08 Yamamoto Vinita Co., Ltd. High-frequency thawing device
KR100528652B1 (en) * 2001-01-26 2005-11-15 니혼하이콤 가부시키가이샤 Apparatus and method for thawing using the micro wave
US7470878B2 (en) 2005-12-21 2008-12-30 Yamamoto Vinita Co., Ltd. High-frequency thawing apparatus and thawing method with electrodes
WO2015107100A1 (en) * 2014-01-16 2015-07-23 Gea Food Solutions Bakel B.V. Measurement of dielectric properties during thawing or freezing of a food product
CN105916386A (en) * 2014-01-16 2016-08-31 Gea食品策划巴克尔公司 Measurement of dielectric properties during thawing or freezing of a food product
KR20180110263A (en) * 2017-03-27 2018-10-10 서울대학교산학협력단 Pulse ohmic heating apparatus

Also Published As

Publication number Publication date
JP2905717B2 (en) 1999-06-14

Similar Documents

Publication Publication Date Title
US6357343B1 (en) Toaster
US4245613A (en) Tunnel oven
US4421015A (en) Radiant heat cooking apparatus
JP4177963B2 (en) High frequency defroster
US3646880A (en) Cooking grill
FI87878B (en) AUTOMATIC RELEASE FOR USING AV PAO NYTT UPPVAERMD, PORTIONERAD MAT
US4820365A (en) Glass edge sealant curing system
US3448678A (en) Radiant-heat conveyor cooker
US4008996A (en) Multiple tier oven
WO2001058269A1 (en) Baking apparatus and method for baking edible products
JPH08266257A (en) High frequency thawing device
US20210012606A1 (en) Food product storage and vending kiosk
JP2884554B2 (en) High frequency thawing equipment
US3583549A (en) Variable cooling time rack-type cooler
WO2002053000A1 (en) Toaster
JP2002218959A (en) Microwave thawing apparatus and thawing method
KR100475793B1 (en) Microwave dryer
CN114617141B (en) Food industrialization toasts processing smart machine
JP7240727B2 (en) Sprinkled food serving device
CN106781002B (en) Device for continuously heating food
TWI500354B (en) Food cooking oven
JP2022182349A (en) High frequency heating device
EP2273848B1 (en) Apparatus for processing food products
JPS5847504Y2 (en) vending machine
KR200290885Y1 (en) Microwave dryer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees