JPH08265992A - Charging method and positioning unit for charger - Google Patents

Charging method and positioning unit for charger

Info

Publication number
JPH08265992A
JPH08265992A JP7066470A JP6647095A JPH08265992A JP H08265992 A JPH08265992 A JP H08265992A JP 7066470 A JP7066470 A JP 7066470A JP 6647095 A JP6647095 A JP 6647095A JP H08265992 A JPH08265992 A JP H08265992A
Authority
JP
Japan
Prior art keywords
power
power transmission
electromagnetic coil
core
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7066470A
Other languages
Japanese (ja)
Inventor
Taiji Ootachi
泰治 大立
Norimoto Minoshima
紀元 蓑島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP7066470A priority Critical patent/JPH08265992A/en
Priority to US08/621,024 priority patent/US5617003A/en
Publication of JPH08265992A publication Critical patent/JPH08265992A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • B60L53/39Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer with position-responsive activation of primary coils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE: To simplify the charging operation regardless of the operating technique of vehicle. CONSTITUTION: A positioning unit 7 installed in a garage 5 is fixed with a power transmission coupler 6 and can move in X, Y, Z directions. The transmission coupler 6 is connected with a power supply 15 feeding a charging current or checking current for the battery in an electric automobile 1 parked in the garage 5. The electric automobile 1 is provided with a power receiving coupler 2. When the electric automobile 1 is parked in the garage 5, the transmission coupler 6 is shifted by the positioning unit 7 and abuts against the power receiving coupler 2. In this regard, a check current is fed from the power supply 15 to the transmission coupler 6 and a controller positions the transmission coupler 6 oppositely to the X-direction based on the variation in the check current.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、充電装置の充電方法及
び充電装置の位置決め装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging method for a charging device and a positioning device for the charging device.

【0002】[0002]

【従来の技術】充電装置は、電気自動車にとって必要不
可欠なものであり、充電装置を広く普及させることは電
気自動車の普及につながることから、より扱い易い充電
装置が望まれている。
2. Description of the Related Art A charging device is indispensable to an electric vehicle, and widespread use of the charging device leads to widespread use of the electric vehicle. Therefore, a charging device that is easier to handle is desired.

【0003】従来、充電装置についてより扱い易くする
ための技術が、例えば特開昭63−87136号公報、
特開平3−155338号公報及び実開平1−7934
3号公報等によって種々提案されている。
Conventionally, a technique for making a charging device easier to handle is disclosed in, for example, Japanese Patent Laid-Open No. 63-87136.
JP-A-3-155338 and Japanese Utility Model Laid-Open No. 1-7934.
Various proposals have been made according to the publication No. 3 and the like.

【0004】特開昭63−87136号公報に記載され
ている充電装置は、ガレージ等に設けられた予め決めら
れた位置に車止めを設置し、車両タイヤをその車止めに
当接させる。この車止めの当接は、車両側の受電用電磁
コイルとガレージの床に設置した送電用電磁コイルとを
正対させることを意味する。そして、車をバックさせて
車両タイヤがその車止めに当接させたとき、その状態を
検出装置が検出し、その検出結果に基づいて自動的に充
電装置を駆動させるものである。即ち、運転者は充電装
置の充電のためのコネクタを自動車側のコネクタに接続
する手間は無くなる。
In the charging device described in Japanese Patent Laid-Open No. 63-87136, a car stop is installed at a predetermined position provided in a garage or the like, and a vehicle tire is brought into contact with the car stop. The abutment of the car stop means that the power receiving electromagnetic coil on the vehicle side and the power transmitting electromagnetic coil installed on the floor of the garage face each other. Then, when the vehicle is backed and the vehicle tire is brought into contact with the car stop, the state is detected by the detection device, and the charging device is automatically driven based on the detection result. That is, the driver does not have to connect the connector for charging the charging device to the connector on the automobile side.

【0005】又、特開平3−155338号公報に記載
された充電装置は、地上側に電磁コイルを巻回した磁性
体を設置し、自動車側に同じく電磁コイルを巻回した磁
性体を設置する。そして、自動車に設置した磁性体を地
上側磁性体に当接するように自動車を運転する。両磁性
体が互いに当接すると、その当接したことを検出器が検
知する。この検出結果に基づいて充電装置は、地上側に
磁性体に巻回した電磁コイルに電流を流し、充電動作を
開始する。この場合にも、運転者は充電装置の充電のた
めのコネクタを自動車側のコネクタに接続する手間は無
くなる。
In the charging device described in Japanese Patent Laid-Open No. 3-155338, a magnetic body around which an electromagnetic coil is wound is installed on the ground side, and a magnetic body around which the electromagnetic coil is wound is installed on the automobile side. . Then, the automobile is driven so that the magnetic substance installed in the automobile comes into contact with the magnetic substance on the ground side. When both magnetic bodies come into contact with each other, the detector detects the contact. Based on this detection result, the charging device causes a current to flow through the electromagnetic coil wound around the magnetic body on the ground side to start the charging operation. Also in this case, the driver does not have to connect the connector for charging the charging device to the connector on the automobile side.

【0006】更に、実開平1−79343号公報に記載
された充電装置は、床面に地上コアコイルを敷設し、車
両の下面に車両用コアコイルの所定位置に止める。自動
車が所定の位置で止まると、予め設置されている近接ス
イッチが充電位置に止まったことを検知する。この検知
結果に基づいて充電装置は、地上コアコイル電流を流
し、充電動作を開始する。この場合にも、運転者は充電
装置の充電のためのコネクタを自動車側のコネクタに接
続する手間は無くなる。
Further, in the charging device disclosed in Japanese Utility Model Laid-Open No. 1-79343, a ground core coil is laid on the floor surface and fixed to a predetermined position of the vehicle core coil on the lower surface of the vehicle. When the vehicle stops at a predetermined position, the proximity switch installed in advance detects that it has stopped at the charging position. Based on this detection result, the charging device causes the ground core coil current to flow and starts the charging operation. Also in this case, the driver does not have to connect the connector for charging the charging device to the connector on the automobile side.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記各
充電装置においては、充電位置、即ち、地上側電磁コイ
ルと車両側電磁コイルとが正対する位置に案内するの
は、運転者がハンドルを操作して車を動かさなければな
らず、充電作業はドライブテクニックが要求され非常に
面倒であった。
However, in each of the above charging devices, the driver operates the steering wheel to guide the charging position, that is, the position where the ground side electromagnetic coil and the vehicle side electromagnetic coil face each other. I had to move the car by using the car, and the charging technique was very troublesome because the driving technique was required.

【0008】しかも、充電位置に到達したか否かの判断
については、検出装置によって行われ、充電装置として
その分だけコスト高になるとともに、検出装置の保守管
理が面倒であった。
In addition, the determination as to whether or not the charging position has been reached is made by the detection device, which increases the cost as a charging device and the maintenance of the detection device is troublesome.

【0009】本発明は上記問題点を解決するためになさ
れたものであって、運転テクニックは要求されず簡単に
充電作業でき、充電のための位置検出装置を別個設ける
ことなく充電位置を決定することができる充電装置の充
電方法及び充電装置の位置決め装置を提供することにあ
る。
The present invention has been made in order to solve the above-mentioned problems. It requires no driving technique, can be easily charged, and determines the charging position without separately providing a position detecting device for charging. It is an object of the present invention to provide a charging method for a charging device and a positioning device for the charging device.

【0010】[0010]

【課題を解決するための手段】上記問題点を解決するた
め、請求項1記載の発明は、送電側電磁コイルに基づい
て誘導起電力を発生させる受電側電磁コイルを巻回した
車両に設置された受電用コアに前記送電側電磁コイルを
巻回した送電用コアを当接させるために、その受電用コ
アの相対位置を誘導起電力による送電側電磁コイル又は
受電側電磁コイルの電力変動を検出しながら前記送電用
コアを移動させた後、その送電側電磁コイルにバッテリ
を充電する充電用電流を流すようにしたことをその要旨
とする。
In order to solve the above problems, the invention according to claim 1 is installed in a vehicle in which a power receiving side electromagnetic coil for generating an induced electromotive force based on the power transmitting side electromagnetic coil is wound. In order to bring the power transmitting core around which the power transmitting electromagnetic coil is wound into contact with the power receiving core, the relative position of the power receiving core is detected to detect the power fluctuation of the power transmitting side electromagnetic coil or the power receiving side electromagnetic coil due to the induced electromotive force. However, the gist of the invention is that after the power transmission core is moved, a charging current for charging the battery is passed through the power transmission side electromagnetic coil.

【0011】請求項2記載の発明は、請求項1記載の発
明において、前記送電用コアは3次元方向に移動可能な
ことをその要旨とする。請求項3記載の発明は、送電側
電磁コイルを巻回した送電用コアが車両に設置した受電
用電磁コイルを巻回した受電用コアに対して当接し、送
電側電磁コイルに充電電流を流し、受電側電磁コイルに
誘導起電力を発生させて車両に搭載したバッテリを充電
する充電装置において、前記送電用コアを往復動させる
移動手段と、前記移動手段の移動時に、前記送電側電磁
コイルに位置検出のための電源を供給する電源供給手段
と、前記電源供給手段からの電源供給に基づき受電側電
磁コイルに生じた誘導起電力による送電側電磁コイル又
は受電側電磁コイルのいずれか一方の電力変動を検出す
る位置検出手段と、前記位置検出手段に基づいて前記送
電用コアを前記受電用コアに対する相対位置が最も近づ
く位置で停止させる移動制御手段とを備えたことをその
要旨とする。
A second aspect of the present invention is characterized in that, in the first aspect, the power transmission core is movable in a three-dimensional direction. According to a third aspect of the present invention, the power transmission core around which the power transmission electromagnetic coil is wound contacts the power reception core around which the power receiving electromagnetic coil installed in the vehicle is wound, and a charging current is passed through the power transmission electromagnetic coil. A charging device for charging a battery mounted on a vehicle by generating an induced electromotive force in a power receiving side electromagnetic coil; moving means for reciprocating the power transmitting core; and the power transmitting side electromagnetic coil when moving the moving means. Power supply means for supplying power for position detection, and power of either the power transmission side electromagnetic coil or the power reception side electromagnetic coil due to the induced electromotive force generated in the power reception side electromagnetic coil based on the power supply from the power supply means. Position detection means for detecting fluctuations, and movement control means for stopping the power transmission core based on the position detection means at a position where the relative position to the power reception core is closest It and its gist.

【0012】請求項4記載の発明は、請求項3記載の発
明において、前記移動手段は、前記送電用コアを第1の
方向に往復動させる第1の移動手段と、前記送電用コア
を前記第1の方向とは異なる第2の方向に往復動させる
第2の移動手段と、前記送電用コアを前記第1及び第2
の方向とは異なる第3の方向に往復動させる第3の移動
手段とからなり、前記第1乃至第3の移動手段のいずれ
か1つの移動手段を特定し、その特定した移動手段を駆
動制御して、前記位置検出手段に基づいて前記送電用コ
アの受電用コアに対する相対位置が最も近づく位置で停
止させる第1の移動制御手段と、前記特定された移動手
段を除く他の2つの移動手段にて前記送電用コアを前記
受電用コアと当接させるようにした第2の移動手段とを
備えたことをその要旨とする。
According to a fourth aspect of the present invention, in the third aspect of the invention, the moving means includes the first moving means for reciprocating the power transmitting core in a first direction and the power transmitting core. A second moving unit that reciprocates in a second direction different from the first direction, and the power transmission core include the first and second moving units.
And a third moving means that reciprocates in a third direction different from the above direction, and specifies any one of the first to third moving means, and drives and controls the specified moving means. Then, based on the position detection means, the first movement control means for stopping the relative position of the power transmission core with respect to the power reception core and the other two movement means excluding the specified movement means. In the second aspect, there is provided a second moving unit configured to bring the power transmission core into contact with the power reception core.

【0013】請求項5記載の発明は、請求項3又は4記
載の発明において、前記位置検出手段は誘導起電力によ
る電力変動として、送電側電磁コイルに流れる電流の変
動を検出することをその要旨とする。
According to a fifth aspect of the present invention, in the invention according to the third or fourth aspect, the position detecting means detects a change in a current flowing through the electromagnetic coil on the power transmitting side as a power change due to an induced electromotive force. And

【0014】[0014]

【作用】従って、請求項1記載の発明によれば、送電側
電磁コイルを巻回した送電用コアを移動させて受動用コ
アに当接させる。この送電側電磁コイルの移動は、誘導
起電力による受電側電磁コイル又は送電側電磁コイルの
電力変動を検出しながら行われ、その電力変動に基づい
て前記送電用コアを移動させて受電用コアに当接させ
る。そして、その送電側電磁コイルにバッテリを充電す
るための充電用電流を流す。
Therefore, according to the first aspect of the present invention, the power transmission core around which the power transmission electromagnetic coil is wound is moved and brought into contact with the passive core. The movement of the power transmission side electromagnetic coil is performed while detecting the power fluctuation of the power reception side electromagnetic coil or the power transmission side electromagnetic coil due to the induced electromotive force, and the power transmission core is moved to the power reception core based on the power fluctuation. Abut. Then, a charging current for charging the battery is passed through the power transmission side electromagnetic coil.

【0015】請求項2記載の発明によれば、送電用コア
は3次元方向に移動して、受電用コアと当接する。請求
項3記載の発明によれば、送電用コアは移動手段によっ
て移動する。この送電用コアの移動時において、送電側
電磁コイルには電源供給手段から位置検出のための電源
が供給され、位置検出手段は受電側電磁コイルに生じた
誘導起電力による送電側電磁コイル又は受電側電磁コイ
ルのいずれか一方の電力変動を検出する。そして、移動
制御手段は位置検出手段に基づいて前記送電用コアを前
記受電用コアに対する相対位置が最も近づく位置で停止
させる。
According to the second aspect of the invention, the power transmission core moves in the three-dimensional direction and comes into contact with the power reception core. According to the invention of claim 3, the power transmission core is moved by the moving means. When the power transmission core is moved, the power transmission side electromagnetic coil is supplied with power for position detection from the power supply means, and the position detection means is the power transmission side electromagnetic coil or the power reception side electromagnetic coil due to the induced electromotive force generated in the power reception side electromagnetic coil. The power fluctuation of either one of the side electromagnetic coils is detected. Then, the movement control means stops the power transmission core based on the position detection means at a position where the relative position to the power reception core is closest.

【0016】請求項4記載の発明によれば、電源供給手
段は、特定した移動手段にて送電用コアが移動している
時、送電側電磁コイルに電源を供給する。位置検出手段
は、特定した移動手段にて移動中の送電用コアと受電用
コアとの相対位置が最も近づく位置を誘導起電力による
送電側電磁コイル又は受電側電磁コイルの電力変動に基
づいて検出する。そして、第1の移動制御手段は位置検
出手段の検出結果から送電用コアを受電用コアに対する
位置が最も近づく位置で停止させる。又、第2の移動制
御手段は、特定された移動手段を除く他の移動手段を制
御して送電用コアを移動させて受電用コアと当接させ
る。
According to the invention of claim 4, the power supply means supplies power to the power transmission side electromagnetic coil when the power transmission core is moving by the specified moving means. The position detection means detects the position where the relative position of the power transmission core and the power reception core moving while moving by the specified movement means comes closest based on the power fluctuation of the power transmission side electromagnetic coil or the power reception side electromagnetic coil due to the induced electromotive force. To do. Then, the first movement control means stops the power transmission core at the position closest to the power reception core based on the detection result of the position detection means. The second movement control means controls the other movement means other than the specified movement means to move the power transmission core and bring it into contact with the power reception core.

【0017】請求項5記載の発明によれば、前記位置検
出手段は誘導起電力による電力変動として、送電側電磁
コイルに流れる電流の変動を検出する。
According to the fifth aspect of the present invention, the position detecting means detects the fluctuation of the current flowing through the electromagnetic coil on the power transmission side as the power fluctuation due to the induced electromotive force.

【0018】[0018]

【実施例】以下、本発明を具体化した一実施例を図1〜
図4に従って説明する。図1,図2に示すように、電気
自動車1の後部には、当該電気自動車1のバッテリを充
電するための車両側充電器の一部を構成する受電用カプ
ラ2が設けられている。この受電用カプラ2には鉄心か
らなる受電用コア3と、受電用コア3に巻回された受電
側電磁コイル4とから構成されている。受電側電磁コイ
ル4は、その巻回されたコイル4の軸心が前後方向に延
びるように形成されている。又、電気自動車1には車両
側無線器B1が搭載されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment embodying the present invention will now be described with reference to FIGS.
It will be described with reference to FIG. As shown in FIGS. 1 and 2, a power receiving coupler 2 that constitutes a part of a vehicle-side charger for charging a battery of the electric vehicle 1 is provided at a rear portion of the electric vehicle 1. The power receiving coupler 2 includes a power receiving core 3 made of an iron core, and a power receiving side electromagnetic coil 4 wound around the power receiving core 3. The power receiving side electromagnetic coil 4 is formed such that the axis of the wound coil 4 extends in the front-rear direction. Further, the electric vehicle 1 is equipped with a vehicle-side wireless device B1.

【0019】この電気自動車1を駐車するガレージ5内
には、地上側充電器を構成する送電用カプラ6と、その
送電用カプラ6を取り付けた位置決め装置7とが設置さ
れている。
Inside the garage 5 for parking the electric vehicle 1, there are installed a power transmission coupler 6 which constitutes a ground charger and a positioning device 7 to which the power transmission coupler 6 is attached.

【0020】位置決め装置7は、ガレージ5の床面に敷
設されたレール8に沿って走行する走行台9と、走行台
9上に立設されたピラー10と、ピラー10に対して上
下動可能に設けられた移動体11と、移動体11に対し
てスライド可能に設けられたスライダ12とから構成さ
れている。
The positioning device 7 is movable along a rail 8 laid on the floor of the garage 5, a pillar 10 standing on the traveling base 9, and vertically movable with respect to the pillar 10. And a slider 12 slidable with respect to the moving body 11.

【0021】レール8は、電気自動車1が駐車する方向
(前後方向)に対して直角な方向(左右方向)に向かっ
て延びている。従って、走行台9は左右方向に向かって
走行するようになっている。移動体11はピラー10に
沿って昇降するようになっている。スライダ12は前後
方向に向かってスライドするようになっている。そして
走行台9は後記する走行モータM1に、移動体11は昇
降モータM2に、スライダ12はスライドモータM3に
基づいてそれぞれ駆動される。そして、このスライダ1
2の先端に前記送電用カプラ6が取り付けられている。
この送電用カプラ6は、送電用コア13と、送電用コア
13に巻回された送電側電磁コイル14とから構成さ
れ、その巻回されたコイル14の軸線は前後方向に延び
るよう形成されている。
The rail 8 extends in a direction (horizontal direction) perpendicular to the parking direction (front-rear direction) of the electric vehicle 1. Therefore, the traveling platform 9 travels in the left-right direction. The moving body 11 is configured to move up and down along the pillar 10. The slider 12 slides in the front-back direction. The traveling platform 9 is driven by a traveling motor M1 described later, the moving body 11 is driven by an elevating motor M2, and the slider 12 is driven by a slide motor M3. And this slider 1
The power transmission coupler 6 is attached to the tip of the wire 2.
The power transmission coupler 6 is composed of a power transmission core 13 and a power transmission side electromagnetic coil 14 wound around the power transmission core 13, and the axis of the wound coil 14 is formed to extend in the front-rear direction. There is.

【0022】この位置決め装置7に隣接する位置には、
地上側充電器を構成する電源装置15及び操作装置16
が設けられている。この電源装置15は送電用カプラ6
に電源を供給するようになっている。操作装置16に
は、位置決め装置7を操作等するための各種スイッチを
備えた操作パネル17及び位置決め装置7の操作状態等
を表示するディスプレイ18が接続されている。即ち、
位置決め装置7は操作パネル17の操作に基づいて制御
される。尚、本実施例では左右方向をX方向、前後方向
をY方向、上下方向をZ方向と定義する。
At a position adjacent to the positioning device 7,
Power supply device 15 and operation device 16 that constitute the ground charger
Is provided. This power supply device 15 is a power transmission coupler 6
It is designed to supply power to. The operation device 16 is connected to an operation panel 17 including various switches for operating the positioning device 7 and a display 18 for displaying an operation state of the positioning device 7. That is,
The positioning device 7 is controlled based on the operation of the operation panel 17. In this embodiment, the left-right direction is defined as the X direction, the front-back direction is defined as the Y direction, and the up-down direction is defined as the Z direction.

【0023】このように構成した位置決め装置7を使用
して、送電用カプラ6を車両側充電器2と正対する位置
に位置決めし、その正対した位置で両カプラ6,2を当
接させることによって充電作業が行われる。正対する位
置とは、送電用カプラ6の送電側電磁コイル14の軸線
と、受電用カプラ2の受電側電磁コイル4の軸線とが一
致した位置であって、これらコイル14,4の軸線を一
致させて送電用コア13及び受電用コア3を当接させた
状態で充電作業が行われる。
By using the positioning device 7 configured as described above, the power transmission coupler 6 is positioned at a position directly facing the vehicle-side charger 2, and both couplers 6, 2 are brought into contact with each other at the directly facing position. The charging work is performed by. The facing position is a position where the axis of the power transmission side electromagnetic coil 14 of the power transmission coupler 6 and the axis of the power receiving side electromagnetic coil 4 of the power receiving coupler 2 match, and the axes of the coils 14 and 4 match. Then, the charging operation is performed in a state where the power transmission core 13 and the power reception core 3 are in contact with each other.

【0024】次に、上記に示す位置決め装置7を制御す
るシステムの電気的構成について説明する。前記操作装
置16には移動制御手段及び第1,第2の移動制御手段
としてのコントローラ21が設けられている。このコン
トローラ21にはメモリ21aが設けられ、コントロー
ラ21はメモリ21aに各種データを記憶できるように
なっている。コントローラ21には、前記操作パネル1
7及びディスプレイ18が接続されている。又、コント
ローラ21には車両側無線器B1と通信可能な地上側無
線器B2が接続されている。又、コントローラ21には
走行モータM1、昇降モータM2、スライドモータM3
が接続されている。即ち、コントローラ21は操作パネ
ル17等の操作に基づいて走行モータM1、昇降モータ
M2、スライドモータM3を駆動制御するようになって
いる。又、コントローラ21には、走行モータM1の回
転角度を検出するエンコーダ22が接続されている。そ
して、コントローラ21はエンコーダ22からの回転角
度を示すカウント信号に基づいて走行台9の走行位置x
を演算するようになっている。
Next, the electrical configuration of the system for controlling the positioning device 7 described above will be described. The operation device 16 is provided with a controller 21 as movement control means and first and second movement control means. The controller 21 is provided with a memory 21a, and the controller 21 can store various data in the memory 21a. The controller 21 includes the operation panel 1
7 and the display 18 are connected. Further, the controller 21 is connected to a ground side wireless device B2 capable of communicating with the vehicle side wireless device B1. Further, the controller 21 includes a traveling motor M1, a lifting motor M2, and a slide motor M3.
Is connected. That is, the controller 21 drives and controls the traveling motor M1, the lifting motor M2, and the slide motor M3 based on the operation of the operation panel 17 or the like. An encoder 22 that detects the rotation angle of the traveling motor M1 is connected to the controller 21. Then, the controller 21 determines the traveling position x of the traveling platform 9 based on the count signal indicating the rotation angle from the encoder 22.
Is calculated.

【0025】又、コントローラ21には電源装置15が
接続されている。そして、電源装置15には送電用カプ
ラ6が接続されている。電源装置15は、送電用カプラ
6の電磁コイル14に充電及び位置検出のための電流を
供給する電源供給手段としての電源回路23、電源回路
23から出力される電流の値を検出する位置検出手段と
しての電流検出回路24、及び、電流検出回路24によ
る電流の検出値に基づいて予め設定された基準値I0
上の電流が電源回路23から出力されているか否かを判
別する判別信号を出力する判別回路25とを備えてい
る。即ち、電流検出回路24は電源回路23に、判別回
路25は電流検出回路24に接続されているとともに、
各電源回路23、電流検出回路24及び判別回路25は
それぞれコントローラ21に接続されている。
A power supply unit 15 is connected to the controller 21. The power transmission coupler 6 is connected to the power supply device 15. The power supply device 15 is a power supply circuit 23 as a power supply means for supplying a current for charging and position detection to the electromagnetic coil 14 of the power transmission coupler 6, and position detection means for detecting the value of the current output from the power supply circuit 23. And a discrimination signal for discriminating whether or not a current having a reference value I 0 or more preset based on the current detection value by the current detection circuit 24 is outputted from the power supply circuit 23. And a discriminating circuit 25 for That is, the current detection circuit 24 is connected to the power supply circuit 23, the discrimination circuit 25 is connected to the current detection circuit 24, and
Each power supply circuit 23, current detection circuit 24, and determination circuit 25 are connected to the controller 21, respectively.

【0026】電源回路23は、車両側充電器を充電する
ための交流電源からなる充電用電流と、車両側充電器2
の位置を識別するために出力する交流電源からなるチェ
ック用電流との2種類の電流を送電用カプラ6の電磁コ
イル14に供給できるようになっている。そして、これ
ら各電源はコントローラ21からの指令信号に基づいて
選択される。
The power supply circuit 23 includes a charging current composed of an AC power supply for charging the vehicle side charger and the vehicle side charger 2.
It is possible to supply two types of currents to the electromagnetic coil 14 of the power transmission coupler 6 such as a check current that is output from an AC power supply for identifying the position of. Then, each of these power supplies is selected based on a command signal from the controller 21.

【0027】電流検出回路24は、図4に示すように電
源回路23から出力される電流の値(電流値)IRMS
検出し、その電流値IRMS を示す信号をコントローラ2
1及び判別回路25に出力するようになっている。判別
回路25はチェック用電流時においてのみ駆動され、電
流検出回路24が検出した電流値IRMS が基準値I0
上である場合にはHレベルの信号を出力し、基準値I0
よりも小さい値である場合にはLレベルの信号を出力す
る。そして、これらH,Lレベルの判別信号はコントロ
ーラ21に出力される。
The current detection circuit 24 detects the current value (current value) I RMS output from the power supply circuit 23 as shown in FIG. 4, and outputs a signal indicating the current value I RMS to the controller 2
1 and the discriminating circuit 25. The determination circuit 25 is driven only at the time of the check current, and when the current value I RMS detected by the current detection circuit 24 is equal to or greater than the reference value I 0 , it outputs an H level signal and the reference value I 0.
If the value is smaller than the above value, an L level signal is output. The H and L level discrimination signals are output to the controller 21.

【0028】次に、上記のように構成した充電装置の作
用及び効果について説明する。図1,図2に示すよう
に、通常、電気自動車1がガレージ5に駐車されると、
電気自動車1の車両側無線器B1はその自動車1を識別
するためのID番号を示すID信号を送信する。する
と、地上側無線器B2はそのID信号を受信し、ID信
号をコントローラ21に出力する。コントローラ21は
そのID信号に基づいてメモリ21aに記憶されたID
番号と比較し、そのID信号を出力した電気自動車1が
予め登録された電気自動車1であるか否かを判断する。
コントローラ21は駐車中の電気自動車1が予め登録さ
れていない電気自動車1である場合には、コントローラ
21は位置決め装置7の駆動を行わない。この時、走行
台9は左端のホームポジション、移動体11は下端ホー
ムポジション及びスライダ12は後端のホームポジショ
ンに位置している。
Next, the operation and effect of the charging device configured as described above will be described. As shown in FIGS. 1 and 2, when the electric vehicle 1 is normally parked in the garage 5,
The vehicle-side wireless device B1 of the electric vehicle 1 transmits an ID signal indicating an ID number for identifying the vehicle 1. Then, the ground side wireless device B2 receives the ID signal and outputs the ID signal to the controller 21. The controller 21 stores the ID stored in the memory 21a based on the ID signal.
It is determined whether or not the electric vehicle 1 that has output the ID signal is a pre-registered electric vehicle 1 by comparing with the number.
If the electric vehicle 1 being parked is the electric vehicle 1 that is not registered in advance, the controller 21 does not drive the positioning device 7. At this time, the traveling platform 9 is at the leftmost home position, the moving body 11 is at the lowermost home position, and the slider 12 is at the rearmost home position.

【0029】駐車中の電気自動車1が予め登録された電
気自動車1であると判断すると、コントローラ21は位
置決めモードとなり、まず、自動的に走行モータM1を
駆動させて、駐車された電気自動車1の左方に位置する
走行台9を一定速度で右方向へと移動させる。
When it is determined that the parked electric vehicle 1 is the pre-registered electric vehicle 1, the controller 21 enters the positioning mode, and first, the traveling motor M1 is automatically driven to drive the parked electric vehicle 1. The traveling platform 9 located on the left side is moved to the right direction at a constant speed.

【0030】又、コントローラ21は電源回路23に位
置決めモードの信号を出力する。そして、電源回路23
はチェック用電流を送電用カプラ6に供給する。電流検
出回路24は電流検出信号をコントローラ21に出力す
るとともに、判別回路25は判別信号をコントローラ2
1に出力するようになっている。
The controller 21 also outputs a positioning mode signal to the power supply circuit 23. And the power supply circuit 23
Supplies a check current to the power transmission coupler 6. The current detection circuit 24 outputs the current detection signal to the controller 21, and the determination circuit 25 outputs the determination signal to the controller 2.
It outputs to 1.

【0031】走行台9が右方向へ移動すると、送電用カ
プラ6と、受電用カプラ2との距離は互いに近づく。送
電用カプラ6と受電用カプラ2とが近づくにつれて、送
電用カプラ6と受電用カプラ2との間に電磁誘導が生
じ、受電用カプラ2には誘導起電力が生じる。この誘導
起電力は送電用カプラ6が受電用カプラ2に近づく程大
きくなる。
When the traveling platform 9 moves to the right, the distance between the power transmission coupler 6 and the power reception coupler 2 becomes closer to each other. As the power transmission coupler 6 and the power reception coupler 2 approach each other, electromagnetic induction occurs between the power transmission coupler 6 and the power reception coupler 2, and an induced electromotive force is generated in the power reception coupler 2. This induced electromotive force increases as the power transmission coupler 6 approaches the power reception coupler 2.

【0032】図4は、前記電磁誘導の影響により変化す
る送電用カプラ6の電磁コイル14に流れる電流の電流
値IRMS を示している。即ち、誘導起電力による電力変
化としての電磁コイル14を流れる電流の電流値IRMS
をを示している。上述のように走行台9の移動に従って
送電用カプラ6が受電用カプラ2に近づくにつれて電磁
誘導による誘導起電力が大きくなる。すると、送電用カ
プラ6の電磁コイル14に流れる電流値IRMS は、受電
用カプラ2側へ誘導された分だけ小さくなる。そして、
送電用カプラ6が充電用カプラ2に最接近した後は、走
行台9の移動に従って受電用カプラ2から離れていくに
つれて電磁誘導による誘導起電力が小さくなり、電流値
RMS は大きくなる。即ち、誘導起電力が最大となる位
置、つまり、電流値IRMS が最小となる位置が送電用カ
プラ6と受電用カプラ2とが最接近した位置であって、
X方向において正対する位置となる。この場合、電流値
RMS は送電用カプラ6と受電用カプラ2との間の距離
の関数であるので、電流値IRMS の波形は正対する位置
に対して対称の波形となる。
FIG. 4 is changed by the influence of the electromagnetic induction.
Current of the current flowing through the electromagnetic coil 14 of the power transmission coupler 6
Value IRMSIs shown. That is, the power change due to the induced electromotive force
Value I of the current flowing through the electromagnetic coil 14RMS
Is shown. As described above, according to the movement of the carriage 9.
As the power transmission coupler 6 approaches the power reception coupler 2, electromagnetic waves are generated.
The induced electromotive force due to induction increases. Then, the power transmission
Current value I flowing through the electromagnetic coil 14 of the plastic 6RMSReceived
It becomes smaller by the amount guided to the coupler 2 side. And
After the power transmission coupler 6 comes closest to the charging coupler 2,
As the carriage 9 moves away from the power receiving coupler 2,
As a result, the induced electromotive force due to electromagnetic induction decreases and the current value
IRMSGrows. That is, the maximum induced electromotive force
Position, that is, current value IRMSThe position with the smallest
At the position where the plastic 6 and the power receiving coupler 2 are closest to each other,
The position is directly opposite in the X direction. In this case, the current value
I RMSIs the distance between the power transmission coupler 6 and the power reception coupler 2.
Since it is a function ofRMSThe waveform of is the opposite position
The waveform is symmetrical with respect to.

【0033】そして、コントローラ21は、このX方向
における正対する位置を判別回路25からの判別信号に
基づいて演算する。この走行台9が移動する過程におい
て、コントローラ21は判別回路25からの判別信号が
HレベルからLレベルになる時点(Hレベルの立ち上が
り時点)でのエンコーダ22のカウント数に基づいて、
その時点での位置x1 を演算し、その位置x1 をメモリ
21aに記憶させる。次に、コントローラ21は、判別
信号がLレベルからHレベルに復帰した時点(Hレベル
の立ち下がり時点)でのエンコーダ22のカウント数に
基づいて、その時点での位置x2 を演算し、その位置x
2 をメモリ21aに記憶させる。
Then, the controller 21 calculates the directly facing position in the X direction based on the discrimination signal from the discrimination circuit 25. In the process in which the traveling platform 9 moves, the controller 21 determines, based on the count number of the encoder 22 at the time when the determination signal from the determination circuit 25 changes from the H level to the L level (the rising point of the H level).
The position x 1 at that time is calculated, and the position x 1 is stored in the memory 21a. Next, the controller 21 calculates the position x 2 at that time based on the count number of the encoder 22 at the time when the determination signal returns from the L level to the H level (falling time of the H level), and calculates the position x 2. Position x
2 is stored in the memory 21a.

【0034】更に、コントローラ21は、送電用カプラ
6が予め定められた受電用カプラ2よりも右方の所定の
位置まで移動すると、メモリ21aに記憶した位置
1 ,x 2 に基づいてその中間位置、即ち、X方向にお
ける正対する位置xA を次式に従って求める。
Further, the controller 21 is a power transmission coupler.
6 is a predetermined area on the right side of the predetermined power receiving coupler 2.
When moved to the position, the position stored in the memory 21a
x1, X 2In the X direction.
Position xAIs calculated according to the following equation.

【0035】xA =(x1 +x2 )/2 … そして、X方向における正対する位置xA を求めると、
コントローラ21はその位置xA に基づいて正対する位
置xA に送電用カプラ6を位置決めするためのエンコー
ダ22のカウント数(正対カウント数)を演算し、その
正対カウント数をメモリ21aに記憶させる。
X A = (x 1 + x 2 ) / 2 ... Then, when the facing position x A in the X direction is obtained,
Based on the position x A , the controller 21 calculates the count number (correction count number) of the encoder 22 for positioning the power transmission coupler 6 at the position x A that directly opposes, and stores the confrontation count number in the memory 21 a. Let

【0036】正対カウント数を演算すると、コントロー
ラ21は走行モータM1を駆動して走行台9を左方向へ
移動させる。そして、コントローラ21は正対カウント
数と、エンコーダ21から出力されるカウント数とを順
次比較しながら、正対カウント数とエンコーダ21から
のカウント数が一致した時点にて走行モータM1の駆動
を停止する。この時、送電用カプラ6は受電用カプラ2
と正対する位置xA に位置決めされる。
After calculating the facing count number, the controller 21 drives the traveling motor M1 to move the traveling table 9 leftward. Then, the controller 21 sequentially compares the facing count number with the count number output from the encoder 21, and stops driving the traveling motor M1 when the facing count number and the count number from the encoder 21 match. To do. At this time, the power transmission coupler 6 is the power reception coupler 2
It is positioned at a position x A directly opposite to.

【0037】このように、送電用カプラ6が受電用カプ
ラ2とX方向において正対する位置xA に位置決めされ
ると、作業者は操作パネル17を操作してZ方向の位置
決めを行う。即ち、昇降モータM2を操作させて送電用
カプラ6が受電用カプラ2とZ方向において正対する位
置まで上昇させる。
As described above, when the power transmission coupler 6 is positioned at the position x A facing the power reception coupler 2 in the X direction, the operator operates the operation panel 17 to perform the Z direction positioning. That is, the elevating motor M2 is operated to raise the power transmission coupler 6 to a position directly facing the power reception coupler 2 in the Z direction.

【0038】Z方向において、両カプラ6,2が正対す
ると、作業者は操作パネル17を操作してY方向の位置
決めを行う。X,Z方向は正対しているので、Y方向は
特に位置検出をする必要はなく、コントローラ21はス
ライドモータM3を駆動させて送電用カプラ6が受電用
カプラ2と当接する位置まで前進させ、当接したことを
検知して停止させればよい。そして、両カプラ6,2が
当接すると、自動位置決めモードは終了する。
When both couplers 6 and 2 face each other in the Z direction, the operator operates the operation panel 17 to perform positioning in the Y direction. Since the X and Z directions face each other, it is not necessary to detect the position in the Y direction, and the controller 21 drives the slide motor M3 to move the power transmission coupler 6 forward to a position where the power transmission coupler 6 contacts the power reception coupler 2. The contact may be detected and stopped. When the couplers 6 and 2 come into contact with each other, the automatic positioning mode ends.

【0039】この当接状態において、作業者は操作パネ
ル17を操作して充電モードを選択する。すると、電源
回路23は充電用電流を送電用カプラ6に供給する。そ
して、送電用カプラ6を介し、受電用カプラ2に誘電起
電力を発生させて、その起電力を電気自動車1のバッテ
リに供給することによって当該バッテリを充電する。
In this contact state, the operator operates the operation panel 17 to select the charging mode. Then, the power supply circuit 23 supplies the charging current to the power transmission coupler 6. Then, a dielectric electromotive force is generated in the power receiving coupler 2 via the power transmission coupler 6, and the electromotive force is supplied to the battery of the electric vehicle 1 to charge the battery.

【0040】従って、本実施例によれば、電気自動車1
を駐車後に、位置決め装置7を駆動して送電用カプラ6
を移動させることによって電気自動車1の受電用カプラ
2に対して正対する位置に位置決めするので、運転テク
ニックは要求されず、簡単に充電作業を行うことができ
る。又、送電用カプラ6に流れる電流値IRMS を検出す
る電流検出回路24及び判別回路25は、一般に電源装
置15に内蔵された充電のための電流検出回路24及び
判別回路25を使用できるので、特別に受電用カプラ2
の位置を検出するためのセンサが不要となり、位置決め
装置7の構成を簡略化できる。
Therefore, according to this embodiment, the electric vehicle 1
After parking the vehicle, the positioning device 7 is driven to drive the power transmission coupler 6
Is moved to position the electric vehicle 1 at a position directly facing the power receiving coupler 2, so that no driving technique is required and the charging operation can be easily performed. Further, since the current detection circuit 24 and the determination circuit 25 for detecting the current value I RMS flowing in the power transmission coupler 6 can generally use the current detection circuit 24 and the determination circuit 25 for charging which are built in the power supply device 15, Special power receiving coupler 2
A sensor for detecting the position of is not required, and the configuration of the positioning device 7 can be simplified.

【0041】更に、前記対向する位置xA は、基準値I
0 以上となる時点の位置x1 及び基準値I0 より小さく
なる時点の位置x2 を加算し、2で除することによっ
て、簡単な演算にて求めることができる。そして、走行
モータM1を演算にて求めた正対する位置xA を示す正
対カウント数になるまで回転させることによって容易に
送電用カプラ6を正対する位置xA に位置決めできる。
Further, the opposing position x A is the reference value I
A simple calculation can be obtained by adding the position x 1 at the time of 0 or more and the position x 2 at the time of becoming smaller than the reference value I 0 and dividing by 2. Then, the traveling motor M1 can be easily positioned at the facing position x A by rotating the traveling motor M1 until the facing count number indicating the facing position x A calculated.

【0042】コントローラ21には、判別回路25から
Hレベル及びLレベルの判別信号が出力されるので、コ
ントローラ21はこのHレベルの判別信号の立ち上がり
時点、立ち下がる時点を判別することによって容易に位
置x1 ,x2 を判別できる。
Since the discriminating circuit 25 outputs discriminating signals of H level and L level to the controller 21, the controller 21 can easily detect the position by discriminating the rising time and the falling time of the H level discriminating signal. It is possible to distinguish x 1 and x 2 .

【0043】又、コントローラ21には、電流検出回路
24から電源回路23に流れる電流の電流値を示す信号
が出力されている。従って、作業者は操作パネル17を
操作してディスプレイ18に位置決め作業時の電流値I
RMS や、充電時における電流値を表示させることができ
る。よって、作業者はディスプレイ18に表示された位
置決め作業時の電流値IRMS や、充電時における電流値
を確認することによって、確実に位置決め作業及び充電
作業を行うことができる。
A signal indicating the current value of the current flowing through the power supply circuit 23 is output from the current detection circuit 24 to the controller 21. Therefore, the operator operates the operation panel 17 to display the current value I on the display 18 during positioning work.
It is possible to display the RMS and the current value during charging. Therefore, the operator can surely perform the positioning work and the charging work by checking the current value I RMS during the positioning work displayed on the display 18 and the current value during the charging.

【0044】尚、本発明は上記実施例に限定されるもの
ではなく、発明の趣旨を逸脱しない範囲で、適宜に変更
して実施してもよい。 (1)上記実施例において、操作パネル17を操作しな
がら手動で位置決め装置7の走行台9、移動体11及び
スライダ12を駆動して、送電用カプラ6をX,Y,Z
の各軸方向へ移動させてもよい。
The present invention is not limited to the above-mentioned embodiments, and may be appropriately modified and implemented without departing from the spirit of the invention. (1) In the above-described embodiment, the traveling base 9, the moving body 11 and the slider 12 of the positioning device 7 are manually driven while operating the operation panel 17 to move the power transmission coupler 6 to X, Y, Z.
May be moved in each axial direction.

【0045】(2)上記実施例において、送電用カプラ
6をZ方向における正対する位置へ位置決めする場合に
おいても、送電用カプラ6をX方向における正対する位
置へ位置決めした場合と同様な方法で、コントローラ2
1が判別回路25からの判別信号に基づいてZ方向にお
ける正対する位置を求め、その位置に自動で位置決めす
るようにしてもよい。
(2) In the above embodiment, also when positioning the power transmission coupler 6 at the position facing in the Z direction, the same method as when positioning the power transmission coupler 6 at the position facing in the X direction is used. Controller 2
It is also possible that 1 determines the position facing in the Z direction based on the discrimination signal from the discrimination circuit 25 and automatically positions at that position.

【0046】又、送電用カプラ6のX方向における正対
する位置への位置決め、Z方向における正対する位置へ
の位置決めを共に上記と同様な方法でコントローラ21
によって自動で行ってもよい。この場合、例えばX方向
における正対する位置への位置決めした後、Z方向にお
ける正対する位置への位置決めを行う。
In addition, the positioning of the power transmission coupler 6 at the position facing in the X direction and the positioning at the position facing in the Z direction are both performed by the controller 21 in the same manner as described above.
May be done automatically by. In this case, for example, after the positioning in the facing position in the X direction, the positioning in the facing position in the Z direction is performed.

【0047】(3)上記実施例において、コントローラ
21に予め基準値I0 を記憶させる。そして、コントロ
ーラ21が電流検出回路24が検出した電流値IRMS
基準値I0 とを比較して、電流値IRMS が基準値I0
下となる時点の位置x1 、基準値I0 以上となる時点の
位置x2 を求め、各位置x1 ,x2 に基づいて正対する
位置xA を求めてもよい。
(3) In the above embodiment, the controller 21 is made to store the reference value I 0 in advance. Then, the controller 21 compares the current value I RMS detected by the current detection circuit 24 with the reference value I 0, and the position x 1 at the time when the current value I RMS becomes the reference value I 0 or less and the reference value I 0 or more It is also possible to find the position x 2 at the time point where and the position x A facing directly is found based on the positions x 1 and x 2 .

【0048】(4)上記実施例において、コントローラ
21のメモリ21aに、前記ガレージ5に駐車できる電
気自動車1のID番号とともに、その電気自動車1の受
電用カプラ2の高さを予め記憶しておいてもよい。この
場合、コントローラ21はその記憶された受電用カプラ
21の高さに基づいて昇降モータM2を駆動することに
よって、容易に送電用カプラ6と受電用カプラ2とを同
一の高さに設定できるそして、送電用カプラ6と受電用
カプラ2との当接作業を容易に行うことができる。
(4) In the above embodiment, the height of the power receiving coupler 2 of the electric vehicle 1 is stored in advance in the memory 21a of the controller 21 together with the ID number of the electric vehicle 1 that can be parked in the garage 5. You may stay. In this case, the controller 21 can easily set the power transmission coupler 6 and the power receiving coupler 2 at the same height by driving the lifting motor M2 based on the stored height of the power receiving coupler 21. The contact work between the power transmission coupler 6 and the power reception coupler 2 can be easily performed.

【0049】(5)上記実施例において、走行モータM
1にパルスモータを使用し、走行モータM1にその走行
モータM1から出力されるパルスをカウントするカウン
タを接続し、コントローラ21は、そのパルスのカウン
ト数に基づいて位置x1 ,x 2 等を判断してもよい。
(5) In the above embodiment, the traveling motor M
The pulse motor is used for 1, and the traveling motor M1 is used for traveling.
A counter that counts the pulses output from the motor M1
The controller 21 and the controller 21 counts the pulse.
Position x based on1, X 2Etc. may be judged.

【0050】(6)上記実施例において、コントローラ
21は電流検出回路24からの電流値IRMS を比較する
ことによって、電流値IRMS の最小値の判別し、その最
小値となる位置を正対する位置xA を求めてもよい。
(6) In the above embodiment, the controller 21 compares the current value I RMS from the current detection circuit 24 to determine the minimum value of the current value I RMS , and directly faces the position of the minimum value. The position x A may be determined.

【0051】(7)上記実施例では、送電用カプラ6に
流れる電流IRMS の量を検出して、正対する位置xA
検出した。これを、図5に示すように、電磁誘導によっ
て受電用カプラ2に生じる誘導起電力による電圧VRMS
を測定することにより、正対する位置xA を演算するよ
う構成してもよい。即ち、受電用カプラ2に、当該受電
用カプラ2にかかる電圧VRMS を測定する電圧検出器を
接続し、その電圧検出器には、検出した電圧VRMS が基
準値V0 以上であるか否かを判別する判別回路を接続す
る。判別回路は検出された電圧VRMS が基準値V0 以上
である時にはHレベルの信号を、基準値V0 以下の場合
にはLレベルの信号を無線機B1,B2等を介してコン
トローラ21に出力する。そして、コントローラ21
は、前記送電用カプラ6の電流IRMS に基づいて正対す
る位置xA を演算した場合と同様に、Hレベルの信号及
びLレベルの信号に基づいて電圧VRMS が基準値V0
上となる時点の位置x1 、基準値V0 以下となる時点の
位置x2 を求め、これら各位置x1 ,x2 に基づいて正
対する位置xA を演算する。
(7) In the above-described embodiment, the amount of the current I RMS flowing through the power transmission coupler 6 is detected to detect the position x A facing directly. As shown in FIG. 5, this is the voltage V RMS due to the induced electromotive force generated in the power receiving coupler 2 by electromagnetic induction.
It may be configured to calculate the position x A facing directly by measuring. That is, a voltage detector that measures the voltage V RMS applied to the power receiving coupler 2 is connected to the power receiving coupler 2, and whether or not the detected voltage V RMS is equal to or greater than the reference value V 0 is connected to the voltage detector. A determination circuit for determining whether or not it is connected. The H-level signal when discriminating circuit voltage V RMS detected is the reference value greater than or equal to V 0, in the case of less than the reference value V 0 to the controller 21 by the L-level signal via the radio B1, B2, etc. Output. And the controller 21
Is similar to the case where the facing position x A is calculated based on the current I RMS of the power transmission coupler 6, the voltage V RMS becomes the reference value V 0 or more based on the H level signal and the L level signal. The position x 1 at the time point and the position x 2 at the time when the reference value is V 0 or less are obtained, and the facing position x A is calculated based on these positions x 1 and x 2 .

【0052】又、コントローラ21に予め基準値V0
記憶させ、電圧検出器からコントローラ21に無線機B
1,B2を介して電圧VRMS の値を示す信号を直接通信
し、コントローラ21が電圧VRMS の値と基準値V0
を比較して前記位置x1 ,x 2 を求め、正対する位置x
A を演算してもよい。
Further, the controller 21 is preset to the reference value V0To
It is stored in the controller 21 from the voltage detector to the wireless device B.
Voltage V via 1, B2RMSDirectly communicate the signal indicating the value of
The controller 21RMSValue and reference value V0When
And the position x1, X 2Position x
AMay be calculated.

【0053】(8)上記実施例において、受電用カプラ
2にチェック用の電流を流し、誘導起電力による電力変
動として送電用カプラ6にかかる電圧の変動に基づいて
正対する位置xA を求めてもよい。又、受電用カプラ2
にチェック用の電流を流し、誘導起電力による電力変動
として受電用カプラ2を流れる電流の変動に基づいて正
対する位置xA を求めてもよい。この場合、電気自動車
1はチェック用の電流を流すためのチェック用電源を備
えている。
(8) In the above-described embodiment, a check current is passed through the power receiving coupler 2 to find the position x A which is directly facing based on the fluctuation of the voltage applied to the power transmitting coupler 6 as the fluctuation of the power due to the induced electromotive force. Good. Also, the power receiving coupler 2
Alternatively, a check current may be applied to the position A, and the facing position x A may be obtained based on the fluctuation of the current flowing through the power receiving coupler 2 as the power fluctuation due to the induced electromotive force. In this case, the electric vehicle 1 is equipped with a check power supply for supplying a check current.

【0054】(9)上記実施例において、図6に示すよ
うに、送電側電磁コイル14の軸線及び受電側電磁コイ
ル4の軸線が上下向きになるように送電用カプラ6及び
受電用カプラ2を配設してもよい。この場合、受電用カ
プラ2が上側に、送電用カプラ6が下側に位置した状態
で互いに当接される。
(9) In the above embodiment, as shown in FIG. 6, the power transmission coupler 6 and the power reception coupler 2 are arranged so that the axis of the power transmission side electromagnetic coil 14 and the axis of the power reception side electromagnetic coil 4 are oriented vertically. You may arrange. In this case, the power receiving coupler 2 is placed on the upper side and the power transmitting coupler 6 is placed on the lower side, and they are brought into contact with each other.

【0055】上記実施例から把握できる請求項以外の技
術思想について、以下にその効果とともに記載する。 (1)請求項5記載の発明において、コントローラ21
は、電流検出回路24からの電流値IRMS 及び基準値I
0 に基づいて電流値IRMS が基準値I0 以上となる時点
での位置x1 及び基準値I0 よりも小さくなる時点での
位置x2 を求め、各位置x1 ,x2 に基づいて正対する
位置xA を演算するようにした充電装置の位置決め装
置。この位置決め装置によれば、簡単な演算で容易に正
対する位置xA を求めることができる。
The technical ideas other than the claims that can be understood from the above-described embodiments will be described below along with their effects. (1) In the invention according to claim 5, the controller 21
Is the current value I RMS from the current detection circuit 24 and the reference value I
Based on 0 , the position x 1 at the time when the current value I RMS becomes the reference value I 0 or more and the position x 2 at the time when the current value I RMS becomes smaller than the reference value I 0 are obtained, and based on the respective positions x 1 and x 2. A positioning device for a charging device that calculates the facing position x A. According to this positioning device, the facing position x A can be easily obtained by a simple calculation.

