JPH08265973A - Compensation controller for power system - Google Patents

Compensation controller for power system

Info

Publication number
JPH08265973A
JPH08265973A JP7145029A JP14502995A JPH08265973A JP H08265973 A JPH08265973 A JP H08265973A JP 7145029 A JP7145029 A JP 7145029A JP 14502995 A JP14502995 A JP 14502995A JP H08265973 A JPH08265973 A JP H08265973A
Authority
JP
Japan
Prior art keywords
voltage
power system
command value
compensation
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7145029A
Other languages
Japanese (ja)
Other versions
JP3242814B2 (en
Inventor
Masahiko Akamatsu
昌彦 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14502995A priority Critical patent/JP3242814B2/en
Publication of JPH08265973A publication Critical patent/JPH08265973A/en
Application granted granted Critical
Publication of JP3242814B2 publication Critical patent/JP3242814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

PURPOSE: To prevent the transient characteristics or dynamic characteristics from deteriorating due to a series capacitor by detecting the electrical variables of a power system, generating a command value for a compensation voltage applying means based on the electrical variables thus detected and then applying a compensation voltage in series to a transmission line based on the command value. CONSTITUTION: Based on outputs delivered from a current detection means 8 and a voltage detection means 9, a power detection means 10 operates or detects power being transmitted on a transmission line 5. Based on the power thus detected, a command value generating means 11 delivers an insertion voltage command Vi* to a compensation voltage applying means 12 which applies a compensation voltage in series to the transmission line 5. Consequently, when a disturbance is generated due to resonance of a series capacitor 7 and a system reactance 6, an appropriate command value generating means 11 can deliver an insertion voltage for suppressing the disturbance to the compensation voltage applying means 12. With such constitution, the transient characteristics or dynamic characteristics can be prevented from deteriorating due to the series capacitor 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、直列コンデンサによ
り電力系統のリャクタンス電圧を補償する電力系統の補
償制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power system compensation control device for compensating a reactance voltage of a power system with a series capacitor.

【0002】[0002]

【従来の技術】図11は例えば「計測と制御 第32巻
第9号(1993年9月号)PP742〜749」に
示された従来の直列コンデンサによる交流電力系統の補
償方式の例を示す図である。同図において、1は送電側
電源、2は送電側母線、3は受電側系統、4は受電側母
線、5は送電線路、6は送電線路5のインダクタンスを
含む電力系統のインダクタンス、7は直列コンデンサ、
ILは送電線路5の線路電流である。
2. Description of the Related Art FIG. 11 is a diagram showing an example of a conventional AC power system compensation system using a series capacitor shown in "Measurement and Control Vol. 32, No. 9 (September, 1993) PP742-749". Is. In the figure, 1 is a power source on the power transmission side, 2 is a power transmission side bus, 3 is a power receiving side system, 4 is a power receiving side bus, 5 is a power transmission line, 6 is an inductance of the power system including the inductance of the power transmission line 5, and 7 is a series. Capacitors,
IL is the line current of the power transmission line 5.

【0003】電力系統の線路に直列コンデンサ7を設け
た上記従来の補償方式は、長距離大電力送電において電
力系統インダクタンスひいては同リャクタンスが大きい
場合、そのリャクタンスを相殺して送電限界を向上させ
る上で有用である。特に、コンデンサの損失が極めて小
さく、かつ、安価であるため電力変換器による補償法よ
り優れている面がある。
In the above conventional compensation system in which the series capacitor 7 is provided on the line of the electric power system, when the electric power system inductance and thus the same reactance is large in long-distance high-power transmission, the reactance is canceled to improve the transmission limit. It is useful. In particular, there is an advantage over the compensation method using a power converter because the loss of the capacitor is extremely small and the cost is low.

【0004】[0004]

【発明が解決しようとする課題】従来の電力系統の補償
制御装置は以上のように構成されているので、送電線投
入時,地絡事故時および回復時,系統切り換え時,その
他電圧急変が生じる時、基本周波数成分の電流以外に直
列コンデンサ7とインダクタンス6とによる共振周波数
成分(過渡的成分)の電流が流れる。この共振周波数成
分が基本周波数成分と重畳されるのでビートを生じ、線
路電流ILの振幅と位相が脈動する。上記線路電流IL
をその実軸成分ILPと虚軸成分ILQとに分解して示
すと、図12の如く表される。即ち、同図(a)は時間
tに対する変化を示し、同図(b)は軌跡(リサージ
ュ)を示す。このとき、脈動周波数は上記2つの周波数
の差の周波数になる。この内、実軸成分ILP、即ち有
効電流の脈動は発電機の軸トルク脈動として現れ、軸捩
れ振動を誘発する。特に、発電機軸の共振周波数に近い
とさらに軸捩れ振動が増幅されると云う問題点があっ
た。他方、虚軸成分ILQ、即ち無効電流の脈動は電圧
変動を誘発する。この他、直列コンデンサ7が電流を積
分した電圧を生じるのに対して、インダクタンス6が電
流の微分比例電圧を生じるため、制御上の過渡特性や動
特性が悪化すると云う問題点もあった。以上、要約する
と交流電力系統の直列コンデンサ補償方式において、直
列コンデンサ7が過渡特性や動特性を悪くする問題点が
あった。
Since the conventional compensation control device for the electric power system is constructed as described above, when the power transmission line is turned on, at the time of a ground fault and at the time of recovery, at the time of switching the system, and other sudden voltage changes occur. At this time, the current of the resonance frequency component (transient component) due to the series capacitor 7 and the inductance 6 flows in addition to the current of the fundamental frequency component. Since this resonance frequency component is superimposed on the fundamental frequency component, a beat is generated and the amplitude and phase of the line current IL pulsate. Line current IL
12 is decomposed into the real axis component ILP and the imaginary axis component ILQ, the result is shown in FIG. That is, FIG. 7A shows a change with respect to time t, and FIG. 7B shows a locus. At this time, the pulsation frequency becomes a frequency that is the difference between the two frequencies. Of these, the actual shaft component ILP, that is, the pulsation of the active current, appears as the shaft torque pulsation of the generator and induces the shaft torsion vibration. In particular, there has been a problem that the shaft torsion vibration is further amplified when the frequency is close to the resonance frequency of the generator shaft. On the other hand, the imaginary axis component ILQ, that is, the pulsation of the reactive current, induces a voltage fluctuation. In addition to this, the series capacitor 7 generates a voltage obtained by integrating the current, whereas the inductance 6 generates a voltage proportional to the current differential, which causes a problem that transient characteristics and dynamic characteristics in control are deteriorated. In summary, in the series capacitor compensation method of the AC power system, there is a problem that the series capacitor 7 deteriorates transient characteristics and dynamic characteristics.

【0005】この発明は上記のような問題点を解消する
ためになされたもので、直列コンデンサによる過渡特性
や動特性の悪化を防止することができる電力系統の補償
制御装置を得ることを目的とする。
The present invention has been made in order to solve the above problems, and an object thereof is to obtain a compensation control device for a power system capable of preventing deterioration of transient characteristics and dynamic characteristics due to a series capacitor. To do.

【0006】また、この発明は、過渡的な線路電流の脈
動を防止することができる電力系統の補償制御装置を得
ることを目的とする。
Another object of the present invention is to obtain a compensation control device for a power system which can prevent transient line current pulsation.

【0007】また、この発明は、過渡的な送電電力の脈
動を防止することができる電力系統の補償制御装置を得
ることを目的とする。
Another object of the present invention is to obtain a compensation control device for a power system which can prevent transient pulsation of transmitted power.

【0008】また、この発明は、より緻密に2成分の制
御を実現することができる電力系統の補償制御装置を得
ることを目的とする。
Another object of the present invention is to obtain a compensation control device for a power system, which can realize more precise control of two components.

【0009】また、この発明は、より経済的な補償電圧
印加手段により過渡的な電流または電力の脈動を防止す
ることができる電力系統の補償制御装置を得ることを目
的とする。
Another object of the present invention is to obtain a compensation control device for a power system, which can prevent transient pulsation of current or power by more economical compensation voltage applying means.

【0010】また、この発明は、補償電圧印加手段のよ
り簡潔な制御法を提供することができる電力系統の補償
制御装置を得ることを目的とする。
Another object of the present invention is to obtain a compensation control device for a power system, which can provide a simpler control method for the compensation voltage applying means.

【0011】また、この発明は、補償電圧印加手段の応
答特性ひいては脈動防止の応答特性を改善することがで
きる電力系統の補償制御装置を得ることを目的とする。
Another object of the present invention is to obtain a power system compensation control device capable of improving the response characteristic of the compensation voltage applying means and hence the response characteristic of pulsation prevention.

【0012】また、この発明は、補償電圧印加手段の過
電流耐量または過負荷耐量の向上、或いは、系統安定化
に必要な可変制御幅を広げることができる電力系統の補
償制御装置を得ることを目的とする。
The present invention also provides a compensation control device for a power system capable of improving the overcurrent withstanding capability or overload withstanding capability of the compensating voltage applying means or widening the variable control width required for system stabilization. To aim.

【0013】また、この発明は、線路電圧の局所的電圧
上昇を防止すると共に、補償電圧印加手段の故障に対し
て冗長性を持たせることができる電力系統の補償制御装
置を得ることを目的とする。
Another object of the present invention is to provide a power system compensation control device capable of preventing a local rise in line voltage and providing redundancy for a failure of the compensation voltage applying means. To do.

【0014】また、この発明は、事故時の過電流を抑制
することができる電力系統の補償制御装置を得ることを
目的とする。
Another object of the present invention is to obtain a power system compensation control device capable of suppressing an overcurrent at the time of an accident.

【0015】さらに、この発明は事故時の過電流の抑制
効果をさらに向上させることができる電力系統の補償制
御装置を得ることを目的とする。
A further object of the present invention is to obtain a compensation control device for a power system which can further improve the effect of suppressing overcurrent in the event of an accident.

【0016】[0016]

【課題を解決するための手段】請求項1の発明に係る電
力系統の補償制御装置は、電力系統のリャクタンス電圧
を補償する直列コンデンサを備えた電力系統において、
さらに、上記電力系統の線路に直列に挿入され指令値に
基づく電圧を発生する従属電圧源からなる補償電圧印加
手段と、上記電力系統の電気変数の検出手段と、上記検
出手段の出力を受けて上記補償電圧印加手段への指令値
を生成する指令値生成手段とを備えたものである。
According to a first aspect of the present invention, there is provided a power system compensation control device, comprising: a power system including a series capacitor for compensating a reactance voltage of the power system.
Furthermore, a compensation voltage applying unit that is inserted in series in the line of the power system and that generates a voltage based on a command value, a compensation voltage applying unit, a unit for detecting an electrical variable of the power system, and an output of the detecting unit are received. And a command value generating means for generating a command value to the compensation voltage applying means.

【0017】請求項2の発明に係る電力系統の補償制御
装置は、電力系統のリャクタンス電圧を補償する直列コ
ンデンサと、上記電力系統の線路に流れる線路電流また
はその比例量を検出する電流検出手段と、上記電流検出
手段により検出された線路電流を所望値にさせる指令値
を生成する指令値生成手段と、上記指令値生成手段によ
り生成された指令値に基づいて上記電力系統の線路に補
償電圧を印加する補償電圧印加手段とを備えたものであ
る。
According to a second aspect of the present invention, there is provided a power system compensation controller, comprising: a series capacitor for compensating the reactance voltage of the power system; and a current detecting means for detecting a line current flowing in the line of the power system or a proportional amount thereof. , A command value generating means for generating a command value for making the line current detected by the current detecting means a desired value, and a compensation voltage for the line of the power system based on the command value generated by the command value generating means. Compensation voltage applying means for applying.

【0018】請求項3の発明に係る電力系統の補償制御
装置は、電力系統のリャクタンス電圧を補償する直列コ
ンデンサと、上記電力系統の線路に流れる線路電流また
はその比例量を検出する電流検出手段と、上記電力系統
の電圧またはその比例量を検出する電圧検出手段と、上
記電流検出手段により検出された線路電流および上記電
圧検出手段により検出された系統電圧より上記線路を介
して送電される電力を演算する電力演算手段と、上記電
力演算手段により演算された電力を所望値にさせる指令
値を生成する指令値生成手段と、上記指令値生成手段に
より生成された指令値に基づいて上記電力系統の線路に
補償電圧を印加する補償電圧印加手段とを備えたもので
ある。
According to a third aspect of the present invention, there is provided a power system compensation controller, comprising: a series capacitor for compensating the reactance voltage of the power system; and a current detecting means for detecting a line current flowing in the line of the power system or a proportional amount thereof. , Voltage detection means for detecting the voltage of the power system or a proportional amount thereof, and line power detected by the current detection means and power transmitted through the line from the system voltage detected by the voltage detection means. Power calculation means for calculating, command value generation means for generating a command value for making the power calculated by the power calculation means a desired value, and a power value of the power system based on the command value generated by the command value generation means Compensation voltage applying means for applying a compensation voltage to the line.

【0019】請求項4の発明に係る電力系統の補償制御
装置は、請求項1〜請求項3の発明において、上記指令
値生成手段が少なくとも2軸ベクトル成分から成るベク
トル指令値を出力し、上記ベクトル指令値に基づき上記
補償電圧印加手段が電圧ベクトルを出力するものであ
る。
According to a fourth aspect of the present invention, there is provided a power system compensation control device according to the first to third aspects, wherein the command value generating means outputs a vector command value including at least two axis vector components, The compensation voltage applying means outputs a voltage vector based on the vector command value.

【0020】請求項5の発明に係る電力系統の補償制御
装置は、請求項1〜請求項4の発明において、上記指令
値生成手段が上記線路の電流に対して上記補償電圧を直
交させる位相を有する指令値を生成させるものである。
According to a fifth aspect of the present invention, there is provided a power system compensation control apparatus according to the first to fourth aspects of the invention, wherein the command value generating means sets a phase for making the compensation voltage orthogonal to the current of the line. The command value is stored.

【0021】請求項6の発明に係る電力系統の補償制御
装置は、請求項1〜請求項5の発明において、上記指令
値生成手段が上記指令値の位相を補正する手段を備え、
上記位相の補正により上記補償電圧印加手段に介在する
電力または電力量を調整するものである。
According to a sixth aspect of the invention, there is provided a power system compensation control device according to the first to fifth aspects of the invention, wherein the command value generating means includes means for correcting the phase of the command value,
The correction of the phase adjusts the electric power or the electric power present in the compensation voltage applying means.

【0022】請求項7の発明に係る電力系統の補償制御
装置は、請求項1〜請求項6の発明において、上記補償
電圧印加手段が静止形電力変換器により構成されるもの
である。
According to a seventh aspect of the invention, there is provided a power system compensation control device according to the first to sixth aspects of the invention, wherein the compensation voltage applying means comprises a static power converter.

【0023】請求項8の発明に係る電力系統の補償制御
装置は、請求項1〜請求項6の発明において、上記補償
電圧印加手段が巻線形交流機により構成されるものであ
る。
According to an eighth aspect of the present invention, there is provided a power system compensation control device according to the first to sixth aspects of the invention, wherein the compensation voltage applying means is constituted by a winding AC machine.

【0024】請求項9の発明に係る電力系統の補償制御
装置は、請求項1〜請求項8の発明において、上記補償
電圧印加手段を上記電力系統に対して分散設置するもの
である。
According to a ninth aspect of the invention, there is provided a power system compensation control apparatus according to the first to eighth aspects, wherein the compensation voltage applying means is dispersedly installed in the power system.

【0025】請求項10の発明に係る電力系統の補償制
御装置は、請求項1〜請求項9の発明において、上記電
力系統の線路の線路電流が上限値を越えたことを検出す
る過電流検出手段と、上記過電流検出手段により過電流
が検出された時上記コンデンサを短絡する短絡手段とを
備えたものである。
According to a tenth aspect of the present invention, there is provided the power system compensation control device according to the first to ninth aspects of the invention, wherein the overcurrent detection detects that the line current of the line of the power system exceeds an upper limit value. And means for short-circuiting the capacitor when the overcurrent is detected by the overcurrent detection means.

【0026】請求項11の発明に係る電力系統の補償制
御装置は、請求項10の発明において、上記上記過電流
検出手段により過電流が検出された時、上記補償電圧印
加手段により上記系統リャクタンスの電圧と和動する電
圧降下を与えるものである。
According to an eleventh aspect of the present invention, in the power system compensation control apparatus according to the tenth aspect of the present invention, when the overcurrent is detected by the overcurrent detecting means, the compensation voltage applying means changes the system reactance. It provides a voltage drop that resonates with the voltage.

【0027】[0027]

【作用】請求項1の発明における電力系統の補償制御装
置は、電力系統のリャクタンス電圧を補償する直列コン
デンサを備えた電力系統において、さらに、上記電力系
統の線路に直列に挿入され指令値に基づく電圧を発生す
る従属電圧源からなる補償電圧印加手段と、上記電力系
統の電気変数の検出手段と、上記検出手段の出力を受け
て上記補償電圧印加手段への指令値を生成する指令値生
成手段とを備えることにより、リャクタンスと共振関係
にならない従属電圧源からの電圧を挿入するので共振問
題が軽減される。また、上記電力系統の電気変数を上記
補償電圧へ帰還するので、脈動が生じようとしても、そ
の脈動を抑制する電圧を印加できる。また、直列コンデ
ンサにより合成系統リャクタンスが小さくなっているの
で、補償電圧印加手段から与えるべき電圧が一層低くと
も、有効無効両電力量を十分調整できる。
According to another aspect of the present invention, there is provided a power system compensation control device, wherein the power system includes a series capacitor for compensating the reactance voltage of the power system. Compensation voltage applying means composed of a dependent voltage source for generating a voltage, detection means for detecting an electric variable of the power system, and command value generating means for receiving an output of the detection means and generating a command value for the compensation voltage applying means. Since the voltage from the dependent voltage source that does not have a resonance relationship with the reactance is inserted, the resonance problem is alleviated. Further, since the electric variable of the electric power system is fed back to the compensation voltage, even if pulsation occurs, a voltage that suppresses the pulsation can be applied. Further, since the combined system reactance is reduced by the series capacitor, even if the voltage to be applied from the compensation voltage applying means is lower, the effective and reactive power amounts can be sufficiently adjusted.

【0028】請求項2の発明における電力系統の補償制
御装置は、電力系統のリャクタンス電圧を補償する直列
コンデンサと、上記電力系統の線路に流れる線路電流ま
たはその比例量を検出する電流検出手段と、上記電流検
出手段により検出された線路電流を所望値にさせる指令
値を生成する指令値生成手段と、上記指令値生成手段に
より生成された指令値に基づいて上記電力系統の線路に
補償電圧を印加する補償電圧印加手段とを備えることに
より、リャクタンスと共振関係にならない従属電圧源か
らの電圧を挿入するので共振問題が軽減される。さら
に、上記電力系統の線路電流を上記補償電圧へ帰還する
ので、線路電流に脈動が生じようとしても、その脈動を
抑制する電圧を印加できる。
According to a second aspect of the present invention, there is provided a power system compensation control device, wherein a series capacitor for compensating the reactance voltage of the power system, a line current flowing through a line of the power system, or a current detecting means for detecting a proportional amount thereof. Command value generating means for generating a command value for making the line current detected by the current detecting means a desired value, and applying a compensation voltage to the line of the power system based on the command value generated by the command value generating means. By including the compensating voltage applying means, the voltage from the dependent voltage source that does not have a resonance relationship with the reactance is inserted, so that the resonance problem is mitigated. Further, since the line current of the power system is fed back to the compensation voltage, even if a pulsation occurs in the line current, a voltage that suppresses the pulsation can be applied.

【0029】請求項3の発明における電力系統の補償制
御装置は、電力系統のリャクタンス電圧を補償する直列
コンデンサと、上記電力系統の線路に流れる線路電流ま
たはその比例量を検出する電流検出手段と、上記電力系
統の電圧またはその比例量を検出する電圧検出手段と、
上記電流検出手段により検出された線路電流および上記
電圧検出手段により検出された系統電圧より上記線路を
介して送電される電力を演算する電力演算手段と、上記
電力演算手段により演算された電力を所望値にさせる指
令値を生成する指令値生成手段と、上記指令値生成手段
により生成された指令値に基づいて上記電力系統の線路
に補償電圧を印加する補償電圧印加手段とを備えること
により、リャクタンスと共振関係にならない従属電圧源
からの電圧を挿入するので共振問題が軽減される。さら
に、上記電力系統の送電電力を上記補償電圧へ帰還する
ので、送電電力に脈動が生じようとしても、その脈動を
抑制する電圧を印加できる。
According to a third aspect of the present invention, there is provided a power system compensation control device, wherein a series capacitor for compensating the reactance voltage of the power system, a line current flowing through a line of the power system, or a current detecting means for detecting a proportional amount thereof. Voltage detection means for detecting the voltage of the power system or a proportional amount thereof,
A power calculation unit that calculates the power transmitted through the line from the line current detected by the current detection unit and the system voltage detected by the voltage detection unit, and the power calculated by the power calculation unit are desired. By including a command value generating means for generating a command value to be a value and a compensation voltage applying means for applying a compensation voltage to the line of the power system based on the command value generated by the command value generating means, the reactance is reduced. Since the voltage from the dependent voltage source that does not have a resonance relationship with is inserted, the resonance problem is mitigated. Further, since the transmission power of the power system is fed back to the compensation voltage, even if a pulsation occurs in the transmission power, a voltage that suppresses the pulsation can be applied.

【0030】請求項4の発明における電力系統の補償制
御装置は、請求項1〜請求項3の発明において、上記指
令値生成手段が少なくとも2軸ベクトル成分から成るベ
クトル指令値を出力し、上記ベクトル指令値に基づき上
記補償電圧印加手段が電圧ベクトルを出力することによ
り、実軸虚軸両成分ひいては有効無効両成分を帰還制御
できるので両成分の脈動や動揺を抑制する作用が得られ
る。また、検出手段も2軸成分を検出するようにすれ
ば、両成分を区別して独立的に制御する作用も得られ
る。
According to a fourth aspect of the present invention, in the power system compensation control device according to the first to third aspects of the present invention, the command value generating means outputs a vector command value consisting of at least two axis vector components, and the vector Since the compensating voltage applying means outputs a voltage vector based on the command value, feedback control can be performed on both the real axis and the imaginary axis component, and thus both the effective and invalid components, so that the pulsation and sway of both components can be suppressed. Further, if the detecting means also detects the biaxial components, it is possible to obtain the action of distinguishing both components and controlling them independently.

【0031】請求項5の発明における電力系統の補償制
御装置は、請求項1〜請求項4の発明において、上記指
令値生成手段が上記線路の電流に対して上記補償電圧を
直交させる位相を有する指令値を生成させることによ
り、補償電圧印加手段に介在する平均電力がほぼゼロに
なるように制御され、その平均電力を軽減ないし抑制す
る作用が得られる。
According to a fifth aspect of the present invention, in the power system compensation control device according to the first to fourth aspects of the invention, the command value generating means has a phase for making the compensation voltage orthogonal to the current of the line. By generating the command value, the average power interposed in the compensation voltage applying means is controlled to be substantially zero, and the effect of reducing or suppressing the average power can be obtained.

【0032】請求項6の発明における電力系統の補償制
御装置は、請求項1〜請求項5の発明において、上記指
令値生成手段が上記指令値の位相を補正(加減)する手
段を備え、上記位相の補正により上記補償電圧印加手段
に介在する電力または電力量を調整することにより、位
相の補正(加減)という極めて簡潔な手段で、上記補償
電圧印加手段の交流側の電圧と電流との位相差を調整し
て、上記介在電力を調整できる。
According to a sixth aspect of the present invention, there is provided a power system compensation control device according to the first to fifth aspects, wherein the command value generating means includes means for correcting (adjusting) the phase of the command value. By adjusting the power or the amount of power that is present in the compensating voltage applying means by correcting the phase, the position of the voltage and current on the AC side of the compensating voltage applying means can be adjusted by a very simple means of correcting (adjusting) the phase. The intervening power can be adjusted by adjusting the phase difference.

【0033】請求項7の発明における電力系統の補償制
御装置は、請求項1〜請求項6の発明において、上記補
償電圧印加手段を静止形電力変換器により構成すること
により、上記補償電圧印加手段の制御に対する応答速度
が速くなり、ひいては上記脈動の抑制や実軸虚軸2成分
の制御の応答速度が速くなる。
According to a seventh aspect of the invention, there is provided a power system compensation control device according to the first to sixth aspects of the invention, wherein the compensation voltage applying means comprises a static power converter. The response speed to the control of (1) becomes faster, and thus the response speed of the above-mentioned pulsation suppression and control of the real axis / imaginary axis two components becomes faster.

【0034】請求項8の発明における電力系統の補償制
御装置は、請求項1〜請求項6の発明において、上記補
償電圧印加手段を巻線形交流機により構成することによ
り、巻線形交流機は、所望の一次電圧ひいては一次磁束
鎖交数に対して、所与の一次電流を考慮して二次電流を
制御すれば、所望の一次電圧となるよう制御できる。即
ち、従属電圧源として活用できる。従って、過電流耐量
が大きい巻線形交流機を用いることにより、上記補償電
圧印加手段の過電流耐量および過負荷耐量が大きくな
る。
According to an eighth aspect of the present invention, there is provided a power line compensation control device according to the first to sixth aspects, wherein the compensation voltage applying means is a winding type AC machine. When the secondary current is controlled in consideration of the given primary current with respect to the desired primary voltage and thus the number of primary magnetic flux linkages, the desired primary voltage can be controlled. That is, it can be utilized as a dependent voltage source. Therefore, by using the winding type AC machine having a large overcurrent withstanding capability, the overcurrent withstanding capability and the overload withstanding capability of the compensation voltage applying means are increased.

【0035】請求項9の発明における電力系統の補償制
御装置は、請求項1〜請求項8の発明において、上記補
償電圧印加手段を上記電力系統に対して分散設置する。
従って、集中設置した場合には補償電圧印加手段の設置
点で線路電圧が急変するのに対し、分散設置することに
より、線路電圧の局所的急変を回避できる。また、一台
の補償電圧印加手段が故障しても半導体素子は故障時短
絡状態になるので、他の健全な補償電圧印加手段で運転
継続できる。
According to a ninth aspect of the present invention, there is provided the power system compensation control apparatus according to the first to eighth aspects, wherein the compensation voltage applying means is dispersedly installed in the power system.
Therefore, in the case of concentrated installation, the line voltage changes abruptly at the installation point of the compensation voltage applying means, whereas in the case of distributed installation, local rapid changes in the line voltage can be avoided. Further, even if one compensating voltage applying means fails, the semiconductor element will be in a short-circuit state at the time of failure, so that the operation can be continued by another sound compensating voltage applying means.

【0036】請求項10の発明における電力系統の補償
制御装置は、請求項1〜請求項9の発明において、上記
電力系統の線路電流が上限値を越えたことを検出する過
電流検出手段と、上記過電流検出手段により過電流が検
出された時上記コンデンサを短絡する短絡手段とを備え
ることにより、平常運転時は直列コンデンサが線路リャ
クタンスを補償して合成リャクタンスが小さくなってい
る。従って、より低い電圧でより大きい電流変化が得ら
れ、補償電圧印加手段による電流や電力の調整がしやす
くなる。一方、地絡事故時には、直列コンデンサによる
補償がなくなるので、地絡電流が小さく抑制される。
According to a tenth aspect of the present invention, there is provided an electric power system compensation control device according to the first to ninth aspects of the present invention, which is an overcurrent detecting means for detecting that the line current of the electric power system exceeds an upper limit value. By providing short-circuiting means for short-circuiting the capacitor when an overcurrent is detected by the overcurrent detecting means, the series capacitor compensates for the line reactance during normal operation and the combined reactance is reduced. Therefore, a larger current change can be obtained at a lower voltage, and it becomes easier to adjust the current and power by the compensation voltage applying means. On the other hand, in the event of a ground fault, compensation by the series capacitor is lost, so the ground current is suppressed to a small level.