【0056】[0056]

【発明の効果】以上詳述したように請求項1記載の発明
によれば、位置検出用の特別なセンサを用いることな
く、誘電起電力による電力の変動を検出することによっ
て、受電用コアの相対位置を判断し、送電用コアを受電
用コアに当接できるため、受電用コアを精度良く配置す
る必要がなく、受電用コアを搭載した車両を容易に駐車
できる。請求項2記載の発明によれば、送電用コアが3
次元方向に移動できるので、受電用コアに位置に合わせ
てより確実に送電用コアを当接させることができる。請
求項3記載の発明によれば、位置検出用の特別なセンサ
を用いることなく、受電用コアの相対位置を誘導起電力
による電力変化に基づいて判断し、送電用コアを受電用
コアに当接させるため、受電用コアを精度良く配置する
必要がなく、受電用コアを搭載した車両を容易に駐車で
きる。請求項4記載の発明によれば、3次元方向に送電
用コアを移動させることによって、受電用コアの位置に
合わせてより確実に送電用コアを充電用コアに当接でき
る。請求項5記載の発明によれば、送電側電磁コイルに
流れる電流の変動に基づいて容易に送電側電磁コイルを
受電側電磁コイルに当接できる。
As described above in detail, according to the invention of claim 1, the power receiving core of the power receiving core is detected by detecting the fluctuation of the electric power due to the dielectric electromotive force without using a special position detecting sensor. Since the relative position can be determined and the power transmission core can be brought into contact with the power reception core, it is not necessary to dispose the power reception core with high precision, and a vehicle equipped with the power reception core can be easily parked. According to the invention of claim 2, the power transmission core is three.
Since it can move in the dimensional direction, the power transmission core can be more reliably brought into contact with the power reception core according to the position. According to the invention described in claim 3, the relative position of the power receiving core is determined based on the change in power due to the induced electromotive force without using a special sensor for position detection, and the power transmitting core is applied to the power receiving core. Since they are in contact with each other, it is not necessary to accurately arrange the power receiving core, and the vehicle equipped with the power receiving core can be easily parked. According to the invention described in claim 4, by moving the power transmission core in the three-dimensional direction, the power transmission core can be more reliably brought into contact with the charging core in accordance with the position of the power reception core. According to the invention of claim 5, the power transmission side electromagnetic coil can be easily brought into contact with the power reception side electromagnetic coil based on the fluctuation of the current flowing through the power transmission side electromagnetic coil.

【図面の簡単な説明】[Brief description of drawings]

【図1】 電気自動車を駐車するガレージに設置された
位置決め装置を示す平面図。
FIG. 1 is a plan view showing a positioning device installed in a garage for parking an electric vehicle.

【図2】 電気自動車を駐車するガレージに設置された
位置決め装置を示す側面図。
FIG. 2 is a side view showing a positioning device installed in a garage for parking an electric vehicle.

【図3】 位置決め装置を制御するための電気ブロック
図。
FIG. 3 is an electrical block diagram for controlling the positioning device.

【図4】 位置決め時に電源装置から出力される電流値
及びコントローラに出力される信号を示す説明図。
FIG. 4 is an explanatory diagram showing current values output from a power supply device and signals output to a controller during positioning.

【図5】 別例において位置決め時に車両側充電器の電
圧の変化及びコントローラに出力される信号を示す説明
図。
FIG. 5 is an explanatory diagram showing changes in the voltage of the vehicle-side charger and signals output to the controller during positioning in another example.

【図6】 別例における位置決め装置を示す側面図。FIG. 6 is a side view showing a positioning device in another example.

【符号の説明】[Explanation of symbols]

1…電気自動車、2…受電用カプラ、3…受電用コア、
4…受電側電磁コイル、6…送電用カプラ、7…位置決
め装置、13…送電用コア、14…送電側電磁コイル、
21…移動制御手段及び第1,第2の移動制御手段とし
てのコントローラ、23…電源供給手段としての電源回
路、24…位置検出手段としての電流検出回路、M1…
移動手段及び第1の移動手段としての走行モータ、M2
…移動手段及び第2の移動手段としての昇降モータ、M
3…移動手段及び第3の移動手段としてのスライドモー
タ。
1 ... Electric vehicle, 2 ... Power receiving coupler, 3 ... Power receiving core,
4 ... Power receiving side electromagnetic coil, 6 ... Power transmission coupler, 7 ... Positioning device, 13 ... Power transmission core, 14 ... Power transmission side electromagnetic coil,
21 ... Controllers as movement control means and first and second movement control means, 23 ... Power supply circuit as power supply means, 24 ... Current detection circuit as position detection means, M1 ...
Traveling motor as moving means and first moving means, M2
... Lifting motor as moving means and second moving means, M
3 ... A slide motor as a moving means and a third moving means.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 送電側電磁コイルに基づいて誘導起電力
を発生させる受電側電磁コイルを巻回した車両に設置さ
れた受電用コアに前記送電側電磁コイルを巻回した送電
用コアを当接させるために、その受電用コアの相対位置
を誘導起電力による送電側電磁コイル又は受電側電磁コ
イルの電力変動を検出しながら前記送電用コアを移動さ
せた後、その送電側電磁コイルにバッテリを充電する充
電用電流を流すようにした充電装置の充電方法。
1. A power transmission core wound around the power transmission side electromagnetic coil is brought into contact with a power reception core installed in a vehicle around which a power receiving side electromagnetic coil for generating an induced electromotive force based on the power transmission side electromagnetic coil is wound. In order to make the relative position of the power receiving core move the power transmitting core while detecting the power fluctuation of the power transmitting side electromagnetic coil or the power receiving side electromagnetic coil due to the induced electromotive force, the battery is placed in the power transmitting side electromagnetic coil. A charging method for a charging device in which a charging current for charging is supplied.
【請求項2】 前記送電用コアは3次元方向に移動可能
な請求項1記載の充電装置の充電方法。
2. The charging method for a charging device according to claim 1, wherein the power transmission core is movable in a three-dimensional direction.
【請求項3】 送電側電磁コイルを巻回した送電用コア
が車両に設置した受電用電磁コイルを巻回した受電用コ
アに対して当接し、送電側電磁コイルに充電電流を流
し、受電側電磁コイルに誘導起電力を発生させて車両に
搭載したバッテリを充電する充電装置において、 前記送電用コアを往復動させる移動手段と、 前記移動手段の移動時に、前記送電側電磁コイルに位置
検出のための電源を供給する電源供給手段と、 前記電源供給手段からの電源供給に基づき受電側電磁コ
イルに生じた誘導起電力による送電側電磁コイル又は受
電側電磁コイルのいずれか一方の電力変動を検出する位
置検出手段と、 前記位置検出手段に基づいて前記送電用コアを前記受電
用コアに対する相対位置が最も近づく位置で停止させる
移動制御手段とを備えた充電装置の位置決め装置。
3. A power transmission core around which a power transmission electromagnetic coil is wound is brought into contact with a power reception core around which a power receiving electromagnetic coil installed on a vehicle is wound, and a charging current is passed through the power transmission electromagnetic coil to receive power. In a charging device for charging a battery mounted on a vehicle by generating an induced electromotive force in an electromagnetic coil, a moving unit that reciprocates the power transmission core, and a position detection unit that detects a position in the power transmitting side electromagnetic coil when the moving unit moves. Power supply means for supplying power for detecting the power fluctuation of either the power transmitting side electromagnetic coil or the power receiving side electromagnetic coil due to the induced electromotive force generated in the power receiving side electromagnetic coil based on the power supply from the power source supplying means. And a movement control means for stopping the power transmission core at a position where the relative position to the power reception core is closest to the position detection means based on the position detection means. Location of the positioning device.
【請求項4】 前記移動手段は、 前記送電用コアを第1の方向に往復動させる第1の移動
手段と、 前記送電用コアを前記第1の方向とは異なる第2の方向
に往復動させる第2の移動手段と、 前記送電用コアを前記第1及び第2の方向とは異なる第
3の方向に往復動させる第3の移動手段とからなり、 前記第1乃至第3の移動手段の内、少なくともいずれか
1つの移動手段を特定し、その特定した移動手段を駆動
制御して、前記位置検出手段に基づいて前記送電用コア
の受電用コアに対する相対位置が最も近づく位置で停止
させる第1の移動制御手段と、 前記特定された移動手段を除く移動手段にて前記送電用
コアを前記受電用コアと当接させるようにした第2の移
動制御手段とを備えた請求項3記載の充電装置の位置決
め装置。
4. The moving means includes first moving means for reciprocating the power transmission core in a first direction, and reciprocating the power transmission core in a second direction different from the first direction. And a third moving unit that reciprocates the power transmission core in a third direction different from the first and second directions, the first to third moving units. At least any one of the moving means is specified, and the specified moving means is drive-controlled to be stopped at a position where the relative position of the power transmission core to the power receiving core is closest based on the position detection means. 4. A first movement control means, and a second movement control means configured to bring the power transmission core into contact with the power reception core by a movement means other than the specified movement means. Battery charger positioning device.
【請求項5】 前記位置検出手段は誘導起電力による電
力変動として、送電側電磁コイルに流れる電流の変動を
検出する請求項3又は4記載の充電装置の位置決め装
置。
5. The positioning device for a charging device according to claim 3, wherein the position detecting means detects a fluctuation of a current flowing through the power transmission side electromagnetic coil as a power fluctuation due to an induced electromotive force.
JP7066470A 1995-03-24 1995-03-24 Charging method and positioning unit for charger Pending JPH08265992A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7066470A JPH08265992A (en) 1995-03-24 1995-03-24 Charging method and positioning unit for charger
US08/621,024 US5617003A (en) 1995-03-24 1996-03-22 Method and apparatus for charging a battery of an electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7066470A JPH08265992A (en) 1995-03-24 1995-03-24 Charging method and positioning unit for charger

Publications (1)

Publication Number Publication Date
JPH08265992A true JPH08265992A (en) 1996-10-11

Family

ID=13316711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7066470A Pending JPH08265992A (en) 1995-03-24 1995-03-24 Charging method and positioning unit for charger

Country Status (1)

Country Link
JP (1) JPH08265992A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100394460C (en) * 2005-05-20 2008-06-11 天津大学 Vehicle detecting sensor capable of contact charge
JP2010011696A (en) * 2008-06-30 2010-01-14 Mitsui Eng & Shipbuild Co Ltd Non-contact type marine power supply system, ship and power supply method to ship
KR101006774B1 (en) * 2009-04-01 2011-01-10 용인송담대학 산학협력단 Battery charging system for electric vehicle using Magnetic Induction
WO2011006884A2 (en) 2009-07-15 2011-01-20 Conductix-Wampfler Ag System for inductively charging vehicles, comprising an electronic positioning aid
JP2011253786A (en) * 2010-06-04 2011-12-15 Denso Corp Connector connection device
JP2012028028A (en) * 2010-07-20 2012-02-09 Denso Corp Connector connection device
KR20120033587A (en) * 2010-09-30 2012-04-09 현대자동차주식회사 Unmanned charging system for of electrical vehicle and driving method thereof
US8169340B2 (en) 2005-09-29 2012-05-01 Toyota Jidosha Kabushiki Kaisha Parking assist device and a method for electric vehicle power transmission and reception between a vehicle and a ground apparatus
JP2012244707A (en) * 2011-05-17 2012-12-10 Toyota Motor Corp Charging system
JP2013115936A (en) * 2011-11-29 2013-06-10 Nec Casio Mobile Communications Ltd Mobile terminal charging system and mobile terminal charging method
EP2688182A2 (en) 2012-07-19 2014-01-22 Hitachi Power Solutions Co., Ltd. Wireless charging system
WO2014080928A1 (en) * 2012-11-20 2014-05-30 株式会社 豊田自動織機 Power transmission equipment
WO2014156656A1 (en) * 2013-03-29 2014-10-02 日産自動車株式会社 Electric vehicle and parking assist system for electric vehicle
JP2015084642A (en) * 2010-05-19 2015-04-30 クアルコム,インコーポレイテッド Apparatus and method for wireless power transfer, and apparatus for wirelessly receiving power in electric vehicle
US9577466B2 (en) 2014-08-27 2017-02-21 Hyundai Motor Company Wireless charging system and method for controlling the same
JP2017055124A (en) * 2007-05-10 2017-03-16 オークランド ユニサービシズ リミテッドAuckland Uniservices Limited Induced power transfer pad, induced power transfer system and device for charging battery
CN107867196A (en) * 2016-09-26 2018-04-03 福特全球技术公司 Vehicle charger localization method and charger assembly
CN108128181A (en) * 2016-12-01 2018-06-08 保时捷股份公司 Adjustable charging robot
CN109017353A (en) * 2018-06-21 2018-12-18 安徽灵图壹智能科技有限公司 A kind of new energy charging gun automatic position adjusting function method and system

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100394460C (en) * 2005-05-20 2008-06-11 天津大学 Vehicle detecting sensor capable of contact charge
US8169340B2 (en) 2005-09-29 2012-05-01 Toyota Jidosha Kabushiki Kaisha Parking assist device and a method for electric vehicle power transmission and reception between a vehicle and a ground apparatus
JP2017055124A (en) * 2007-05-10 2017-03-16 オークランド ユニサービシズ リミテッドAuckland Uniservices Limited Induced power transfer pad, induced power transfer system and device for charging battery
JP2010011696A (en) * 2008-06-30 2010-01-14 Mitsui Eng & Shipbuild Co Ltd Non-contact type marine power supply system, ship and power supply method to ship
KR101006774B1 (en) * 2009-04-01 2011-01-10 용인송담대학 산학협력단 Battery charging system for electric vehicle using Magnetic Induction
WO2011006884A2 (en) 2009-07-15 2011-01-20 Conductix-Wampfler Ag System for inductively charging vehicles, comprising an electronic positioning aid
JP2015084642A (en) * 2010-05-19 2015-04-30 クアルコム,インコーポレイテッド Apparatus and method for wireless power transfer, and apparatus for wirelessly receiving power in electric vehicle
US9656564B2 (en) 2010-05-19 2017-05-23 Qualcomm Incorporated Adaptive wireless energy transfer system
JP2011253786A (en) * 2010-06-04 2011-12-15 Denso Corp Connector connection device
JP2012028028A (en) * 2010-07-20 2012-02-09 Denso Corp Connector connection device
KR20120033587A (en) * 2010-09-30 2012-04-09 현대자동차주식회사 Unmanned charging system for of electrical vehicle and driving method thereof
JP2012244707A (en) * 2011-05-17 2012-12-10 Toyota Motor Corp Charging system
JP2013115936A (en) * 2011-11-29 2013-06-10 Nec Casio Mobile Communications Ltd Mobile terminal charging system and mobile terminal charging method
EP2688182A2 (en) 2012-07-19 2014-01-22 Hitachi Power Solutions Co., Ltd. Wireless charging system
US9143001B2 (en) 2012-07-19 2015-09-22 Hitachi Power Solutions, Co., Ltd. Wireless charging system
WO2014080928A1 (en) * 2012-11-20 2014-05-30 株式会社 豊田自動織機 Power transmission equipment
WO2014156656A1 (en) * 2013-03-29 2014-10-02 日産自動車株式会社 Electric vehicle and parking assist system for electric vehicle
US9577466B2 (en) 2014-08-27 2017-02-21 Hyundai Motor Company Wireless charging system and method for controlling the same
CN107867196A (en) * 2016-09-26 2018-04-03 福特全球技术公司 Vehicle charger localization method and charger assembly
CN108128181A (en) * 2016-12-01 2018-06-08 保时捷股份公司 Adjustable charging robot
JP2018093716A (en) * 2016-12-01 2018-06-14 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft Adjustable charging robot
US10696167B2 (en) 2016-12-01 2020-06-30 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Adjustable charging robot
CN109017353A (en) * 2018-06-21 2018-12-18 安徽灵图壹智能科技有限公司 A kind of new energy charging gun automatic position adjusting function method and system

Similar Documents

Publication Publication Date Title
JPH08265992A (en) Charging method and positioning unit for charger
US5617003A (en) Method and apparatus for charging a battery of an electric vehicle
US5821731A (en) Connection system and connection method for an electric automotive vehicle
JP3586955B2 (en) Electric vehicle charging system
JPH09213378A (en) Charge system for electric vehicle
CN102300744B (en) Vehicle parking assistance device and electric vehicle equipped with same
US20170225582A1 (en) Method and Base Unit for Inductively Charging Electric and Hybrid Vehicles
JPH09182212A (en) Automatic charging device
EP2667271A1 (en) Unmanned autonomous system with area signal selection
CN103492219A (en) Torque control apparatus and contactless charging system
WO2006133074A2 (en) Opportunity charging system for battery powered mining equipment
CN102782985A (en) Contactless charging system
CN208630401U (en) Wireless charging device based on electric car
CN108995743B (en) Navigation vehicle and navigation method
CN109606505A (en) A kind of automatic transporting machine people
JP2011205829A (en) Noncontact charging system
KR20200026428A (en) Wireless Charging System for Electric Vehicle
JPH09172743A (en) Coupler coupling device of charger
JPH0917666A (en) Method and device for positioning battery charger
JP2016211210A (en) Parking facility system
CN110209164B (en) Linear Hall guiding device of AGV (automatic guided vehicle) and guiding method thereof
CN111071077A (en) Lifting type wireless charger and automobile intelligent automatic alignment system
CN206049391U (en) A kind of wireless automatic charging parking stall
CN108490962B (en) Automatic charging device butt joint system of AGV
CN118003923A (en) New energy vehicle wireless charging method and system and garage wireless charging system