【0037】請求項11の発明における電力系統の補償
制御装置は、請求項10の発明において、上記過電流検
出手段により過電流が検出された時、上記補償電圧印加
手段により上記系統リャクタンスの電圧と和動する電圧
降下を与える。これにより、上記請求項10の場合に
は、元々系統リャクタンス電圧が電流を抑制するのに対
し、補償電圧印加手段が同リャクタンス電圧と和動する
電圧を印加するので地絡電流がさらに小さく抑制され
る。
According to an eleventh aspect of the present invention, in the power system compensation control apparatus according to the tenth aspect of the invention, when the overcurrent is detected by the overcurrent detecting means, the voltage of the system reactance is detected by the compensation voltage applying means. Gives a harmonious voltage drop. Thus, in the case of claim 10, the system reactance voltage originally suppresses the current, whereas the compensating voltage applying means applies a voltage that sums with the reactance voltage, so that the ground fault current is further suppressed. It

【0038】[0038]

【実施例】【Example】

実施例1.図1にこの発明の一実施例を示し、同図にお
いて、6は線路リャクタンス,変圧器リーケージリャク
タンス,積極的に挿入する変圧器リーケージリャクタン
ス及び積極的に挿入する限流リャクタンス等からなる系
統リャクタンス、7は直列コンデンサ、8は電流検出手
段、9は電圧検出手段、10は電力検出手段、11は指
令値生成手段、12は補償電圧印加手段(従属電圧
源)、Vi* は電圧指令値(ベクトルまたはスカラ)、
ILは線路電流(ベクトルまたはスカラ)である。上記
補償電圧印加手段12として、直流交流間電力変換器,
高周波リンク形サイクロコンバータ,巻線形交流機な
ど、静止形または回転機形の従属可変電圧源を用い得
る。なお、同一符号は同一手段または相当手段を示す。
Example 1. FIG. 1 shows an embodiment of the present invention. In FIG. 1, 6 is a system consisting of line reactance, transformer leakage reactance, positively inserted transformer leakage reactance and positively inserted current limiting reactance. Reactance, 7 is a series capacitor, 8 is current detection means, 9 is voltage detection means, 10 is power detection means, 11 is command value generation means, 12 is compensation voltage application means (dependent voltage source), and Vi * is voltage command value. (Vector or scalar),
IL is the line current (vector or scalar). As the compensation voltage applying means 12, a DC / AC power converter,
A static or rotating subordinate variable voltage source such as a high frequency link type cycloconverter or a winding type AC machine may be used. The same reference numerals indicate the same means or equivalent means.

【0039】上記実施例において、簡単化する場合、電
力検出手段10を省略して線路電流を代表する電流検出
手段8に応答して補償電圧印加手段12を制御すること
ができる。このとき、検出された電流ILに応じた挿入
電圧Viを与えることにより、種々の制御ができるが詳
細は後記実施例で説明することとし、ここでは、電力に
応答して制御する場合につき説明する。
In the above embodiment, for simplification, the power detection means 10 can be omitted and the compensation voltage application means 12 can be controlled in response to the current detection means 8 representing the line current. At this time, various controls can be performed by giving the insertion voltage Vi corresponding to the detected current IL, but details will be described in the embodiment below, and here, the case of controlling in response to electric power will be described. .

【0040】ここで、直列コンデンサ7は系統リャクタ
ンス6を相殺して合成リャクタンスを低くし、挿入電圧
Viの変化に対して線路電流がより敏感に変化するよう
になる。即ち、より低い挿入電圧で済み、補償電圧印加
手段12の所要容量を軽減できる条件になっている。
Here, the series capacitor 7 cancels the system reactance 6 to reduce the combined reactance, and the line current changes more sensitively to the change of the insertion voltage Vi. That is, a lower insertion voltage is required, and the required capacity of the compensation voltage applying means 12 can be reduced.

【0041】さて、電流検出手段8と電圧検出手段9と
からの出力を受けて、電力検出手段10が送電線路5を
介して送電される電力を演算または検出する。次いで、
この電力に応じて指令値生成手段11が挿入電圧指令V
* を出力し、この指令値を受けて補償電圧印加手段1
2が線路に直列に補償電圧Viを印加する。これに際
し、指令値生成手段11に電力の動揺を抑制する伝達特
性を持たせる方法(少なくとも微分的伝達特性を持たせ
る)や所望の電力に対する偏差に応じて帰還制御する方
法,変分電力に応じて電力の動揺を抑制する伝達特性を
持たせる方法等が採用できる。さらに、線路電流に対し
て直交しかつ系統リャクタンス6の電圧と逆極性の電圧
を挿入すれば送電電力が増加し、同極性の電圧を挿入す
れば送電電力が減少するので、このメカニズムを活用す
ることができる。さらに、送電電力の所望値を外部より
指令として受ける場合、上位の系統安定化制御手段(例
えばパワーシステムスタビライザPSS)より指令を与
えられ得る。
Now, receiving the outputs from the current detection means 8 and the voltage detection means 9, the power detection means 10 calculates or detects the power transmitted through the power transmission line 5. Then
According to this electric power, the command value generating means 11 causes the insertion voltage command V
i * is output, and the compensation voltage applying means 1 receives this command value.
2 applies a compensation voltage Vi in series with the line. At this time, the command value generating means 11 is provided with a transfer characteristic for suppressing fluctuation of the power (at least with a differential transfer characteristic), feedback control is performed according to a deviation with respect to desired power, and variation power is used. It is possible to adopt a method of providing a transfer characteristic that suppresses fluctuation of electric power. Furthermore, if a voltage orthogonal to the line current and having a polarity opposite to the voltage of the system reactance 6 is inserted, the transmission power increases, and if a voltage having the same polarity is inserted, the transmission power decreases, so this mechanism is used. be able to. Furthermore, when receiving a desired value of transmitted power as a command from the outside, a command can be given from a higher-order system stabilization control means (for example, power system stabilizer PSS).

【0042】以上の結果、直列コンデンサ補償のみで
は、直列コンデンサ7が電流の時間積分値に比例する電
圧を生じ、系統リャクタンス6が電流の時間微分値に比
例する電圧を生じるため前記共振問題を生じたのに対し
て、補償電圧印加手段12はそのどちらでもない自由な
電圧を挿入できる。このため、直列コンデンサ7と系統
リャクタンス6との共振による動揺を生じようとする
と、適宜な指令値生成手段11によりその動揺を抑制す
る挿入電圧を補償電圧印加手段12より与え得る。従っ
て、低損失かつ経済的な直列コンデンサ7による補償を
ベースとする補償方式における前記LC共振現象とその
波及による悪影響を軽減ないし抑える作用をすることが
できる。即ち、直列コンデンサ補償方式における過渡特
性や動特性の改善ができる。
As a result, the series capacitor 7 produces a voltage proportional to the time integral value of the current and the system reactance 6 produces a voltage proportional to the time derivative of the current only with the series capacitor compensation, thus causing the resonance problem. On the other hand, the compensation voltage applying means 12 can insert a free voltage which is neither of them. Therefore, when a fluctuation due to resonance between the series capacitor 7 and the system reactance 6 is about to be generated, the compensation voltage applying means 12 can give an insertion voltage for suppressing the fluctuation by the appropriate command value generating means 11. Therefore, it is possible to reduce or suppress the LC resonance phenomenon in the compensation system based on the compensation by the series capacitor 7 which is low in loss and economical and the adverse effects caused by the ripple. That is, transient characteristics and dynamic characteristics in the series capacitor compensation method can be improved.

【0043】以上要約すると、定常的なリャクタンス電
圧の補償の内、基盤的部分を低損失かつ経済的な直列コ
ンデンサ7により補償し、動特性が関わるところで補佐
的に補償電圧印加手段12を備え、LC共振現象とその
波及による悪影響を軽減ないし抑えることができる。特
に、送電端側に発電機がある電源線の場合、発電機のト
ルク脈動による軸捩れ共振を防止する効果がある点も特
筆される。また、補償電圧印加手段12と直列コンデン
サ7との併用で補償電圧印加手段12の所要電圧が低く
なり、所要容量が軽減される。
In summary, of the steady compensation of the reluctance voltage, the basic portion is compensated by the low-loss and economical series capacitor 7, and the compensation voltage applying means 12 is provided as a supplementary part where dynamic characteristics are involved. The LC resonance phenomenon and its adverse effects can be reduced or suppressed. In particular, in the case of a power line having a generator on the power transmission end side, it is also noted that it has an effect of preventing shaft torsion resonance due to torque pulsation of the generator. Further, the required voltage of the compensation voltage applying means 12 is lowered by using the compensation voltage applying means 12 and the series capacitor 7 together, and the required capacity is reduced.

【0044】実施例2.図2(a)は補償電圧印加手段
12に関する一実施例を示す図で、同図において、31
は送電線路5に直列接続された一次巻線311と二次巻
線312とを備えた絶縁変圧器、33は二次巻線312
に交流側端子が接続された静止形直流交流間電力変換
器、35は静止形電力変換器33の直流端子に接続され
た直流コンデンサである。静止形電力変換器33は電流
源形において出力電圧を制御する電圧制御形でもよく、
この場合直流コンデンサ35に代わり直流リャクトルを
用いることができる。また、反電力系統側に高周波回路
(高周波コンデンサ)を持つ高周波リンク形サイクロコ
ンバータでもよい。いずれにせよ、何等かの電圧指令V
* を受けて出力電圧を制御するものであればよい。
Example 2. FIG. 2A is a diagram showing an embodiment relating to the compensation voltage applying means 12, and in FIG.
Is an insulating transformer having a primary winding 311 and a secondary winding 312 connected in series to the transmission line 5, and 33 is a secondary winding 312.
A static DC / AC power converter whose AC side terminal is connected to the power converter 35, and a DC capacitor 35 connected to the DC terminal of the static power converter 33. The static power converter 33 may be a voltage control type that controls an output voltage in a current source type,
In this case, a DC reactor can be used instead of the DC capacitor 35. Further, a high frequency link type cycloconverter having a high frequency circuit (high frequency capacitor) on the anti-power system side may be used. In any case, some kind of voltage command V
Anything that receives the i * and controls the output voltage may be used.

【0045】補償電圧印加手段12を静止形電力変換器
33により構成することにより、上記補償電圧印加手段
12の制御に対する応答速度が速くなり、ひいては上記
脈動の抑制や電圧,電流,電力などの実軸虚軸2成分の
制御の応答速度が速くなる。ひいては、系統安定化制御
の応答速度を向上できる効果が得られる。なお、詳細は
後述実施例で説明する。
By configuring the compensating voltage applying means 12 by the static power converter 33, the response speed to the control of the compensating voltage applying means 12 becomes faster, and eventually the pulsation is suppressed and the actual voltage, current, power, etc. are suppressed. The response speed of control of the axis imaginary axis two components becomes faster. As a result, the effect of improving the response speed of system stabilization control can be obtained. The details will be described later in Examples.

【0046】実施例3.図2(b)は補償電圧印加手段
の別の実施例を示す図で、同図において、50は一次巻
線50aと二次巻線50bとを備えた巻線形交流機、6
00は二次巻線50bの励磁制御装置である。巻線形交
流機50は、一次電流と二次電流とで決まる一次磁束鎖
交数に応じた一次電圧を発生する。即ち、必要な一次電
圧と実一次電流が与えられれば必要な二次電流を決め得
る。また、送電線路5が絶縁変圧器31を介して一次巻
線50aに結合されているので、線路電流iLを代表す
る電流が一次巻線50aにも流れ、この電流検出手段8
を内在させて送電線路5の電流検出手段に替えることが
できる。
Example 3. FIG. 2B is a diagram showing another embodiment of the compensation voltage applying means, in which 50 is a winding type AC machine having a primary winding 50a and a secondary winding 50b.
Reference numeral 00 is an excitation control device for the secondary winding 50b. The wound-type AC machine 50 generates a primary voltage according to the number of primary magnetic flux linkages determined by the primary current and the secondary current. That is, the required secondary current can be determined if the required primary voltage and the actual primary current are given. Further, since the power transmission line 5 is coupled to the primary winding 50a via the insulating transformer 31, a current representative of the line current iL also flows in the primary winding 50a, and this current detection means 8
Can be made to exist internally and can be replaced with the current detection means of the transmission line 5.

【0047】以上により、発生すべき挿入電圧Vi*
一次電流i1∝ILとから必要な二次励磁電流i2を決
めることができ、ひいては励磁電圧の操作により二次電
流i2や挿入電圧Viを制御できる。この詳細も、後記
詳細実施例で説明する。さて、巻線形交流機50は、所
望の一次電圧ひいては一次磁束鎖交数に対して、所与の
一次電流を考慮して二次電流を制御すれば、上記所望の
一次電圧となるよう制御できる。即ち、従属電圧源とし
て活用できる。従って、過電流耐量が大きい巻線形交流
機50を用いることにより、上記補償電圧印加手段12
の過電流耐量および過負荷耐量が大きくなる。さらに、
系統安定化に必要な制御上の電流可変幅を大きく取り得
る効果もある。換言すれば、過負荷耐量が大きいことを
利用して大きな安定化効果が得られる。なお、詳細は後
述実施例で説明する。
As described above, the required secondary excitation current i2 can be determined from the insertion voltage Vi * to be generated and the primary current i1∝IL, and the secondary current i2 and the insertion voltage Vi can be controlled by operating the excitation voltage. it can. The details will also be described in a detailed example below. The wound-type AC machine 50 can be controlled to have the desired primary voltage by controlling the secondary current in consideration of the given primary current with respect to the desired primary voltage and thus the primary magnetic flux linkage number. . That is, it can be utilized as a dependent voltage source. Therefore, by using the winding type AC machine 50 having a large overcurrent withstand capability, the compensation voltage applying means 12 is
The overcurrent withstand and overload withstand levels of are increased. further,
There is also an effect that a large variable current range for control necessary for system stabilization can be obtained. In other words, a large stabilization effect can be obtained by utilizing the fact that the overload tolerance is large. The details will be described later in Examples.

【0048】実施例4.図3(a)(b)は挿入電圧V
iのベクトル関係の取り方を示す図で、都合上本文では
交流ベクトルを表すドットマーク“・”を省略して記述
する。同図において、Vs,Vrはそれぞれ送電側電圧
ベクトルおよび受電側電圧ベクトル、ILは線路電流ベ
クトル、Vx,Vcはそれぞれ系統リャクタンス電圧ベ
クトルおよび直列コンデンサ電圧ベクトルである。受電
側電圧を基準に考えると、系統リャクタンス電圧Vxを
直列コンデンサ電圧Vcで打ち消した点の送電側電圧V
s(実線表示)を中心に、挿入電圧Viを電流に対して
直交関係を保ちながら正負極性に渡って制御すると、点
線で示した送電側電圧ベクトルの変化幅に対処できるわ
けである。
Example 4. 3A and 3B show the insertion voltage V
In the text, the dot mark "." representing an AC vector is omitted for convenience sake. In the figure, Vs and Vr are the power transmission side voltage vector and the power reception side voltage vector, IL is the line current vector, and Vx and Vc are the system reactance voltage vector and the series capacitor voltage vector, respectively. Considering the power reception side voltage as a reference, the power transmission side voltage V at the point where the system reactance voltage Vx is canceled by the series capacitor voltage Vc
If the insertion voltage Vi is controlled over the positive and negative polarities while maintaining the orthogonal relationship to the current centering on s (displayed by a solid line), the variation width of the voltage vector on the power transmission side indicated by the dotted line can be dealt with.

【0049】同図(a)は受電側電圧と線路電流が同相
となるよう送電側電圧ベクトルを維持した典型的実施例
を示し、同図(b)は線路電流が受電側電圧と送電側電
圧との間の位相となるよう維持した典型的実施例を示
す。これらの維持関係は、送電側または受電側の発電機
を始め両側の機器との協調制御、または、送受電両側電
圧ベクトルに対して線路電流ベクトルの位相をどの範囲
に定めるかによって実現法の細部を決め得る。
FIG. 9A shows a typical embodiment in which the voltage vector on the power transmission side is maintained so that the voltage on the power receiving side and the line current are in phase, and FIG. 7 illustrates an exemplary embodiment maintained to be in phase between and. These maintenance relationships are realized by the coordinated control with the equipment on both sides including the generator on the power transmitting side or the power receiving side, or the range of the phase of the line current vector with respect to the voltage vector on both sides of power transmission / reception. Can be decided.

【0050】補償電圧印加手段12を設置するノードで
のローカルかつ検出容易な変数をベクトルの基準とし、
補償電圧印加手段12に介在する有効電力の積算値ひい
てはエネルギ貯蔵を最小化する上で、線路電流ベクトル
自体を基準にするのがよい。これにより、線路電流ベク
トルに対して挿入電圧ベクトルを直交させることを基本
とし、かつ、幾らかの同相(同軸)電圧成分または過渡
的な同相(同軸)電圧成分を補助的に挿入することがで
きる。この詳細実施例も後述する。
Variables which are local and easily detected at the node where the compensation voltage applying means 12 is installed are used as vector references.
In order to minimize the integrated value of the active power present in the compensation voltage applying means 12 and thus the energy storage, it is preferable to use the line current vector itself as a reference. As a result, the insertion voltage vector is made orthogonal to the line current vector, and some in-phase (coaxial) voltage components or transient in-phase (coaxial) voltage components can be supplementarily inserted. . This detailed embodiment will also be described later.

【0051】上記ベクトル関係の取り方で重要なこと
は、定常的な系統リャクタンス電圧Vxの一部分ないし
大部分を定常的な直列コンデンサ電圧Vcで補償し、過
渡特性や動特性(例えば、変数の変分に関して論じられ
る固有値による安定性や変分に対する周波数特性)を補
佐的挿入電圧Viで改善することである。また、地絡事
故時の事故電流制限のような過渡時には、インダクティ
ブな系統リャクタンスと同方向の挿入電圧を与える。こ
のような作用は、指令値生成手段11に線路電流の制御
系を持たせることにより実現できる。
What is important in obtaining the above-mentioned vector relation is to compensate a part or most of the steady system reactance voltage Vx with the steady series capacitor voltage Vc to obtain transient characteristics and dynamic characteristics (for example, change of variables). The stability due to the eigenvalue and the frequency characteristic against variation) discussed with respect to the component are improved by the auxiliary insertion voltage Vi. In addition, during transients such as fault current limiting during a ground fault, an inductive voltage in the same direction as the inductive system reactance is applied. Such an action can be realized by providing the command value generation means 11 with a line current control system.

【0052】以上要約すると、線路電流ベクトルに対し
て直交する電圧ベクトルを補償電圧印加手段12から線
路に直列に印加することにより、線路電流制御や送受電
端間電圧変動に対処でき、かつ、補償電圧印加手段12
に介在する電力を最少化できる効果が得られる。さらに
このため、補償電圧印加手段12を簡略化でき経済性が
向上する効果が得られる。
In summary, by applying a voltage vector orthogonal to the line current vector in series to the line from the compensating voltage applying means 12, line current control and voltage fluctuation between the power transmitting and receiving ends can be dealt with, and compensation can be performed. Voltage applying means 12
It is possible to obtain the effect of minimizing the electric power intervening in. Therefore, the compensating voltage applying means 12 can be simplified and the economy can be improved.

【0053】実施例5.図4は電力検出手段10および
指令値生成手段11に関する詳細部分実施例を示す図で
ある。同図の電力検出手段10において、13,14は
3相/2相変換手段又は同演算手段で次式の演算を行う
ものである。電流に関する3相/2相変換手段14も、
電圧が電流に変わるだけで同様の演算でよく、同一の変
換行列を用いて変換できる。
Example 5. FIG. 4 is a diagram showing a detailed partial embodiment relating to the power detection means 10 and the command value generation means 11. In the power detection means 10 of the figure, 13 and 14 are three-phase / two-phase conversion means or the same operation means for performing the operation of the following equation. The three-phase / two-phase conversion means 14 relating to the electric current is also
The same calculation may be performed only by changing the voltage to the current, and conversion can be performed using the same conversion matrix.

【0054】[0054]

【数1】 [Equation 1]

【0055】さらに、15は電流検出手段8及び電圧検
出手段9の出力を受けて送電電力を検出または演算する
電力検出手段または電力演算手段である。これら検出出
力は指令値生成手段11へ与えられる。
Further, 15 is a power detection means or power calculation means for receiving or outputting the current detection means 8 and the voltage detection means 9 to detect or calculate the transmitted power. These detection outputs are given to the command value generating means 11.

【0056】次に、指令値生成手段11の内制御や演算
上で必要な基準ベクトルの導出法につき先に説明する。
指令値生成手段11において、16,17は積分手段ま
たは積分演算手段で、位相が90゜遅れ方向に回転し
(軸が入れ代わり一方の極性が負になり)α−β軸の磁
束鎖交数λα,λβを出力する。この時、極性が変わる
β軸の積分手段17に対して符号を変えてβ軸の磁束鎖
交数λβを得る。18はベクトルの絶対値演算手段、1
9,20は基準ベクトルとなる単位ベクトル[eα,e
β]T =[sinθe,cosθe]T を出力する除算
手段、21は単位ベクトル[eα,eβ]T から基準ベ
クトルの回転角θeを演算する手段(逆三角関数演算手
段)である。以上16〜21は、観測および制御上の基
準座標(単位ベクトルeまたは、基準ベクトルの回転角
θe)を決める座標規準演算手段である。上記実施例で
は電圧を積分した磁束鎖交数λα,λβを基準にしてい
るので、瞬時電圧変動の影響を受けにくく、サージによ
る誤動作も起こしにくいと云う特長がある。
Next, the method of deriving the reference vector required for the internal control and calculation of the command value generating means 11 will be described first.
In the command value generating means 11, reference numerals 16 and 17 denote integrating means or integral calculating means, which rotate the phase in the direction delayed by 90 ° (the axes are interchanged and one polarity becomes negative), and the flux linkage number λα of the α-β axis. , Λβ are output. At this time, the sign is changed with respect to the β-axis integrating means 17 whose polarity changes, and the β-axis flux linkage number λβ is obtained. Reference numeral 18 is a vector absolute value calculating means, 1
9 and 20 are unit vectors [eα, e that are reference vectors.
β] T = [sin θe, cos θe] T is output as a dividing unit, and 21 is a unit (inverse trigonometric function calculating unit) for calculating the rotation angle θe of the reference vector from the unit vector [eα, eβ] T. The above 16 to 21 are coordinate standard calculation means for determining the reference coordinates (unit vector e or rotation angle θe of the reference vector) for observation and control. In the above-mentioned embodiment, since the magnetic flux linkage numbers λα and λβ obtained by integrating the voltage are used as a reference, it is less susceptible to the influence of the instantaneous voltage fluctuation, and the malfunction due to the surge is less likely to occur.

【0057】他の実施例として、磁束鎖交数λα,λβ
にかえて電圧ベクトルVα,Vβや電流ベクトルiα,
iβを基準ベクトルに選ぶことができる。この場合、電
圧検出手段9または電流検出手段8の出力から得られる
電圧または電流を3相/2相変換手段13,14で3相
/2相変換し、その出力Vα,Vβまたはiα,iβを
絶対値演算手段18及び除算手段19,20に入れれば
よい。これらは、基準ベクトルの導出が簡単になる特長
がある。また、電流ベクトルは、地絡事故時に存続しや
すい量で、かつ、電圧サージの影響を受けにくい特長が
ある。更に、これらをPLL(フェーズ・ロックド・ル
ープ)と組み合わせて基準ベクトルの回転角θeを決め
たり、単位ベクトル[eα,eβ]T =[sinθe,
cosθe]T を演算できる。
As another embodiment, the flux linkage numbers λα, λβ
Instead, the voltage vectors Vα, Vβ and the current vector iα,
iβ can be chosen as the reference vector. In this case, the voltage or current obtained from the output of the voltage detection means 9 or the current detection means 8 is converted into three-phase / two-phase by the three-phase / two-phase conversion means 13 and 14, and its output Vα, Vβ or iα, iβ is converted. It may be inserted in the absolute value calculating means 18 and the dividing means 19, 20. These have a feature that the derivation of the reference vector is easy. In addition, the current vector has a feature that it is easy to survive a ground fault and is not easily affected by a voltage surge. Further, these are combined with a PLL (Phase Locked Loop) to determine the rotation angle θe of the reference vector, and the unit vector [eα, eβ] T = [sin θe,
cos θe] T can be calculated.

【0058】次いで、送電電力を制御するために、補償
電圧印加手段が印加すべき挿入電圧ベクトルの指令値V
* を演算する部分につき説明する。同図において、2
2,23は電力制御手段で、22はその電力比較部,2
3は電力制御演算部である。更に、24は電流ベクトル
iα,iβを単位ベクトルeα,eβにより同期回転座
標の量id,iqへ変換する座標変換手段で次式の演算
を行うものである。
Then, in order to control the transmitted power, the command value V of the insertion voltage vector to be applied by the compensation voltage applying means.
The part for calculating i * will be described. In the figure, 2
2, 23 is a power control means, 22 is a power comparison unit, 2
3 is a power control calculation unit. Further, reference numeral 24 is a coordinate conversion means for converting the current vectors iα, iβ into the quantities id, iq of the synchronous rotation coordinates by the unit vectors eα, eβ, and performs the calculation of the following equation.

【0059】[0059]

【数2】 [Equation 2]

【0060】即ち、電気角θeで回転している電流ベク
トルiα,iβを上式により、θeだけ逆回転させ、静
止ベクトルに変換するベクトル回転器である。更に、2
5,26は乗算手段、27は直交変換手段(直交切り換
え手段)、28はベクトル回転手段である。
That is, it is a vector rotator which reverses the current vectors iα, iβ rotating at the electrical angle θe by θe by the above equation and converts them into a stationary vector. Furthermore, 2
Reference numerals 5 and 26 are multiplication means, 27 is orthogonal transformation means (orthogonal switching means), and 28 is vector rotation means.

【0061】次いで、作用を説明する。先ず、電力比較
部22で電力指令P* と送電電力Pとが比較され,その
偏差が電力制御演算部23に与えられ比例係数(挿入リ
ャクタンス)Xiを出力する。この時、電力制御演算部
23は比例演算P,比例積分演算PI,比例積分微分演
算PIDなどの制御演算を行えばよい。次いで、乗算手
段25,26で各軸電流id,iqに上記比例係数Xi
を掛けて挿入すべき電圧ベクトルVid* ,Viq*
出力する。この時、挿入すべきリャクタンス電圧は電流
より位相を90゜(π/2)進める必要がある。即ち、
直交変換する必要があり、直交変換手段27がこの手段
で、乗算手段25,26の出力は互いに他軸へ与えると
共に、虚軸(q軸)から実軸(d軸)へ与える符号を反
転する。これらの演算を固定子座標(α−β軸や、RS
T軸)で行ってもよい。
Next, the operation will be described. First, the power comparison unit 22 compares the power command P * with the transmitted power P, and the deviation is given to the power control calculation unit 23 to output a proportional coefficient (insertion reactance) Xi. At this time, the power control calculation unit 23 may perform control calculation such as proportional calculation P, proportional integral calculation PI, and proportional integral differential calculation PID. Then, the multiplication means 25, 26 add the proportional coefficient Xi to each axis current id, iq.
To output voltage vectors Vid * and Viq * to be inserted. At this time, the phase of the reactance voltage to be inserted must be advanced by 90 ° (π / 2) from the current. That is,
It is necessary to perform the orthogonal transformation, and the orthogonal transformation means 27 is the means for giving the outputs of the multiplying means 25 and 26 to the other axes and inverting the sign given from the imaginary axis (q axis) to the real axis (d axis). . These calculations are applied to the stator coordinates (α-β axis, RS
It may be performed on the T axis.

【0062】これら送電電力制御を行うことにより、フ
ィードバック制御作用による送電電力の脈動抑制作用が
働く。従って、前記LC共振とのビートによる有効電力
の脈動が生じようとしても電力制御が働くので、それら
脈動の抑制作用がさらに確実なものとなる特長がある。
また、上記挿入リャクタンスXiは、可変リャクタンス
制御により線路電流を制御する場合にも使用できる。さ
らに、補償電圧印加手段12からの変分回転角指令△θ
だけ回転を加えるベクトル回転手段28を備え、この出
力Vi* が前記補償電圧印加手段12への電圧ベクトル
指令になる。ここで、上記変分回転角指令△θ* は補償
電圧印加手段12に介在する電力を調整する機能を果た
し、その積算値に対応する量(補償電圧印加手段12の
反電源側電圧や速度)を制御する作用を受け持つ。な
お、ベクトルの回転は入力ベクトルに次式の行列を左か
ら掛けて得られる。
By performing the transmission power control, the pulsation suppressing action of the transmission power by the feedback control action works. Therefore, even if the pulsation of active power due to the beat with the LC resonance is about to occur, the power control works, so that the effect of suppressing these pulsations is further ensured.
The insertion reactance Xi can also be used when the line current is controlled by the variable reactance control. Further, the variational rotation angle command Δθ from the compensation voltage applying means 12
A vector rotating means 28 for applying rotation is provided, and this output Vi * serves as a voltage vector command to the compensation voltage applying means 12. Here, the variation rotation angle command Δθ * has a function of adjusting the electric power intervening in the compensation voltage applying means 12 and is an amount corresponding to the integrated value (a voltage or speed of the compensating voltage applying means 12 opposite to the power supply side). Is responsible for controlling. The vector rotation can be obtained by multiplying the input vector by the matrix of the following equation from the left.

【0063】[0063]

【数3】 (Equation 3)

【0064】この実施例は、簡単な係数の乗算で済み、
かつ、直交電圧を印加するので補償電圧印加手段12に
介在する電力の平均値や積算値をほぼゼロにできる。従
って、経済的となる特長がある。
This embodiment requires a simple coefficient multiplication,
Moreover, since the orthogonal voltage is applied, the average value and integrated value of the electric power intervening in the compensation voltage applying means 12 can be made almost zero. Therefore, there is an economical advantage.

【0065】実施例6.図5は電力検出手段10および
指令値生成手段11に関する他の詳細部分実施例を示す
図である。同図において、51,53はd軸(実軸)電
流制御手段で、51はその電流比較部,53はその電流
制御演算部、52,54はq軸(虚軸)電流制御手段
で、52はその電流比較部,54はその電流制御演算部
である。さらに、55,58は同一軸へ与える電圧指令
値を決める係数掛け算手段(係数器)、56,57は他
軸(直交軸)へ与える電圧指令値を決める係数掛け算手
段(係数器)、59,60は指令値の合成手段(加減算
手段)である。
Example 6. FIG. 5 is a diagram showing another detailed partial embodiment of the power detection means 10 and the command value generation means 11. In the figure, 51 and 53 are d-axis (real axis) current control means, 51 is the current comparison section, 53 is the current control calculation section, 52 and 54 are q-axis (imaginary axis) current control means, 52 Is the current comparison unit, and 54 is the current control calculation unit. Further, 55 and 58 are coefficient multiplying means (coefficient multiplier) for determining a voltage command value to be given to the same axis, and 56 and 57 are coefficient multiplying means (coefficient multiplier) for determining a voltage command value to be given to another axis (orthogonal axis). Reference numeral 60 is a command value combining means (addition / subtraction means).

【0066】電流,電圧,電力および基準ベクトルの検
出演算部は前記図4と同じゆえ説明を省略する。次に、
内側制御ループで線路電流の制御を行う場合の電圧指令
値生成部の動作を説明する。電力比較部22で電力指令
* と送電電力Pとが比較され,その偏差が電力制御演
算部23に与えられ実軸電流指令値id* を出力する。
この時、電力制御演算部23は比例演算P,比例積分演
算PI,比例積分微分演算PIDなどの制御演算を行え
ばよい。さらに、実軸電流指令値id* は電流比較部5
1で実軸電流idと比較され、この電流偏差を電流制御
演算部53に与えて電流偏差応答量iedを出力する。
この時、電流制御演算部53は比例演算P,比例積分演
算PIなどの制御演算を行えばよい。
The detection operation unit for the current, voltage, power and reference vector is the same as in FIG. next,
The operation of the voltage command value generator when the line current is controlled by the inner control loop will be described. The power comparison unit 22 compares the power command P * with the transmitted power P, and the deviation is given to the power control calculation unit 23 to output the actual axis current command value id * .
At this time, the power control calculation unit 23 may perform control calculation such as proportional calculation P, proportional integral calculation PI, and proportional integral differential calculation PID. Further, the actual axis current command value id * is calculated by the current comparison unit 5
In step 1, the current deviation is compared with the real axis current id, and this current deviation is given to the current control calculation unit 53 to output the current deviation response amount ied.
At this time, the current control calculator 53 may perform control calculations such as proportional calculation P and proportional integral calculation PI.

【0067】他方、q軸電流制御側(虚軸電流制御側)
は、後述の補償電圧印加手段に介在する電力またはその
積分応答量を制御するために活用し、このq軸電流指令
値iq* は補償電圧印加手段12から与えられる。q軸
電流制御手段52,54の動作および特性付けは上記d
軸の場合と同様でよい。これら線路電流制御を行うこと
により、フィードバック制御作用による線路電流の脈動
抑制作用が働き、前記LC共振の抑制作用がさらに確実
なものとなる特長がある。ここでは、線路電流の2軸成
分、即ち電流ベクトルを制御する精細制御例を示してい
るが、実軸電流制御系(線路の有効電流制御係)が主に
なる。従って、電流の絶対値や実効値など、スカラ制御
だけでもLC共振による脈動の抑制作用向上効果が得ら
れる。
On the other hand, q-axis current control side (imaginary axis current control side)
Is used to control the electric power or the integral response amount of the electric power interposed in the compensation voltage applying means, which will be described later. The q-axis current command value iq * is given from the compensation voltage applying means 12. The operation and characterization of the q-axis current control means 52 and 54 are described in the above d.
It may be similar to the case of the shaft. By performing the line current control, the line current pulsation is suppressed by the feedback control, and the LC resonance is suppressed more reliably. Here, an example of fine control for controlling the biaxial component of the line current, that is, the current vector is shown, but the actual axis current control system (line active current control section) is mainly used. Therefore, the effect of improving the pulsation suppressing effect due to LC resonance can be obtained only by the scalar control such as the absolute value or the effective value of the current.

【0068】実施例7.次に、2軸の線路電流制御手段
から電圧指令値を決める部分につき詳しい動作を説明す
る。夫々の軸ごとの制御演算手段53,54からの出力
に対して、係数掛け算手段55〜58および合成手段5
9,60は次式の行列演算を行う。
Example 7. Next, the detailed operation of the part that determines the voltage command value from the biaxial line current control means will be described. Coefficient multiplication means 55 to 58 and synthesis means 5 are applied to the outputs from the control calculation means 53 and 54 for each axis.
9 and 60 perform the matrix calculation of the following equation.

【0069】[0069]

【数4】 [Equation 4]

【0070】ここに、k2は自軸電流を流すための直交
リャクタンス電圧を与える係数、k3は自軸電流を与え
るための抵抗降下電圧やダンピングを加えるための係数
である。この様に、直交他軸へのリャクタンス電圧のみ
ならず、同一軸(自軸)の電圧成分も与えることによ
り、線路電流の制御特性が改善される点が特長となる。
また、実軸電流指令id* を有効電流指令ip* に代
え、虚軸電流指令iq*を無効電流指令iQ *に代えて利
用できる。さらに、虚軸電流指令iq* はゼロにして置
き、その変分が補償電圧印加手段12に介在する電力を
左右するので、補償電圧印加手段12からの変分虚軸電
流指令△iq* を受けて、これにより補償電圧印加手段
12に介在する電力およびその積算応答量を制御でき
る。以上の如くして得られた電圧指令値ベクトルVi*
は、補償電圧印加手段12への前記挿入電圧指令として
与えられる。
Here, k2 is a coefficient for giving a quadrature reactance voltage for flowing the self-axis current, and k3 is a coefficient for adding a resistance drop voltage and damping for giving the self-axis current. In this manner, not only the reactance voltage to the orthogonal other axis but also the voltage component of the same axis (self axis) is applied to improve the control characteristic of the line current.
Further, instead of the real axis current command id * in active current command ip *, can be utilized instead of the imaginary axis current command iq * in reactive current command i Q *. Further, the imaginary axis current command iq * is set to zero, and its variation influences the electric power intervening in the compensation voltage applying means 12. Therefore, the variation imaginary axis current command Δiq * from the compensation voltage applying means 12 is received. As a result, the electric power present in the compensation voltage applying means 12 and its integrated response amount can be controlled. The voltage command value vector Vi * obtained as described above
Is given as the insertion voltage command to the compensation voltage applying means 12.

【0071】さらに、上記指令値生成手段11の指令入
力id* ,iq* に替えて、線路電流指令(絶対値)i
L *,有効電流指令iP *,無効電流指令iQ *や有効電力指
令Pr,無効電流指令Qrなどを与え、上位制御手段
(図示せず)からこれら指令を与えることにより、系統
電流の制御,有効電流や無効電流の制御または有効電力
または無効電力の制御、ひいては潮流の制御,系統安定
化制御(電圧,電流,電力の安定化,脱調抑制,制御理
論的動特性上の安定化など)および系統の位相差動揺・
電力動揺の抑制,過渡特性および動特性のさらなる向上
などができる。
Further, instead of the command inputs id * and iq * of the command value generating means 11, the line current command (absolute value) i
L * , active current command i P * , reactive current command i Q * , active power command Pr, reactive current command Qr, etc. are given, and the system current is controlled by giving these commands from a host control means (not shown). , Active current or reactive current control or active power or reactive power control, which in turn controls power flow, system stabilization control (voltage, current, power stabilization, step out suppression, control theoretical dynamic characteristic stabilization, etc.) ) And the phase differential swing of the system
Power fluctuations can be suppressed and transient and dynamic characteristics can be further improved.

【0072】実施例8.図6は静止形の補償電圧印加手
段に関する部分実施例を示す図で、同図において、一次
巻線311a,311bが夫々送電線路5に直列接続さ
れ、かつ、二次巻線312a,312bが夫々代表的な
2レベルまたは3レベルの3相インバータ33a,33
bに接続される位相変圧器31a,31bを備える。イ
ンバータに替えて高周波リンク形サイクロコンバータで
もよい。更に、35は直流リンク用平滑コンデンサで、
サイクロコンバータの場合は高周波リンク用交流コンデ
ンサである。この高周波リンク部の相数は単相以外に3
相などの多相にできる。
Example 8. FIG. 6 is a diagram showing a partial embodiment relating to the static compensation voltage applying means, in which primary windings 311a and 311b are respectively connected in series to the transmission line 5 and secondary windings 312a and 312b are respectively connected. Typical two-level or three-level three-phase inverters 33a, 33
It comprises phase transformers 31a, 31b connected to b. A high frequency link type cycloconverter may be used instead of the inverter. Further, 35 is a smoothing capacitor for DC link,
In the case of a cycloconverter, it is an AC capacitor for high frequency links. The number of phases of this high-frequency link is 3 other than single phase
It can be a polyphase such as a phase.

【0073】以上主回路部において、二次巻線312
a,312b間に電気角30゜(π/6)の位相差を付
けた例を示し、この位相差を付けることにより一次巻線
311a,311bでの合成電圧の高調波を減少させる
とともに、二次巻線312a,312bの高調波電流も
軽減させる。当然、静止形電力変換器(3相インバー
タ)33a、33b間も電気角30゜(π/6)の位相
差を持たせて運転させる。上記主回路部の起動に先立
ち、初期充電回路や初期充電動作モードを持たせること
ができる。
In the main circuit section as described above, the secondary winding 312
An example in which a phase difference of 30 ° (π / 6) in electrical angle is provided between a and 312b, and by adding this phase difference, harmonics of the combined voltage in the primary windings 311a and 311b are reduced and The harmonic currents of the secondary windings 312a and 312b are also reduced. Naturally, the static power converters (three-phase inverters) 33a and 33b are also operated with a phase difference of 30 ° (π / 6) in electrical angle. Prior to the activation of the main circuit section, an initial charging circuit and an initial charging operation mode can be provided.

【0074】次に、同図において、リンク用交流コンデ
ンサ35の電圧は変換器に介在する電力の出入りの積算
値、即ちエネルギ収支により変化するので、この電圧を
所定範囲に調整することが必要になる。このためさら
に、下記制御部を備える。同図において、36は電圧検
出手段、37,38は電圧制御手段(レギュレータAV
R)で、37はその指令電圧Vdc* との比較部、38
はその電圧制御演算部である。ここに、電圧制御演算部
38は比例演算P,比例積分演算PI,比例積分微分演
算PIDなどの制御演算を行えばよい。この出力は前記
指令値生成手段11へ帰還され、挿入電圧指令Vi*
して帰還されてくる。この時、前記指令値生成手段11
で補償電圧印加手段12に介在する電力に関係する量
(iq* ,△θ* )が制御され、線路電流と同相の電圧
成分が挿入電圧指令Vi* に含まれ、この制御が行われ
る。この結果、各電力変換器ユニットの直流電流ひいて
は直流電圧が調整されて、電圧制御系が完結されるわけ
である。
Next, in the figure, the voltage of the AC capacitor 35 for link changes depending on the integrated value of the input and output of the electric power intervening in the converter, that is, the energy balance. Therefore, it is necessary to adjust this voltage to a predetermined range. Become. Therefore, the following control unit is further provided. In the figure, 36 is a voltage detecting means, 37 and 38 are voltage controlling means (regulator AV
R), 37 is a comparison part with the command voltage Vdc * , 38
Is the voltage control calculator. Here, the voltage control calculation unit 38 may perform control calculation such as proportional calculation P, proportional integral calculation PI, and proportional integral differential calculation PID. This output is fed back to the command value generating means 11 and fed back as the insertion voltage command Vi * . At this time, the command value generating means 11
In an amount related to the power interposed compensation voltage application means 12 (iq *, △ θ * ) is controlled, the voltage component of the line current and phase are included in the inserted voltage command Vi *, the control is performed. As a result, the DC current of each power converter unit and thus the DC voltage are adjusted, and the voltage control system is completed.

【0075】次いで、挿入電圧指令Vi* を受けて各電
力変換器ユニットを制御する部分について説明する。同
図において、39は座標変換手段、41はベクトル回転
手段、40,42は2相/3相変換手段である。さて、
座標変換手段39は複数の電力変換器33a,33bに
共通な電圧ベクトル指令Vi* を次式で表わされる“回
転角度θeを持つ基準ベクトル(単位ベクトル)”を用
いて固定座標(ステーショナリ・リファレンスフレー
ム)へ座標変換する。
Next, a portion for controlling each power converter unit upon receiving the insertion voltage command Vi * will be described. In the figure, 39 is a coordinate conversion means, 41 is a vector rotation means, and 40 and 42 are 2-phase / 3-phase conversion means. Now,
The coordinate conversion means 39 uses the voltage vector command Vi * common to the plurality of power converters 33a and 33b as a fixed coordinate (stationary reference frame) by using a “reference vector (unit vector) having a rotation angle θe” represented by the following equation. ).

【0076】[0076]

【数5】 (Equation 5)

【0077】即ち、次式の演算を行う。この演算に要す
る上記基準ベクトルは前記の指令値生成手段11より与
えられる。
That is, the following equation is calculated. The reference vector required for this calculation is given by the command value generating means 11.

【0078】[0078]

【数6】 (Equation 6)

【0079】電圧ベクトル指令Vi* は交流理論でよく
知られたRe−Im表示の実軸成分と虚軸成分に対応す
る任意な同期回転座標(シンクロナスリー・リファレン
スフレーム)のd−q2軸成分からなるベクトルで、上
記座標変換により固定座標のα−β軸の量(交流)に変
換される。相数変換手段40,42はα−β軸の2相指
令を3相指令に変換する相数変換手段または相数変換演
算手段である。この相数変換は次式で表される。
The voltage vector command Vi * is a dq2 axis component of an arbitrary synchronous rotation coordinate (synchronous reference frame) corresponding to the real axis component and the imaginary axis component of Re-Im display well known in AC theory. Is converted into a quantity (alternating current) on the α-β axis of fixed coordinates by the above coordinate conversion. The phase number conversion means 40 and 42 are phase number conversion means or phase number conversion calculation means for converting a two-phase command on the α-β axis into a three-phase command. This phase number conversion is expressed by the following equation.

【0080】[0080]

【数7】 (Equation 7)

【0081】さらに、同図において、41はベクトル回
転手段(VR)またはベクトル回転演算手段であり、そ
の演算は一般的回転角度入力をθとすると次式で表され
る。
Further, in the figure, reference numeral 41 is a vector rotation means (VR) or a vector rotation calculation means, and the calculation is represented by the following equation, where θ is a general rotation angle input.

【0082】[0082]

【数8】 (Equation 8)

【0083】同図のベクトル回転手段41においてはθ
を−30゜(−π/6)にして演算することを意味す
る。これにより、前記主回路の位相差を付けた運転指令
が得られる。以上の結果、図4,図5の指令値生成手段
と併せて、メジャーループで電力潮流や線路電流の制御
ができる。さらに、LC共振による脈動が生じようとし
てもそれらの脈動を抑制できる。ひいては発電機の軸捩
れ振動も抑制される。さらに、それらの指令値を上位制
御手段から与えて電力動揺防止ほか様々な安定化制御が
実現される。
In the vector rotation means 41 shown in FIG.
Means -30 ° (-π / 6). As a result, the operation command with the phase difference of the main circuit is obtained. As a result, the power flow and the line current can be controlled by the major loop in combination with the command value generating means shown in FIGS. Furthermore, even if pulsations due to LC resonance are generated, those pulsations can be suppressed. As a result, shaft torsional vibration of the generator is also suppressed. Further, by giving these command values from the host control means, various stabilization controls as well as power fluctuation prevention are realized.

【0084】実施例9.図7は巻線形交流機を用いた補
償電圧印加手段の部分実施例を示す図で、図において、
70は補助変圧器、151R,151S,151Tは線
路電流の検出をも兼ね得る一次巻線電流検出手段、16
9は二次励磁用電源(AC/AC電力変換器,AC−D
C−ACコンバータ・インバータまたはサイクロコンバ
ータなど)、160a,160b,160cは直流電流
も交流電流も検出できる電流検出手段、152,161
は3相/2相変換手段(電流の場合も電圧の場合と同じ
変換行列を用いて変換できる)、162,167はベク
トル回転手段、163,164は二次励磁電流制御手段
の比較部、165,166は二次励磁電流制御手段の電
流制御演算部、168は2相/3相変換手段である。
Example 9. FIG. 7 is a diagram showing a partial embodiment of compensating voltage applying means using a winding type AC machine.
Reference numeral 70 designates an auxiliary transformer, 151R, 151S, 151T designate primary winding current detecting means capable of also detecting line current, 16
9 is a power supply for secondary excitation (AC / AC power converter, AC-D
C-AC converter / inverter or cycloconverter), 160a, 160b, 160c are current detecting means capable of detecting both direct current and alternating current, 152, 161
Is a three-phase / two-phase conversion means (can be converted by using the same conversion matrix as in the case of voltage also in the case of current), 162 and 167 are vector rotation means, 163 and 164 are comparison parts of secondary excitation current control means, and 165. , 166 are current control calculation units of the secondary excitation current control means, and 168 is a 2-phase / 3-phase conversion means.

【0085】さらに、155は機械的回転角度θmの検
出手段、156は上記回転角θmの出力に極対数npを
掛けて回転電気角θrに変換する手段である。さらに、
157は回転電気角θrから回転速度ωrを検出(演
算)する速度検出手段、158は速度制御手段、159
は電気角θeより回転電気角θrを引いて滑り角θsを
検出する滑り角検出手段、153はαβ軸の量から同期
回転座標のdq軸の量へ変換する座標変換手段、154
は挿入電圧指令Vi* および一次電流i1d,i1qか
ら二次励磁電流指令i2d* ,i2q* を生成する二次
励磁指令演算手段である。
Further, 155 is a detecting means for the mechanical rotation angle θm, and 156 is a means for multiplying the output of the rotation angle θm by the number of pole pairs np to convert it into a rotating electrical angle θr. further,
Reference numeral 157 is a speed detection means for detecting (calculating) the rotation speed ωr from the rotation electrical angle θr, 158 is a speed control means, 159.
Is a slip angle detecting means for detecting the slip angle θs by subtracting the rotating electrical angle θr from the electrical angle θe, and 153 is a coordinate converting means for converting the amount of the αβ axis into the amount of the dq axes of the synchronous rotation coordinate, 154
Is a secondary excitation command calculation means for generating secondary excitation current commands i2d * , i2q * from the insertion voltage command Vi * and the primary currents i1d, i1q.

【0086】次に、動作を説明する。同図において、速
度制御手段158の出力は、前記指令値生成手段11へ
帰還され、挿入電圧指令Vi* として帰還されてくる。
この時、前記指令値生成手段11で補償電圧印加手段1
2に介在する電力、即ち巻線形交流機50の有効電力お
よびトルクに関係する量(iq* ,△θ* )が制御さ
れ、線路電流と同相の電圧成分が挿入電圧指令Vi*
含まれて、この制御が行われる。この結果、巻線形交流
機50のトルクひいては速度が調整されて、速度制御系
が完結されるわけである。これらにより、補償電圧印加
手段、即ち巻線形交流機50に介在する電力とトルクを
調整し、巻線形交流機50の速度を制御できる。この速
度制御系の指令ωr* を上限下限の範囲で指令するもの
にしておけば、速度の上限下限の範囲内で回転エネルギ
を有効電力に変換して出し入れできる。
Next, the operation will be described. In the figure, the output of the speed control means 158 is fed back to the command value generation means 11 and fed back as an insertion voltage command Vi * .
At this time, the command value generating means 11 causes the compensation voltage applying means 1
2 is controlled, that is, the amount (iq * , Δθ * ) related to the active power and torque of the wound-type AC machine 50 is controlled, and the voltage component in phase with the line current is included in the insertion voltage command Vi *. , This control is performed. As a result, the torque and thus the speed of the wound-type AC machine 50 are adjusted, and the speed control system is completed. With these, it is possible to control the speed of the wire-wound AC machine 50 by adjusting the compensating voltage applying means, that is, the electric power and the torque present in the wire-wound AC machine 50. If the command ωr * of this speed control system is commanded within the upper and lower limits, the rotational energy can be converted into active power and taken in and out within the upper and lower limits of speed.

【0087】一方、ベクトル回転手段162が上記滑り
角θsだけ“滑り周波数の二次励磁電流ベクトルi2”
を逆回転させ(式8にてθ=−θsの変換行列を入力電
流ベクトルに左から掛ける)、同期回転座標の量に変換
する。この結果、同期回転座標の二次励磁電流ベクトル
i2d,i2qが得られ、同指令値i2d* ,i2q*
と比較される。この指令値i2d* ,i2q* は二次励
磁指令演算手段154で次式の演算を行うことにより得
られる。
On the other hand, the vector rotating means 162 causes the secondary excitation current vector i2 of the slip frequency by the slip angle θs.
Is reversely rotated (the input current vector is multiplied from the left by a conversion matrix of θ = −θs in Expression 8) to convert into the amount of synchronous rotation coordinates. As a result, the secondary excitation current vectors i2d and i2q in synchronous rotation coordinates are obtained, and the same command values i2d * and i2q * are obtained .
Compared to. The command values i2d * , i2q * are obtained by the secondary excitation command calculation means 154 performing the calculation of the following equation.

【0088】[0088]

【数9】 [Equation 9]

【0089】ここに、ωeは系統の角周波数、Mは巻線
形交流機の一次二次相互インダクタンス、L1は巻線形
交流機の一次インダクタンス、Ltは変圧器のリーケー
ジインダクタンスである。即ち、一次電流ベクトル[i
1d,i1q]T と挿入電圧指令ベクトル[Vid
* ’,Viq* ’]T とから二次電流指令ベクトル[i
2d* ,i2q*T を決められる。これに先立ち、線
路電流に比例する巻線形交流機50の一次巻線電流i1
(R,S,T)は3相/2相変換手段152で3相/2
相変換した後、さらに座標変換手段153で固定座標の
量i1α,i1βを同期回転座標の量i1d,i1qへ
変換しておく。
Here, ωe is the angular frequency of the system, M is the primary secondary mutual inductance of the winding AC machine, L1 is the primary inductance of the winding AC machine, and Lt is the leakage inductance of the transformer. That is, the primary current vector [i
1d, i1q] T and insertion voltage command vector [Vid
* ', Viq * '] T and the secondary current command vector [i
2d * , i2q * ] T can be determined. Prior to this, the primary winding current i1 of the winding type AC machine 50 proportional to the line current
(R, S, T) is 3 phase / 2 by the 3 phase / 2 phase conversion means 152.
After the phase transformation, the coordinate transformation means 153 further transforms the fixed coordinate quantities i1α and i1β into the synchronous rotation coordinate quantities i1d and i1q.

【0090】さらに、同図において、二次励磁電流制御
手段の比較部163,164で比較した後,二次励磁電
流制御手段の電流制御演算部165,166で演算し
て、二次電圧指令V2d* ,V2q* を出力する。この
出力をベクトル回転手段167により滑り角θsだけ回
転させ、回転子座標の量V2α* ,V2β* に変換す
る。さらに、この出力を2相/3相変換して二次励磁用
電源169に与えるべき3相電圧指令V2* =[v
2u * ,v2v * ,v2w *T を得ることができる。これ
ら、二次励磁電流制御系により所望の二次励磁が得られ
る結果、前記所望の挿入電圧、即ち一次巻線電圧が得ら
れるわけである。
Further, in the figure, after comparison is made by the comparison units 163, 164 of the secondary excitation current control means, calculation is made by the current control calculation sections 165, 166 of the secondary excitation current control means to obtain the secondary voltage command V2d. * , V2q * are output. This output is rotated by the sliding angle θs by the vector rotating means 167 and converted into rotor coordinate amounts V2α * and V2β * . Further, this output is subjected to a two-phase / three-phase conversion and given to the secondary excitation power source 169, a three-phase voltage command V2 * = [v
2u * , v2v * , v2w * ] T can be obtained. As a result of desired secondary excitation being obtained by these secondary excitation current control systems, the desired insertion voltage, that is, the primary winding voltage is obtained.

【0091】実施例10.図8は巻線形交流機を用いた
補償電圧印加手段の他の実施例を示す図で、二次電流指
令の決め方として一次電圧制御系を設けるものである。
同図において、71は一次電圧検出手段、72は一括座
標変換手段、73は電圧制御手段である。
Example 10. FIG. 8 is a diagram showing another embodiment of the compensation voltage applying means using a winding AC machine, in which a primary voltage control system is provided as a method of determining the secondary current command.
In the figure, 71 is a primary voltage detection means, 72 is a collective coordinate conversion means, and 73 is a voltage control means.

【0092】一括座標変換手段72は2相/3相変換手
段152と座標変換手段153とに別けて実行しても良
いが、まとめて次式の演算で行うことができる。この
点、前記実施例でも同様で、逆変換も同様にまとめて実
行できる。また、電流の変換についても同様である。
The collective coordinate conversion means 72 may be executed separately for the two-phase / three-phase conversion means 152 and the coordinate conversion means 153, but they can be collectively calculated by the following equation. In this respect, the same applies to the above-described embodiment, and the inverse conversion can be collectively performed in the same manner. The same applies to current conversion.

【0093】[0093]

【数10】 [Equation 10]

【0094】なお、逆変換は変換行列部が上式の変換行
列の転置で表される。さて、電圧制御手段73は前記図
7の電流制御手段163〜166と同様の構成でよく、
その出力を二次電流指令ベクトル[i2d* ,i2q
*T として用いればよい。ただし、d軸電圧はq軸励
磁電流により得られ、q軸電圧はd軸励磁電流により得
られるので、d軸電圧制御手段の出力を符号を変えてq
軸励磁電流指令にし、q軸電圧制御手段の出力をd軸励
磁電流指令にする。以上の結果、二次巻線の過電流防止
や電流制限機能をも持たせ得る二次電流制御系をマイナ
ーループに設け、その外側に挿入電圧の制御系を設ける
ことができる。さらに、前記図4,図5の指令値生成手
段11と併せて、メジャーループで電力潮流や線路電流
の制御ができる。さらに、LC共振による脈動が生じよ
うとしてもそれらの脈動を抑制できる。ひいては発電機
の軸捩れ振動も抑制される。さらに、それらの指令値を
上位制御手段から与えて電力動揺防止ほか様々な安定化
制御が実現される。
In the inverse transformation, the transformation matrix part is expressed by transposing the transformation matrix of the above equation. The voltage control unit 73 may have the same configuration as the current control units 163 to 166 shown in FIG.
The output is the secondary current command vector [i2d * , i2q
* ] Can be used as T. However, since the d-axis voltage is obtained by the q-axis exciting current and the q-axis voltage is obtained by the d-axis exciting current, the sign of the output of the d-axis voltage control means is changed to q.
The axis exciting current command is used, and the output of the q-axis voltage control means is used as the d-axis exciting current command. As a result, it is possible to provide the secondary current control system capable of having the function of preventing the overcurrent of the secondary winding and the current limiting function in the minor loop, and the control system of the insertion voltage outside the minor loop. Further, together with the command value generating means 11 shown in FIGS. 4 and 5, the power flow and the line current can be controlled by a major loop. Furthermore, even if pulsations due to LC resonance are generated, those pulsations can be suppressed. As a result, shaft torsional vibration of the generator is also suppressed. Further, by giving these command values from the host control means, various stabilization controls as well as power fluctuation prevention are realized.

【0095】実施例11.図9はこの発明の他の一実施
例を示す図で、同図において、81は過電流検出手段、
82はコンデンサの短絡手段、83,84はコンデンサ
短絡用メタリックスイッチ手段および半導体スイッチ手
段、85はコンデンサ放電電流抑制リャクトル、86は
コンデンサ過電圧抑制用アレスタ、87はアレスタの電
流検出手段、88はアレスタの電圧検出手段、89はア
レスタの吸収エネルギ(積算電力)および温度上昇演算
手段、90は論理合成(OR)手段である。
Example 11. FIG. 9 is a diagram showing another embodiment of the present invention, in which 81 is an overcurrent detecting means,
Reference numeral 82 is a capacitor short-circuit means, 83 and 84 are capacitor short-circuiting metallic switch means and semiconductor switch means, 85 is a capacitor discharge current suppressing reactor, 86 is a capacitor overvoltage suppressing arrester, 87 is an arrester current detecting means, and 88 is an arrester. Voltage detection means, 89 is absorbed energy (integrated power) of the arrester and temperature rise calculation means, and 90 is logic synthesis (OR) means.

【0096】さて、同図において、電流地絡事故などに
よる事故電流が発生した場合、過電流検出手段81の出
力に応答して短絡手段を働かせ、直列コンデンサ7を短
絡する。これにより、系統リャクタンス6(必要に応じ
て限流リャクトルや変圧器リーケージリャクタンスを追
加)が事故電流を制限する作用を行い、事故電流制限効
果を出す役割に転じることができる。さらに、この事故
時に、補償電圧印加手段12の出力を短絡せず、前述の
電流制御系を働かせておけば、補償電圧印加手段12が
線路電流を抑制するインダクティブな電圧、即ちリャク
タンス電圧に和動する電圧を発生する。さらには、過電
流検出時に挿入電圧指令を切り替えてリャクタンス電圧
に和動する電圧を発生させ得る。これにより、限流効果
がさらに向上する。勿論、平常時は直列コンデンサ7で
合成リャクタンスを適正に補償しておき、最大潮流に対
応させて置くことができる。
In the figure, when a fault current due to a current ground fault or the like occurs, the short-circuiting means is activated in response to the output of the overcurrent detecting means 81 to short-circuit the series capacitor 7. As a result, the system reactance 6 (addition of a current limiting reactor and a transformer leakage reactance as necessary) acts to limit the accident current, and can switch to the role of producing the accident current limiting effect. Furthermore, at the time of this accident, if the output of the compensating voltage applying means 12 is not short-circuited and the above-mentioned current control system is operated, the compensating voltage applying means 12 will add to the inductive voltage for suppressing the line current, that is, the reactance voltage. To generate a voltage. Further, when the overcurrent is detected, the insertion voltage command can be switched to generate a voltage that adds to the reactance voltage. This further improves the current limiting effect. Of course, it is possible to properly compensate the combined reactance with the series capacitor 7 during normal times so that the maximum reactance can be accommodated.

【0097】さらに、電力系統間を連系する連系システ
ムとして連系線路にこの発明を用い、必要に応じて積極
的に系統リャクタンス6を調整すると共に直列コンデン
サ7による補償を行い、かつ、過電流検出手段81に応
答して上記直列コンデンサ7を短絡することにより、平
常時の必要連系(または送電)およびその制御機能と事
故時の限流機能との両者を満たすことができる。即ち、
電力系統間のAC連系制御方式として有用な装置が実現
される。なお、短絡手段82はアレスタ86の吸収エネ
ルギや温度上昇に応答する並列アレスタ保護用短絡手段
と兼用できる。この点、半導体スイッチ84を用いる場
合も同様である。
Further, the present invention is used for the interconnection line as an interconnection system for interconnection between electric power systems, the system reactance 6 is positively adjusted as necessary, the series capacitor 7 is used for compensation, and By short-circuiting the series capacitor 7 in response to the current detecting means 81, it is possible to satisfy both the required interconnection (or power transmission) during normal operation and its control function and the current limiting function during an accident. That is,
A device useful as an AC interconnection control system between electric power systems is realized. The short-circuit means 82 can also be used as the parallel arrester protection short-circuit means that responds to the absorbed energy of the arrester 86 and the temperature rise. In this respect, the same applies when the semiconductor switch 84 is used.

【0098】実施例12.図10はこの発明に係る他の
一実施例を示す図である。同図において、100は変圧
器、101は発電機1の速度検出手段、102は変分速
度△ωr の検出または演算手段、103は安定化制御手
段、104は発電電力または発電機トルクの制御手段、
105は速度制御手段、106はタービンの調速器また
はタービンの入力調整手段、107は分岐線路の電流検
出手段、108は分岐線路の電圧検出手段、109は分
岐負荷系統である。なお,ωr* は速度指令、ωeは同
期角速度、Vi* は挿入電圧指令である。
Example 12 FIG. 10 is a diagram showing another embodiment according to the present invention. In the figure, reference numeral 100 is a transformer, 101 is a speed detecting means of the generator 1, 102 is a detecting or calculating means of the variation speed Δωr, 103 is a stabilizing control means, and 104 is a generating power or generator torque controlling means. ,
Reference numeral 105 is a speed control means, 106 is a speed governor of the turbine or turbine input adjustment means, 107 is a branch line current detection means, 108 is a branch line voltage detection means, and 109 is a branch load system. Note that ωr * is a speed command, ωe is a synchronous angular speed, and Vi * is an insertion voltage command.

【0099】同図のように、直列コンデンサを分散設置
することにより対地線路電圧の局所的急変を押さえるこ
とができる。すなわち、線路電圧分布の変化幅が狭くな
り、線路および機器の絶縁責務が軽減される。同図に示
すように直列接続する補償電圧印加手段を分散設置する
ことにより、対地線路電圧の直列挿入電圧による過渡的
変動幅も狭くなり、線路および機器の絶縁責務が軽減さ
れる。さらに、それだけでなく、挿入電源の1部または
1台が故障しても、静止形補償電圧印加手段は短絡状態
になりやすいので(そうでない場合も短絡させるゲート
制御などにより短絡できるので)、前述の機能を維持し
て系統補償や制御の運転を継続できる。即ち、冗長性が
得られる。
By disposing the series capacitors in a distributed manner as shown in the figure, it is possible to suppress a local sudden change in the ground line voltage. That is, the change width of the line voltage distribution becomes narrow, and the duty of insulating the line and the device is reduced. By disposing the compensation voltage applying means connected in series in a distributed manner as shown in the figure, the transient fluctuation width due to the series insertion voltage of the ground line voltage is also narrowed and the duty of insulating the line and the equipment is reduced. Furthermore, not only that, but even if a part or one of the inserted power supplies fails, the static compensation voltage applying means is likely to be in a short-circuit state (otherwise, it can be short-circuited by gate control for short-circuiting). The function of can be maintained and the operation of system compensation and control can be continued. That is, redundancy is obtained.

【0100】また、分岐系統への分岐ノードの両側に分
散設置することにより、両側線路の都合に合わせた制御
が実現され、しかも、分岐点の電圧を安定に維持でき
る。なお、8b,9b,10bなど指令値生成系を分岐
線路側に設置してもよい。このとき、分岐線電流を考慮
した制御を同bグループの機器で実行してもよいし両グ
ループで実行してもよい。また、分岐点の上流のbグル
ープ機器で分岐点電圧の電圧調整を行うこともでき、こ
のために、検出手段10bの前記電力検出手段を電圧検
出手段に置き換えることができる。さらにまた、指令値
生成手段11bの電力制御手段の外側に電圧制御手段を
設け、電圧制御手段の出力により前記電力制御系への指
令や前記線路電流制御系への指令を与えてもよい。
Further, by dispersively installing on both sides of the branch node to the branch system, control suitable for the lines on both sides can be realized and the voltage at the branch point can be stably maintained. A command value generation system such as 8b, 9b, 10b may be installed on the branch line side. At this time, the control considering the branch line current may be executed by the devices of the same group b or both groups. Further, the voltage of the branch point voltage can be adjusted by the group b device upstream of the branch point, and for this reason, the power detecting means of the detecting means 10b can be replaced with the voltage detecting means. Furthermore, a voltage control means may be provided outside the power control means of the command value generation means 11b, and a command to the power control system or a command to the line current control system may be given by the output of the voltage control means.

【0101】また、微分や積分の動特性が働かない対電
流直交電圧を加えるだけであれば、同図cグループのよ
うにjk1Xを線路電流に掛けて挿入電圧指令を決める
ことができる。これにより、制御手段を簡単にできる。
ただし、この場合電流に対して受動的要素となる。これ
に対し、線路電流に対して非比例の独立な電圧を与えて
電流を制御する前述の実施例の制御法の方が一層能動的
に電流制御できるので、これにより、過渡特性や動特性
の改善効果が大きいと云う特長がある。
Further, if only the quadrature voltage against the current in which the dynamic characteristics of differentiation and integration do not work is applied, the insertion voltage command can be determined by multiplying the line current by jk1X as in the group c in FIG. Thereby, the control means can be simplified.
However, in this case, it becomes a passive element with respect to the current. On the other hand, the control method of the above-described embodiment in which an independent voltage that is non-proportional to the line current is applied to control the current can more actively control the current. There is a feature that the improvement effect is great.

【0102】同図に示すように、昇圧前の発電機側に本
補償機器を設置すると絶縁変圧器の絶縁責務が軽減さ
れ、元々必要であった送電用昇圧変圧器の高圧絶縁機能
を共用できる。特に、変換器用多重化変圧器と昇圧(高
圧)変圧器とを二重に必要としていた静止形電力変換器
や巻線電圧の高圧絶縁が困難な巻線形交流機を補償電圧
印加手段に用いる場合上記効果は大きい。さらに、情報
伝送速度の観点からみた近距離(発電所,発電機および
これらに近く、高速伝送できる変電所など)に補償電圧
印加手段を設置すれば、発電機の速度または変分速度を
制御できる。さらに、タービンとの協調制御によりター
ビンの応答速度が間に合わない高速応答領域を補償電圧
印加手段が補えるので、送電系の事故時やその回復後の
速度を安定に保ち、同上期間中の位相の開きを抑制でき
る。この結果、回復後の脱調や位相差動揺を抑制でき、
第1波動揺の大きな抑制効果と過渡安定化効果が得られ
る。
As shown in the figure, when this compensator is installed on the generator side before step-up, the insulation duty of the insulation transformer is reduced, and the originally required high-voltage insulation function of the power transmission step-up transformer can be shared. . In particular, when using a static power converter that required dual converter transformers and step-up (high voltage) transformers or a winding type AC machine for which high voltage insulation of winding voltage is difficult as compensation voltage applying means. The above effect is great. Furthermore, if the compensating voltage applying means is installed at a short distance from the viewpoint of information transmission speed (power station, generator, and a substation close to these, which is capable of high-speed transmission), the speed or variation speed of the generator can be controlled. . In addition, the cooperative control with the turbine can compensate the high-speed response area where the response speed of the turbine is not in time, so that the compensation voltage applying means can keep the speed stable in the event of a power transmission system failure or after recovery, and the phase difference during the same period. Can be suppressed. As a result, it is possible to suppress step-out and phase differential swing after recovery,
A large effect of suppressing the first wave and a transient stabilizing effect can be obtained.

【0103】[0103]

【発明の効果】以上のように、請求項1の発明によれ
ば、電力系統の電気変数を検出し補償電圧印加手段で制
御するように構成したので、直列コンデンサが関わる脈
動が生じようとしてもこれを抑制することができ、直列
コンデンサによる過渡特性や動特性の悪化を防止するこ
とができる効果がある。
As described above, according to the invention of claim 1, since the electric variable of the power system is detected and controlled by the compensating voltage applying means, the pulsation involving the series capacitor may occur. This can be suppressed, and there is an effect that it is possible to prevent the transient characteristics and the dynamic characteristics from being deteriorated by the series capacitor.

【0104】請求項2の発明によれば、電力系統の線路
電流を検出し補償電圧印加手段で制御するように構成し
たので、直列コンデンサが関わる線路電流脈動が生じよ
うとしてもこれを抑制することができ、直列コンデンサ
による過渡的な線路電流の脈動を防止することができる
効果がある。また、発電機の軸捩れ振動への悪影響も抑
制できる効果がある。
According to the second aspect of the invention, the line current of the power system is detected and controlled by the compensating voltage applying means. Therefore, even if line current pulsation involving the series capacitor occurs, it is suppressed. Therefore, there is an effect that the transient ripple of the line current due to the series capacitor can be prevented. Further, there is an effect that it is possible to suppress an adverse effect on the shaft torsional vibration of the generator.

【0105】請求項3の発明によれば、電力系統の送電
電力を検出し補償電圧印加手段で制御するように構成し
たので、直列コンデンサが関わる送電電力の脈動が生じ
ようとしてもこれを抑制することができ、直列コンデン
サによる過渡的な送電電力の脈動を防止することができ
る効果がある。また、発電機の軸捩れ振動への悪影響も
抑制できる効果がある。
According to the third aspect of the present invention, the transmission power of the electric power system is detected and controlled by the compensating voltage applying means. Therefore, even if a pulsation of the transmission power related to the series capacitor occurs, it is suppressed. It is possible to prevent transient pulsation of transmitted power due to the series capacitor. Further, there is an effect that it is possible to suppress an adverse effect on the shaft torsional vibration of the generator.

【0106】請求項4の発明によれば、実軸虚軸両成分
ひいては有効無効両成分を帰還制御できるように構成し
たので、両成分の脈動や動揺を抑制する作用が得られ
る。また、検出手段も2軸成分を検出するようにすれ
ば、両成分を区別して独立的に制御する作用も得られ
る。このように、一層緻密な2成分の制御を実現できる
効果がある。
According to the fourth aspect of the present invention, since both the real axis and the imaginary axis component and thus the effective and invalid components can be feedback-controlled, the effect of suppressing the pulsation and shaking of both components can be obtained. Further, if the detecting means also detects the biaxial components, it is possible to obtain the action of distinguishing both components and controlling them independently. Thus, there is an effect that more precise control of the two components can be realized.

【0107】請求項5の発明によれば、補償電圧印加手
段に介在する電力を抑制できるように構成したので、一
層経済的な補償電圧印加手段により過渡的な電流または
電力の脈動を防止することができる効果がある。
According to the fifth aspect of the present invention, since the electric power present in the compensation voltage applying means can be suppressed, the transient pulsation of current or electric power can be prevented by the more economical compensation voltage applying means. There is an effect that can be.

【0108】請求項6の発明によれば、位相の補正(加
減)という極めて簡潔な手段で、上記補償電圧印加手段
の交流側の電圧と電流との位相差を調整して、上記介在
電力を調整するように構成したので、補償電圧印加手段
のより簡潔な制御法を提供できる効果がある。
According to the sixth aspect of the present invention, the phase difference between the voltage and the current on the AC side of the compensation voltage applying means is adjusted by a very simple means of correcting (adjusting) the phase to reduce the intervening power. Since the adjustment is made, there is an effect that a simpler control method of the compensation voltage applying means can be provided.

【0109】請求項7の発明によれば、補償電圧印加手
段を静止形電力変換器により構成したので、補償電圧印
加手段の応答特性ひいては脈動防止の応答特性を改善す
ることができる効果がある。
According to the seventh aspect of the invention, since the compensating voltage applying means is constituted by the static power converter, there is an effect that the response characteristic of the compensating voltage applying means and hence the pulsation preventing response characteristic can be improved.

【0110】請求項8の発明によれば、補償電圧印加手
段を巻線形交流機により構成したので、補償電圧印加手
段の過電流耐量または過負荷耐量を向上できる効果があ
る。或いは、系統安定化に必要な可変制御幅を広げるこ
とができる効果がある。
According to the invention of claim 8, since the compensating voltage applying means is constituted by the winding type AC machine, there is an effect that the overcurrent withstanding capacity or overload withstanding capacity of the compensating voltage applying means can be improved. Alternatively, there is an effect that the variable control width necessary for system stabilization can be widened.

【0111】請求項9の発明によれば、補償電圧印加手
段を上記電力系統に対して分散設置するように構成した
ので、線路電圧の局所的電圧上昇を防止すると共に、こ
の発明に用いる補償電圧印加手段の故障に対して冗長性
を持たせることができる効果がある。
According to the ninth aspect of the invention, the compensating voltage applying means is arranged in a distributed manner with respect to the power system, so that the local voltage rise of the line voltage is prevented and the compensating voltage used in the invention is provided. There is an effect that redundancy can be given to the failure of the applying means.

【0112】請求項10の発明によれば、過電流検出手
段と、これによる過電流が検出された時上記コンデンサ
を短絡する短絡手段とを備えるように構成したので、事
故時の過電流を抑制できる効果がある。さらに、電力系
統間の連系装置に応用できる効果がある。
According to the tenth aspect of the present invention, since the overcurrent detecting means and the short-circuiting means for short-circuiting the capacitor when the overcurrent is detected, the overcurrent at the time of an accident is suppressed. There is an effect that can be done. Further, there is an effect that it can be applied to an interconnection device between electric power systems.

【0113】請求項11の発明によれば、補償電圧印加
手段により上記系統リャクタンスの電圧と和動する電圧
降下を与えるように構成したので、事故時の過電流の抑
制効果をさらに向上させることができる効果がある。
According to the eleventh aspect of the present invention, the compensating voltage applying means is configured to give a voltage drop that is summed with the voltage of the system reluctance. Therefore, the effect of suppressing the overcurrent at the time of an accident can be further improved. There is an effect that can be done.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の一実施例による交流電力系統の補
償方式を示す構成図である。
FIG. 1 is a configuration diagram showing a compensation system for an AC power system according to an embodiment of the present invention.

【図2】 この発明に用いる補償電圧印加手段に関する
一実施例を示す構成図である。
FIG. 2 is a configuration diagram showing an embodiment of a compensation voltage applying means used in the present invention.

【図3】 この発明の動作を説明するベクトル図であ
る。
FIG. 3 is a vector diagram for explaining the operation of the present invention.

【図4】 この発明に用いる補償電圧印加手段の制御手
段に関する一詳細実施例を示す構成図である。
FIG. 4 is a configuration diagram showing a detailed example of a control means of a compensation voltage applying means used in the present invention.

【図5】 この発明に用いる補償電圧印加手段の制御手
段に関する一詳細実施例を示す構成図である。
FIG. 5 is a block diagram showing a detailed embodiment of a control means of the compensation voltage applying means used in the present invention.

【図6】 この発明に用いる補償手段に関する一詳細実
施例を示す構成図である。
FIG. 6 is a configuration diagram showing a detailed embodiment regarding a compensating means used in the present invention.

【図7】 この発明に用いる補償電圧印加手段に関する
他の一詳細実施例を示す構成図である。
FIG. 7 is a block diagram showing another detailed embodiment of the compensation voltage applying means used in the present invention.

【図8】 この発明に用いる補償手段に関する他の一詳
細実施例を示す構成図である。
FIG. 8 is a configuration diagram showing another detailed embodiment of the compensating means used in the present invention.

【図9】 この発明の他の一実施例による交流電力系統
の補償方式を示す構成図である。
FIG. 9 is a configuration diagram showing a compensation system for an AC power system according to another embodiment of the present invention.

【図10】 この発明の他の一実施例による交流電力系
統の補償方式を示す構成図である。
FIG. 10 is a configuration diagram showing a compensation system for an AC power system according to another embodiment of the present invention.

【図11】 従来の直列コンデンサによる交流電力系統
の補償方式を示す構成図である。
FIG. 11 is a configuration diagram showing a conventional AC power system compensation method using a series capacitor.

【図12】 直列共振によって線路電流の有効分と無効
分が動揺する様子を示すグラフ図である。
FIG. 12 is a graph showing how the active and inactive components of the line current fluctuate due to series resonance.

【符号の説明】[Explanation of symbols]

5 送電線路(電力系統の線路)、7 直列コンデン
サ、8 電流検出手段、9 電圧検出手段、10 電力
検出手段(電力演算手段)、11 指令値生成手段、1
2 補償電圧印加手段(従属電圧源)、33 静止形電
力変換器、50巻線形交流機。
5 power transmission line (line of electric power system), 7 series capacitor, 8 current detection means, 9 voltage detection means, 10 power detection means (power calculation means), 11 command value generation means, 1
2 compensation voltage applying means (dependent voltage source), 33 static power converter, 50 winding AC machine.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 電力系統の線路に直列に挿入され、その
電力系統のリャクタンス電圧を補償するコンデンサを備
えた電力系統の補償制御装置において、上記電力系統の
線路に直列に挿入され指令値に基づく電圧を発生する従
属電圧源からなる補償電圧印加手段と、上記電力系統の
電気変数の検出手段と、上記検出手段の出力を受けて上
記補償電圧印加手段への指令値を生成する指令値生成手
段とを備えたことを特徴とする電力系統の補償制御装
置。
1. A compensation control device for a power system, which is inserted in series to a line of a power system and includes a capacitor for compensating a reactance voltage of the power system, wherein the compensation control device is inserted in series to the line of the power system and is based on a command value. Compensation voltage applying means composed of a dependent voltage source for generating a voltage, detection means for detecting an electric variable of the power system, and command value generating means for receiving an output of the detection means and generating a command value for the compensation voltage applying means. And a compensation control device for a power system.
【請求項2】 電力系統の線路に直列に挿入され、その
電力系統のリャクタンス電圧を補償するコンデンサと、
上記電力系統の線路に流れる線路電流またはその比例量
を検出する電流検出手段と、上記電流検出手段により検
出された線路電流を所望値にさせる指令値を生成する指
令値生成手段と、上記指令値生成手段により生成された
指令値に基づいて上記電力系統の線路に補償電圧を印加
する補償電圧印加手段とを備えた電力系統の補償制御装
置。
2. A capacitor which is inserted in series to a line of a power system and which compensates a reactance voltage of the power system,
A current detecting means for detecting a line current flowing in the line of the power system or a proportional amount thereof, a command value generating means for generating a command value for setting the line current detected by the current detecting means to a desired value, and the command value. A compensation control device for a power system, comprising: a compensation voltage applying unit that applies a compensation voltage to a line of the power system based on a command value generated by the generation unit.
【請求項3】 電力系統の線路に直列に挿入され、その
電力系統のリャクタンス電圧を補償するコンデンサと、
上記電力系統の線路に流れる線路電流またはその比例量
を検出する電流検出手段と、上記電力系統の電圧または
その比例量を検出する電圧検出手段と、上記電流検出手
段により検出された線路電流および上記電圧検出手段に
より検出された系統電圧より上記線路を介して送電され
る電力を演算する電力演算手段と、上記電力演算手段に
より演算された電力を所望値にさせる指令値を生成する
指令値生成手段と、上記指令値生成手段により生成され
た指令値に基づいて上記電力系統の線路に補償電圧を印
加する補償電圧印加手段とを備えた電力系統の補償制御
装置。
3. A capacitor which is inserted in series in a line of a power system and which compensates a reactance voltage of the power system,
Current detecting means for detecting a line current flowing in the line of the power system or a proportional amount thereof, voltage detecting means for detecting a voltage of the power system or a proportional amount thereof, line current detected by the current detecting means and the above Power calculation means for calculating the electric power transmitted through the line from the system voltage detected by the voltage detection means, and command value generation means for generating a command value for making the power calculated by the power calculation means a desired value And a compensation voltage application means for applying a compensation voltage to the line of the power system based on the command value generated by the command value generation means.
【請求項4】 上記指令値生成手段は、少なくとも2軸
ベクトル成分から成るベクトル指令値を出力し、上記ベ
クトル指令値に基づき上記補償電圧印加手段が電圧ベク
トルを出力することを特徴とする請求項1から請求項3
のうち何れか1項記載の電力系統の補償制御装置。
4. The command value generating means outputs a vector command value composed of at least two axis vector components, and the compensation voltage applying means outputs a voltage vector based on the vector command value. 1 to claim 3
The compensation control apparatus for the electric power system according to any one of the above.
【請求項5】 上記指令値生成手段は、上記線路の電流
に対して上記補償電圧を直交させる位相を有する指令値
を生成させることを特徴とする請求項1から請求項4の
うち何れか1項記載の電力系統の補償制御装置。
5. The command value generating means generates a command value having a phase for making the compensation voltage orthogonal to the current of the line, according to any one of claims 1 to 4. The compensation control device for the electric power system according to the item.
【請求項6】 上記指令値生成手段は、上記指令値の位
相を補正する手段を備え、上記位相の補正により上記補
償電圧印加手段に介在する電力または電力量を調整する
ことを特徴とする請求項1から請求項5のうち何れか1
項記載の電力系統の補償制御装置。
6. The command value generating means comprises means for correcting the phase of the command value, and the power or power amount intervening in the compensation voltage applying means is adjusted by the correction of the phase. Any one of claim 1 to claim 5
The compensation control device for the electric power system according to the item.
【請求項7】 上記補償電圧印加手段は、静止形電力変
換器により構成することを特徴とする請求項1から請求
項6のうち何れか1項記載の電力系統の補償制御装置。
7. The compensation control device for the electric power system according to claim 1, wherein the compensation voltage applying means is constituted by a static power converter.
【請求項8】 上記補償電圧印加手段は、巻線形交流機
により構成することを特徴とする請求項1から請求項6
のうち何れか1項記載の電力系統の補償制御装置。
8. The compensating voltage applying means comprises a wire-wound AC machine.
The compensation control apparatus for the electric power system according to any one of the above.
【請求項9】 上記補償電圧印加手段を上記電力系統に
対して分散設置することを特徴とする請求項1から請求
項8のうち何れか1項記載の電力系統の補償制御装置。
9. The compensation control apparatus for the power system according to claim 1, wherein the compensation voltage applying means is distributedly installed in the power system.
【請求項10】 上記電力系統の線路の線路電流が上限
値を越えたことを検出する過電流検出手段と、上記過電
流検出手段により過電流が検出された時上記コンデンサ
を短絡する短絡手段とを備えたことを特徴とする請求項
1から請求項9のうち何れか1項記載の電力系統の補償
制御装置。
10. Overcurrent detection means for detecting that the line current of the line of the power system exceeds an upper limit value, and short-circuit means for short-circuiting the capacitor when an overcurrent is detected by the overcurrent detection means. The compensation control device for the electric power system according to any one of claims 1 to 9, further comprising:
【請求項11】 上記過電流検出手段により過電流が検
出された時、上記補償電圧印加手段により上記系統リャ
クタンスの電圧と和動する電圧降下を与えることを特徴
とする請求項10記載の電力系統の補償制御装置。
11. The power system according to claim 10, wherein when the overcurrent is detected by the overcurrent detecting unit, the compensating voltage applying unit applies a voltage drop that is summed with the voltage of the system reactance. Compensation control device.
JP14502995A 1995-01-25 1995-06-12 Power system compensation controller Expired - Fee Related JP3242814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14502995A JP3242814B2 (en) 1995-01-25 1995-06-12 Power system compensation controller

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1019795 1995-01-25
JP7-10197 1995-01-25
JP14502995A JP3242814B2 (en) 1995-01-25 1995-06-12 Power system compensation controller

Publications (2)

Publication Number Publication Date
JPH08265973A true JPH08265973A (en) 1996-10-11
JP3242814B2 JP3242814B2 (en) 2001-12-25

Family

ID=26345431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14502995A Expired - Fee Related JP3242814B2 (en) 1995-01-25 1995-06-12 Power system compensation controller

Country Status (1)

Country Link
JP (1) JP3242814B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010246366A (en) * 2009-04-03 2010-10-28 General Electric Co <Ge> Compensation system for power transmission
CN103457479A (en) * 2012-06-01 2013-12-18 安奕极电源系统有限责任公司 Power supply assembly with an inverter for creating n-phase alternating current
US9735580B2 (en) 2014-05-14 2017-08-15 Lsis Co., Ltd. High voltage direct current transmission system and control method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010246366A (en) * 2009-04-03 2010-10-28 General Electric Co <Ge> Compensation system for power transmission
CN103457479A (en) * 2012-06-01 2013-12-18 安奕极电源系统有限责任公司 Power supply assembly with an inverter for creating n-phase alternating current
US9735580B2 (en) 2014-05-14 2017-08-15 Lsis Co., Ltd. High voltage direct current transmission system and control method thereof

Also Published As

Publication number Publication date
JP3242814B2 (en) 2001-12-25

Similar Documents

Publication Publication Date Title
EP2481139B1 (en) Method for controlling a power converter in a wind turbine generator
JP3547355B2 (en) Power conversion system
EP2429073B1 (en) Power converters
EP2741392A2 (en) Systems and methods for utilizing an active compensator to augment a diode rectifier
US20090146500A1 (en) Power converters
JP2012085500A (en) Reactive power compensation device
Fan et al. A novel control scheme for DFIG-based wind energy systems under unbalanced grid conditions
JPH08163782A (en) Power system stabilizer
KR20070058579A (en) Servomotor current control method and servomotor
US20160041567A1 (en) Gas Turbine Generation System
CN104967384A (en) Doubly-fed wind generator stator and rotor magnetic linkage synchronous flux-weakening control method under power grid failure
González et al. A control strategy for DFIG-based systems operating under unbalanced grid voltage conditions
Giri et al. Hybrid order generalized integrator based control for VSC to improve the PMSG operation in isolated mode
JPH08265973A (en) Compensation controller for power system
JP4131861B2 (en) Unbalance compensation apparatus and method, power supply circuit
JP3903967B2 (en) Wind power generation system
US20230246451A1 (en) Generating Unit With Integrated Power Electronics to Comply With the Feed-In Requirements of Public Power Grids
JP3187257B2 (en) Operation control device for AC excitation synchronous machine
Jasim et al. Investigation of induction machine phase open circuit faults using a simplified equivalent circuit model
Anaya-Lara et al. Power system stabiliser for a generic DFIG-based wind turbine controller
Lawan et al. Enhanced decoupled current control with voltage Compensation for modular multilevel converter (MMC) based STATCOM
Dey et al. Comparisons of PI and PR current controllers based flux weakening to limit DC-link capacitor overvoltage in PMSG based wind energy system
Su et al. Dynamic Compensation Strategy With Dual Closed-Loop Control for Voltage Drift and Torque Ripple in TPFSI-Fed PMSM Drives
JPH08340638A (en) Compensation controller of power system
CN112491078B (en) Alternating current fault ride-through control method for multiple application scenes

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071019

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees