JPH08340638A - Compensation controller of power system - Google Patents

Compensation controller of power system

Info

Publication number
JPH08340638A
JPH08340638A JP7145028A JP14502895A JPH08340638A JP H08340638 A JPH08340638 A JP H08340638A JP 7145028 A JP7145028 A JP 7145028A JP 14502895 A JP14502895 A JP 14502895A JP H08340638 A JPH08340638 A JP H08340638A
Authority
JP
Japan
Prior art keywords
current
voltage
power system
winding
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7145028A
Other languages
Japanese (ja)
Inventor
Masahiko Akamatsu
昌彦 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7145028A priority Critical patent/JPH08340638A/en
Publication of JPH08340638A publication Critical patent/JPH08340638A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE: To control the secondary excitation winding by the feedback of the electric parameter of a power system, and improve the resistance to overcurrent by installing a wire wound AC machine equipped with a primary winding and a secondary excitation winding to insert its generation voltage in series, in the line of the power system. CONSTITUTION: The output x of the electric parameter detection means 10 of a transmission circuit 5 gives a command value y to an excitation means 600 through a command value generation means 11, and excites a secondary excitation winding 50b, and adds or reduces the intensity of the excitation. Accompanying this, the voltage generated in the primary winding 50a of the wire wound AC machine 50, that is, the insertion voltage Vi changes, which adjusts and controls the electric parameter such as the current, voltage, power, etc., of the transmission line 5. As a result, in case that grounding accident occurs in the transmission line 5, the accident current flows to the primary winding 50a, and an overcurrent flows to the secondary winding 50b, too, but since the voltage of the secondary winding or the excitation means is low, it does not become so large in VA capacity. Therefore, the resistance to overcurrent can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電力系統のリャクタ
ンス電圧を補償する電力系統の補償制御装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power system compensation controller for compensating a reactance voltage of a power system.

【0002】[0002]

【従来の技術】図8は例えば「計測と制御 第32巻
第9号(1993年9月号)PP742〜749」にも
紹介されている従来の交流電力系統の補償方式の例を示
す図である。同図において、1は送電側電源、2は静止
形電力変換装置、3は受電側系統、4は補助電源変圧
器、5は送電線路、6は送電線路5のリャクタンスを含
む電力系統のリャクタンス、32は高圧一次巻線311
と低圧二次巻線312とを備えた絶縁変圧器、iLは送
電線路5の線路電流である。
2. Description of the Related Art FIG. 8 shows, for example, "Measurement and Control Vol.
It is a figure which shows the example of the compensation system of the conventional alternating current electric power system introduced also into the 9th (September, 1993 issue) PP742-749. In the figure, 1 is a power source on the power transmission side, 2 is a static power converter, 3 is a power receiving side system, 4 is an auxiliary power transformer, 5 is a power transmission line, 6 is the reactance of the power system including the reactance of the power transmission line 5, 32 is a high voltage primary winding 311
And iL is the line current of the transmission line 5.

【0003】図8において、静止形電力変換装置2は直
流を介してリンクされた電圧型自励インバータ/コンバ
ータ2台からなり、送電線路5に直列に適宜な電圧を印
加する。この印加電圧と位相を変えて送受電端間に流れ
る電流や電力を調整するものである。
In FIG. 8, the static power converter 2 is composed of two voltage type self-excited inverters / converters linked via a direct current, and applies an appropriate voltage to the power transmission line 5 in series. The current and power flowing between the power transmitting and receiving terminals are adjusted by changing the phase of this applied voltage.

【0004】[0004]

【発明が解決しようとする課題】従来の交流電力系統の
補償方式は以上のように構成されているので、電力系統
の線路では矢印で示す如く地絡事故がよく起き、送電線
路に直列に挿入された静止形電力変換装置2にもその地
絡電流が流れる。この地絡電流は定格電流の数倍〜10
倍余に達する。このため、過電流耐量の小さい静止形電
力変換装置内の半導体素子が脅かされる。換言すれば、
静止形電力変換装置の過電流耐量が不足し、保護協調が
取り難いと云う問題点があった。このほか、過電流耐量
を向上するこの発明の装置自体に改善すべき問題点があ
る。特に、制御特性改善や補償性能改善課題がある。
Since the conventional AC power system compensation system is constructed as described above, ground faults often occur in the lines of the power system as shown by arrows, and the line is inserted in series in the power transmission line. The ground fault current also flows through the static power conversion device 2 that has been operated. This ground fault current is several times the rated current to 10
Reaches more than twice. For this reason, the semiconductor element in the static power converter having a small overcurrent withstanding capability is threatened. In other words,
There is a problem in that the static electric power converter has a shortage of overcurrent capability and it is difficult to coordinate protection. In addition, there is a problem to be solved in the device itself of the present invention for improving the overcurrent withstand capability. In particular, there are challenges in improving control characteristics and compensating performance.

【0005】この発明は上記のような問題点を解消する
ためになされたもので、直列補償装置の過電流耐量を向
上させることができるとともに、信頼性を向上させるこ
とができる電力系統の補償制御装置を得ることを目的と
する。また、この発明は、制御特性改善または補償性能
改善を図ることができる電力系統の補償制御装置を得る
ことを目的とする。
The present invention has been made in order to solve the above problems, and it is possible to improve the overcurrent withstanding capability of the series compensator and to improve the reliability of the power system. The purpose is to obtain the device. Another object of the present invention is to obtain a compensation control device for a power system, which can improve control characteristics or compensation performance.

【0006】[0006]

【課題を解決するための手段】請求項1の発明に係る電
力系統の補償制御装置は、電力系統の線路にその発生電
圧が直列に挿入される一次巻線と二次励磁巻線とを備え
た巻線形交流機と、上記電力系統の電気変数の検出手段
と、上記検出手段の出力を受けて上記二次励磁巻線を励
磁する励磁手段とを備えたものである。
According to a first aspect of the present invention, there is provided a compensation control device for a power system, which includes a primary winding and a secondary excitation winding in which a generated voltage is inserted in series in a line of the power system. A winding type AC machine, means for detecting an electric variable of the power system, and exciting means for receiving the output of the detecting means and exciting the secondary exciting winding.

【0007】請求項2の発明に係る電力系統の補償制御
装置は、電力系統の線路にその発生電圧が直列に挿入さ
れる一次巻線と二次励磁巻線とを備えた巻線形交流機
と、上記電力系統の電気変数の検出手段と、上記検出手
段の出力を受けて上記一次巻線が発生すべき電圧指令値
を生成する指令値生成手段と、上記指令値生成手段の出
力を受けて上記二次励磁巻線を励磁する励磁手段とを備
えたものである。
A compensation control apparatus for a power system according to a second aspect of the present invention is a winding type AC machine having a primary winding and a secondary excitation winding in which a generated voltage is inserted in series in a line of the power system. Receiving the output of the command value generation means for generating the voltage command value that the primary winding should generate in response to the detection means of the electric variable of the power system, the output of the detection means, and the output of the command value generation means And an excitation means for exciting the secondary excitation winding.

【0008】請求項3の発明に係る電力系統の補償制御
装置は、請求項1〜請求項2の発明において、上記電気
変数の検出手段が上記電力系統の線路電流を検出する電
流検出手段を備えるものである。
According to a third aspect of the invention, there is provided a power system compensation control device according to the first or second aspect of the invention, wherein the electric variable detecting means includes a current detecting means for detecting a line current of the power system. It is a thing.

【0009】請求項4の発明に係る電力系統の補償制御
装置は、請求項1〜請求項2の発明において、上記電気
変数の検出手段が上記電力系統の線路を介して送電され
る電力を検出する電力検出手段を備えるものである。
According to a fourth aspect of the present invention, there is provided a power system compensation control device according to the first and second aspects of the invention, wherein the electric variable detecting means detects electric power transmitted through a line of the electric power system. The power detection means is provided.

【0010】請求項5の発明に係る電力系統の補償制御
装置は、請求項2の発明において、上記指令値生成手段
が“上記一次巻線が発生すべき少なくとも2軸ベクトル
成分から成る電圧ベクトル指令値”を出力し、上記電圧
ベクトル指令値に基づき上記二次励磁巻線を励磁する励
磁手段を備えるものである。
According to a fifth aspect of the present invention, in the power system compensation control device according to the second aspect of the invention, the command value generating means is a "voltage vector command including at least two axial vector components to be generated by the primary winding.""Value" is output and an exciting means for exciting the secondary excitation winding based on the voltage vector command value is provided.

【0011】請求項6の発明に係る電力系統の補償制御
装置は、請求項5の発明において、上記励磁手段が“上
記一次巻線が発生すべき電圧ベクトル指令値と上記一次
巻線の電流またはその比例量と”を入力として上記二次
励磁電流を決定する二次励磁電流指令手段、およびこれ
に従属する二次励磁電流制御手段を備えるものである。
According to a sixth aspect of the present invention, there is provided a power system compensation control apparatus according to the fifth aspect of the invention, wherein the exciting means is "a voltage vector command value to be generated by the primary winding and a current of the primary winding or A secondary excitation current command means for determining the secondary excitation current by inputting the proportional amount and ", and a secondary excitation current control means subordinate to the secondary excitation current command means.

【0012】請求項7の発明に係る電力系統の補償制御
装置は、請求項2〜請求項6の発明において、上記指令
値生成手段が“上記一次巻線が発生すべき電圧指令に上
記線路の電流に対して同相・逆相成分を含ませる指令
値”を生成させると共に、上記巻線形交流機の速度検出
手段および速度制御手段を備え、この速度制御手段の出
力に応答して上記同相・逆相成分を調整するものであ
る。
According to a seventh aspect of the present invention, there is provided a power system compensation control device according to the second aspect to the sixth aspect, wherein the command value generating means is "a voltage command to be generated by the primary winding. A command value "including in-phase / opposite-phase components with respect to current is generated, and a speed detection means and a speed control means of the wire wound type AC machine are provided. The phase component is adjusted.

【0013】請求項8の発明に係る電力系統の補償制御
装置は、請求項1〜請求項7において、上記巻線形交流
機の回転子に結合した励磁用交流機を備え、上記励磁用
交流機と上記励磁手段との間で励磁電力を授受するもの
である。
According to an eighth aspect of the present invention, there is provided a power system compensation control apparatus according to any one of the first to seventh aspects, further comprising an exciting AC machine coupled to a rotor of the wire-wound AC machine. Excitation power is transmitted and received between and the above-mentioned excitation means.

【0014】[0014]

【作用】請求項1の発明における電力系統の補償制御装
置は、電力系統の線路にその発生電圧が直列に挿入され
る一次巻線と二次励磁巻線とを備えた巻線形交流機と、
上記電力系統の電気変数の検出手段と、上記検出手段の
出力を受けて上記二次励磁巻線を励磁する励磁手段とを
備えることにより、上記電気変数が励磁制御により帰還
制御され、その電気変数を制御目的と目標に合わせ得
る。また、直列に挿入するのが巻線形交流機であるから
過電流耐量が大きい。一方、地絡事故電流が一次巻線に
流れるとき二次巻線にも流れるが、励磁電源は低電圧低
周波小容量で済み、電流容量を大きくしやすい。
According to a first aspect of the present invention, there is provided a winding type AC machine having a primary winding and a secondary excitation winding, the generated voltage of which is inserted in series in a line of the power system.
The electric variable of the electric power system is provided with detecting means and exciting means for exciting the secondary excitation winding by receiving the output of the detecting means, whereby the electric variable is feedback-controlled by the excitation control, and the electric variable is Can be tailored to control objectives and goals. Moreover, since the winding type AC machine is inserted in series, the overcurrent withstand capability is large. On the other hand, when the ground fault fault current flows through the primary winding, it also flows through the secondary winding. However, the exciting power supply only requires a low voltage, low frequency, small capacity, and the current capacity is easily increased.

【0015】請求項2の発明における電力系統の補償制
御装置は、電力系統の線路にその発生電圧が直列に挿入
される一次巻線と二次励磁巻線とを備えた巻線形交流機
と、上記電力系統の電気変数の検出手段と、上記検出手
段の出力を受けて上記一次巻線が発生すべき電圧指令値
を生成する指令値生成手段と、上記指令値生成手段の出
力を受けて上記二次励磁巻線を励磁する励磁手段とを備
えることにより、電力系統に必要な所望の電圧指令を速
応フォァワード的に与え、これに従属させて二次励磁巻
線が制御される。
According to a second aspect of the present invention, there is provided a power system compensation control device comprising: a winding type AC machine having a primary winding and a secondary excitation winding, the generated voltage of which is inserted in series in a line of the power system; The electric variable detecting means for the electric power system, the command value generating means for receiving the output of the detecting means to generate a voltage command value to be generated by the primary winding, and the output for receiving the command value generating means By providing an exciting means for exciting the secondary excitation winding, a desired voltage command required for the power system is given in a fast-forwarding manner, and the secondary excitation winding is controlled depending on this.

【0016】請求項3の発明における電力系統の補償制
御装置は、請求項1〜請求項2の発明において、上記電
気変数の検出手段が上記電力系統の線路電流を検出する
電流検出手段を備えることにより、電力系統に必要な所
望の線路電流となるよう二次励磁巻線が制御される。
According to a third aspect of the invention, there is provided a power system compensation control device according to the first or second aspect of the invention, wherein the electric variable detecting means includes a current detecting means for detecting a line current of the power system. As a result, the secondary excitation winding is controlled so that the desired line current required for the power system is obtained.

【0017】請求項4の発明における電力系統の補償制
御装置は、請求項1〜請求項2の発明において、上記電
気変数の検出手段が上記電力系統の線路を介して送電さ
れる電力を検出する電力検出手段を備えることにより、
電力系統に必要な所望の送電電力となるよう二次励磁巻
線が制御される。
According to a fourth aspect of the present invention, there is provided the power system compensation control device according to the first or second aspect of the invention, wherein the electric variable detecting means detects the electric power transmitted through the line of the electric power system. By providing the power detection means,
The secondary excitation winding is controlled so that the desired transmission power required for the power system is obtained.

【0018】請求項5の発明における電力系統の補償制
御装置は、請求項2の発明において、上記指令値生成手
段が“上記一次巻線が発生すべき少なくとも2軸ベクト
ル成分から成る電圧ベクトル指令値”を出力し、上記電
圧ベクトル指令値に基づき上記二次励磁巻線を励磁する
励磁手段を備えることにより、挿入電圧の2軸成分が区
別されてベクトル制御され、線路電流や電力の実軸虚軸
2成分のベクトル制御に対応する基盤ができる。
According to a fifth aspect of the present invention, in the power system compensation control device according to the second aspect of the invention, the command value generating means is a "voltage vector command value including at least two axial vector components to be generated by the primary winding." Is provided and the excitation means for exciting the secondary excitation winding based on the voltage vector command value is provided, the two axis components of the insertion voltage are distinguished and vector controlled, and the real axis imaginary of the line current and the power is calculated. The basis for vector control of two axis components is created.

【0019】請求項6の発明における電力系統の補償制
御装置は、請求項5の発明において、上記励磁手段が
“上記一次巻線が発生すべき電圧ベクトル指令値と上記
一次巻線の電流またはその比例量と”を入力として上記
二次励磁電流を決定する二次励磁電流の指令手段、およ
びこれに従属する二次励磁電流の制御手段を備えること
により、速応フィードフォァワード的に二次励磁電流が
制御される。
According to a sixth aspect of the present invention, there is provided the power system compensation control device according to the fifth aspect of the invention, wherein the excitation means is "a voltage vector command value to be generated by the primary winding and a current of the primary winding or the current thereof. By providing a secondary exciting current command means for determining the secondary exciting current by inputting a proportional amount and ", and a secondary exciting current control means subordinate to the secondary exciting current commanding means, the secondary response can be performed in a speed-responsive feedforward manner. The exciting current is controlled.

【0020】請求項7の発明における電力系統の補償制
御装置は、請求項2〜請求項6の発明において、上記指
令値生成手段が“上記一次巻線が発生すべき電圧指令
に、上記線路の電流に対して同相・逆相成分を含ませる
指令値”を生成させると共に、上記巻線形交流機の速度
検出手段および速度制御手段を備え、この速度制御手段
の出力に応答して上記同相・逆相成分を調整することに
より、上記巻線形交流機に介在する電力によって速度が
制御される。
According to a seventh aspect of the present invention, there is provided the power system compensation control device according to the second to sixth aspects of the invention, wherein the command value generating means sets "the voltage command to be generated by the primary winding to the line command". A command value "including in-phase / opposite-phase components with respect to current is generated, and a speed detection means and a speed control means of the wire wound type AC machine are provided. By adjusting the phase components, the speed is controlled by the power present in the wirewound AC machine.

【0021】請求項8の発明における電力系統の補償制
御装置は、請求項1〜請求項7において、上記巻線形交
流機の回転子に結合した励磁用交流機を備え、上記励磁
用交流機と上記励磁手段との間で励磁電力を授受するこ
とにより、電力系統の事故時にも上記励磁手段と上記励
磁用交流機との間で安定な励磁電力の授受がなされる。
According to an eighth aspect of the present invention, there is provided a power system compensation control device according to any one of the first to seventh aspects, which comprises an exciting AC machine coupled to a rotor of the wire-wound AC machine. By exchanging excitation power with the excitation means, stable excitation power can be exchanged between the excitation means and the excitation AC machine even in the event of a power system failure.

【0022】[0022]

【実施例】【Example】

実施例1.図1はこの発明の一実施例を示し、同図にお
いて、10は送電線路の電流,電圧,電力などの電気変
数を検出する電気変数検出手段、11は指令値生成手
段、12は巻線形交流機50とその励磁手段600とか
ら構成される補償電圧印加手段、70は補助電源変圧
器、iLは線路電流である。なお、同一符号は同一手段
または相当手段を示す。
Example 1. FIG. 1 shows an embodiment of the present invention. In FIG. 1, 10 is an electric variable detecting means for detecting electric variables such as current, voltage and electric power of a transmission line, 11 is a command value generating means and 12 is a winding type AC. Compensation voltage applying means composed of the machine 50 and its exciting means 600, 70 is an auxiliary power transformer, and iL is a line current. The same reference numerals indicate the same means or equivalent means.

【0023】同図実施例において、送電線路5の電気変
数検出手段10の出力xは指令値生成手段11に与えら
れ、指令値生成手段11は上記検出出力xを受けて補償
電圧印加手段12の励磁手段600へ指令値yを与え
る。励磁手段600は指令値yを受けて二次励磁巻線5
0bを励磁し、その励磁の強さを加減する。これに伴
い、一次巻線に発生する電圧、即ち挿入電圧Viが変化
して送電線路5の電流,電圧,電力などの電気変数xが
調整される。即ち、上記電気変数検出手段10で検出さ
れ帰還された電気変数xが制御される。このとき、検出
する電気変数xに何を選ぶかにより、目的目標に応じた
電気変数を制御できることとなる。
In the embodiment shown in the figure, the output x of the electric variable detecting means 10 of the power transmission line 5 is given to the command value generating means 11, and the command value generating means 11 receives the detected output x and the compensating voltage applying means 12 receives the detected output x. A command value y is given to the excitation means 600. The excitation means 600 receives the command value y and receives the secondary excitation winding 5
0b is excited and the intensity of the excitation is adjusted. Along with this, the voltage generated in the primary winding, that is, the insertion voltage Vi changes, and the electric variable x such as the current, voltage, and electric power of the transmission line 5 is adjusted. That is, the electric variable x detected by the electric variable detecting means 10 and fed back is controlled. At this time, depending on what is selected as the electrical variable x to be detected, it is possible to control the electrical variable according to the target objective.

【0024】例えば、電圧を制御する場合は電圧を検出
して帰還し、電流を制御する場合は電流を検出して帰還
し、電力を制御する場合は電力を検出して帰還する。さ
らに、電力の制御をする場合でも有効電力または無効電
力の制御をする場合、夫々有効電流または無効電流を検
出してこれらを帰還することで代替できる。さらに、電
力動揺や位相動揺の安定化制御の場合、有効電力または
有効電流の帰還またはこれらを媒介変数にした制御によ
り安定化制御ができる。さらにまた、電圧制御におい
て、無効電流または無効電力を媒介変数にした制御で対
応することもできる。このように、検出すべき電気変数
は使用目的により種々の変数に選ぶことができ、かつ、
種々の従属(媒介)関係で制御できるわけである。
For example, when the voltage is controlled, the voltage is detected and fed back, when the current is controlled, the current is detected and fed back, and when the power is controlled, the power is detected and fed back. Further, even when controlling the power, when controlling the active power or the reactive power, it is possible to detect the active current or the reactive current and feed them back. Further, in the case of stabilizing control of power fluctuation or phase fluctuation, stabilization control can be performed by feedback of active power or active current or control using these as parameters. Furthermore, in the voltage control, it is possible to cope with the control using reactive current or reactive power as a parameter. Thus, the electrical variable to be detected can be selected from various variables according to the purpose of use, and
It can be controlled by various dependent relationships.

【0025】さて、この発明の実施例において送電線路
に地絡事故が起きた場合、一次巻線50aに事故電流が
流れるが、この過電流耐量は半導体に比べ非常に大き
い。次いで、二次巻線50bにもトランスアクションで
過電流が流れるが、二次巻線や励磁手段の電圧が低いの
でVA容量で見るとあまり大容量にならない。即ち、励
磁手段としての静止形電力変換装置(サイクロコンバー
タ,インバータ/コンバータなど)の電流容量を大きく
しても電圧が低いのでVA容量が相当小さくなる。ま
た、事故電流バイパス用短絡スイッチ手段(サイリスタ
スイッチなど)を二次巻線50bに接続して対策する場
合も、低電圧回路ゆえ、そのVA容量が相当小さくて済
む。以上の理由により、この発明では過電流耐量を向上
できる特長がある。これに伴い、総合信頼性が向上す
る。
When a ground fault occurs in the power transmission line in the embodiment of the present invention, a fault current flows through the primary winding 50a, but this overcurrent withstand capability is much higher than that of semiconductors. Next, an overcurrent also flows through the secondary winding 50b due to the transaction, but the voltage of the secondary winding and the excitation means is low, and therefore the VA capacity does not increase so much. That is, even if the current capacity of the static power converter (cycloconverter, inverter / converter, etc.) as the exciting means is increased, the voltage is low, so that the VA capacity is considerably reduced. Also, when the fault current bypass short-circuit switch means (thyristor switch or the like) is connected to the secondary winding 50b to take countermeasures, the VA capacity is considerably small because of the low voltage circuit. For the above reasons, the present invention has a feature that the overcurrent withstand capability can be improved. Along with this, the overall reliability is improved.

【0026】実施例2.図2はこの発明の他の一実施例
を示す図で、同図において、7は電力検出手段または電
力演算手段、8は線路電流を検出する電流検出手段、9
は線路電圧を検出する電圧検出手段、100は巻線形交
流機50の回転軸に結合されたフライホイル、32は一
次巻線311と二次巻線312とを備えた絶縁変圧器で
ある。
Example 2. FIG. 2 is a diagram showing another embodiment of the present invention. In FIG. 2, 7 is a power detecting means or power calculating means, 8 is a current detecting means for detecting a line current, and 9 is a current detecting means.
Is a voltage detecting means for detecting the line voltage, 100 is a flywheel coupled to the rotating shaft of the winding AC machine 50, and 32 is an insulating transformer having a primary winding 311 and a secondary winding 312.

【0027】同図において、前述のように電気変数xは
目的目標に応じて電流,電圧,電力のいずれかまたは組
合せでよい。フライホイル100は交流機の回転子慣性
と併せて有効電力量、即ちエネルギを貯蔵し、補償電圧
印加手段12への有効電力の介在(注入/吸収)を可能
にする。また、絶縁変圧器32は高電圧の送電線路5へ
の適用に際して、交流機の絶縁階級を低く押さえ、総合
経済性と総合信頼性を高める。
In the figure, as described above, the electrical variable x may be any one of current, voltage, and power, or a combination thereof, depending on the target purpose. The flywheel 100 stores the amount of active power, that is, energy together with the rotor inertia of the alternator, and enables intervention (injection / absorption) of active power to the compensation voltage applying means 12. Further, the insulation transformer 32 suppresses the insulation class of the AC machine to a low level when it is applied to the high-voltage transmission line 5, and enhances overall economic efficiency and overall reliability.

【0028】実施例3.図3はこの発明のさらに他の一
実施例を示す図で、同図において、80は巻線形交流機
50の回転軸に結合された励磁用交流機(軸励磁機,発
電機/電動機)、81はその電機子、82はその界磁巻
線、83は電圧調整機能を持つ界磁制御手段である。
Example 3. FIG. 3 is a view showing still another embodiment of the present invention, in which 80 is an exciting AC machine (shaft exciter, generator / motor) coupled to the rotary shaft of the winding AC machine 50, Reference numeral 81 is the armature, 82 is the field winding, and 83 is field control means having a voltage adjusting function.

【0029】同図において、励磁用交流機80はダンパ
を備え、発電モードないし電動モードで動作し得るもの
で、励磁手段600は電力の授受が可能な可逆電力変換
器であることが望ましい。即ち、正負に変わる二次励磁
巻線50bおよび励磁手段600の入出力電力を励磁用
交流機80が授受し得る。これにより、回転子速度が同
期速度の上下いずれであっても励磁制御できる。即ち、
二次励磁巻線に誘起する滑り電圧の如何に拘らず励磁電
流を制御でき、このときに生じる電力の流れの方向変化
に対応できる。
In the figure, the exciting AC machine 80 is provided with a damper and can operate in a power generation mode or an electric mode, and the exciting means 600 is preferably a reversible power converter capable of exchanging electric power. That is, the exciting AC machine 80 can transfer the input / output power of the secondary exciting winding 50b and the exciting means 600 that change to positive or negative. As a result, excitation control can be performed regardless of whether the rotor speed is above or below the synchronous speed. That is,
The exciting current can be controlled regardless of the slip voltage induced in the secondary exciting winding, and the change in the direction of the flow of electric power generated at this time can be dealt with.

【0030】さらにまた、励磁手段600が無効電力を
必要とする場合にも、その無効電力を励磁用交流機が供
給するので、電力系統から供給する必要がないと云う特
長がある。さらに、電力系統に事故があって、線路電圧
の低下,欠相,停電などが起きても、回転が保たれてい
る間、励磁用補助電源、即ち電機子81の電圧が安定に
保たれると云う特長がある。
Further, even when the exciting means 600 requires reactive power, the exciting AC machine supplies the reactive power, so that there is no need to supply it from the power system. Further, even if there is a line voltage drop, phase loss, power failure, or the like due to an accident in the power system, the voltage of the excitation auxiliary power supply, that is, the armature 81 is maintained stable while the rotation is maintained. There is a feature called.

【0031】実施例4.図4は電気変数検出手段10お
よび指令値生成手段11に関する詳細部分実施例を示す
図である。同図の電気変数検出手段10において、1
3,14は3相/2相変換手段又は同演算手段で次式の
演算を行うものである。電流に関する3相/2相変換手
段14も、電圧が電流に変わるだけで同様の演算でよ
く、同一の変換行列を用いて変換できる。
Example 4. FIG. 4 is a diagram showing a detailed partial embodiment relating to the electric variable detecting means 10 and the command value generating means 11. In the electric variable detection means 10 of FIG.
Numerals 3 and 14 are three-phase / two-phase conversion means or the same calculation means for calculating the following equation. The three-phase / two-phase conversion means 14 relating to the current can also perform the same calculation only by changing the voltage to the current, and can perform conversion using the same conversion matrix.

【0032】[0032]

【数1】 [Equation 1]

【0033】さらに、15は電流検出手段8及び電圧検
出手段9の出力を受けて送電電力を検出または演算する
電力検出手段または電力演算手段である。これら検出出
力は指令値生成手段11へ与えられる。
Further, 15 is a power detection means or power calculation means for receiving or outputting the current detection means 8 and the voltage detection means 9 to detect or calculate the transmitted power. These detection outputs are given to the command value generating means 11.

【0034】次に、指令値生成手段11の内、制御や演
算上で必要な基準ベクトルの導出法につき先に説明す
る。指令値生成手段11において、16,17は積分手
段または積分演算手段で、位相が90゜遅れ方向に回転
し(軸が入れ代わり一方の極性が負になり)α−β軸の
磁束鎖交数λα,λβを出力する。この時、極性が変わ
るβ軸の積分手段17に対して符号を変えてβ軸の磁束
鎖交数λβを得る。18はベクトルの絶対値演算手段、
19,20は基準ベクトルとなる単位ベクトル[eα,
eβ]T =[sinθe,cosθe]T を出力する除
算手段、21は単位ベクトル[eα,eβ]T から基準
ベクトルの回転角θeを演算する手段(逆三角関数演算
手段)である。
Next, of the command value generating means 11, a method of deriving a reference vector required for control and calculation will be described first. In the command value generating means 11, reference numerals 16 and 17 denote integrating means or integral calculating means, which rotate the phase in the direction delayed by 90 ° (the axes are interchanged and one polarity becomes negative), and the flux linkage number λα of the α-β axis. , Λβ are output. At this time, the sign is changed with respect to the β-axis integrating means 17 whose polarity changes, and the β-axis flux linkage number λβ is obtained. 18 is a vector absolute value calculation means,
19 and 20 are unit vectors [eα, which are reference vectors.
eβ] T = [sin θe, cos θe] T is a dividing means, and 21 is a means (inverse trigonometric function calculating means) for calculating the rotation angle θe of the reference vector from the unit vector [eα, eβ] T.

【0035】以上16〜21は、観測および制御上の基
準座標(単位ベクトルeまたは、基準ベクトルの回転角
θe)を決める座標規準演算手段である。上記実施例で
は電圧を積分した磁束鎖交数λα,λβを基準にしてい
るので、瞬時電圧変動の影響を受け難く、サージによる
誤動作も起こし難いと云う特長がある。
The above 16 to 21 are the coordinate reference calculating means for determining the reference coordinates (unit vector e or the rotation angle θe of the reference vector) for observation and control. In the above-mentioned embodiment, since the magnetic flux linkage numbers λα and λβ obtained by integrating the voltage are used as a reference, there is a feature that the influence of the instantaneous voltage fluctuation is less likely to occur and the malfunction due to the surge is less likely to occur.

【0036】他の実施例として、磁束鎖交数λα,λβ
にかえて電圧ベクトルVα,Vβや電流ベクトルiα,
iβを基準ベクトルに選ぶことができる。この場合、電
圧検出手段9または電流検出手段8の出力から得られる
電圧または電流を、3相/2相変換手段13または14
で3相/2相変換し、その出力Vα,Vβまたはiα,
iβを絶対値演算手段18及び除算手段19,20に入
力すればよい。
As another embodiment, the flux linkage numbers λα, λβ
Instead, the voltage vectors Vα, Vβ and the current vector iα,
iβ can be chosen as the reference vector. In this case, the voltage or current obtained from the output of the voltage detecting means 9 or the current detecting means 8 is converted into the 3-phase / 2-phase converting means 13 or 14.
3 phase / 2 phase conversion with the output Vα, Vβ or iα,
iβ may be input to the absolute value calculating means 18 and the dividing means 19 and 20.

【0037】これらは、基準ベクトルの導出が簡単にな
る特長がある。また、電流ベクトルは、地絡事故時に存
続しやすい量で、かつ、電圧サージの影響を受けにくい
特長がある。更に、これらをPLL(フェーズ・ロック
ド・ループ)と組み合わせて基準ベクトルの回転角θe
を決めたり、単位ベクトル[eα,eβ]T =[sin
θe,cosθe]T を演算できる。
These have a feature that the derivation of the reference vector is easy. In addition, the current vector has a feature that it is easy to survive a ground fault and is not easily affected by a voltage surge. Furthermore, by combining these with a PLL (Phase Locked Loop), the rotation angle θe of the reference vector
Or the unit vector [eα, eβ] T = [sin
θe, cos θe] T can be calculated.

【0038】次いで、送電電力を制御するために、補償
電圧印加手段12が印加すべき挿入電圧ベクトルの指令
値Vi* を演算する部分につき説明する。同図におい
て、22,23は電力制御手段で、22はその電力比較
部,23は電力制御演算部である。更に、24は電流ベ
クトルiα,iβを単位ベクトルeα,eβにより同期
回転座標の量id,iqへ変換する座標変換手段で次式
の演算を行うものである。
Next, the part for calculating the command value Vi * of the insertion voltage vector to be applied by the compensation voltage applying means 12 in order to control the transmitted power will be described. In the figure, 22 and 23 are power control means, 22 is a power comparison section thereof, and 23 is a power control calculation section. Further, reference numeral 24 is a coordinate conversion means for converting the current vectors iα, iβ into the quantities id, iq of the synchronous rotation coordinates by the unit vectors eα, eβ, and performs the calculation of the following equation.

【0039】[0039]

【数2】 [Equation 2]

【0040】即ち、電気角θeで回転している電流ベク
トルiα,iβを、上式によりθeだけ逆回転させ、静
止ベクトルに変換するベクトル回転器である。更に、2
5,26は乗算手段、27は直交変換手段(直交切り換
え手段)、28はベクトル回転手段である。
That is, it is a vector rotator which reverses the current vectors iα, iβ rotating at an electrical angle θe by θe according to the above equation and converts them into a stationary vector. Furthermore, 2
Reference numerals 5 and 26 are multiplication means, 27 is orthogonal transformation means (orthogonal switching means), and 28 is vector rotation means.

【0041】次に、作用を説明する。先ず、電力比較部
22で電力指令P* と送電電力Pとが比較され、その偏
差が電力制御演算部23に与えられ、比例係数(挿入リ
ャクタンス)Xiを出力する。この時、電力制御演算部
23は比例演算P,比例積分演算PI,比例積分微分演
算PIDなどの制御演算を行えばよい。次いで、乗算手
段25,26で各軸電流id,iqに上記比例係数Xi
を掛けて挿入すべき電圧ベクトルVid* ,Viq*
出力する。この時、挿入すべきリャクタンス電圧は電流
に対して位相を90゜(π/2)進める必要がある。即
ち、直交変換する必要があり、27がこの手段で、乗算
手段25,26の出力は互いに他軸へ与えると共に、虚
軸(q軸)から実軸(d軸)へ与える符号を反転する。
これらの演算を固定子座標(α−β軸や、RST軸)で
行ってもよい。
Next, the operation will be described. First, the power comparison unit 22 compares the power command P * with the transmitted power P, the deviation is given to the power control calculation unit 23, and the proportional coefficient (insertion reactance) Xi is output. At this time, the power control calculation unit 23 may perform control calculation such as proportional calculation P, proportional integral calculation PI, and proportional integral differential calculation PID. Then, the multiplication means 25, 26 add the proportional coefficient Xi to each axis current id, iq.
To output voltage vectors Vid * and Viq * to be inserted. At this time, the phase of the reactance voltage to be inserted must be advanced by 90 ° (π / 2) with respect to the current. That is, it is necessary to perform the orthogonal transformation, and 27 is this means, and the outputs of the multiplying means 25 and 26 are given to the other axes, and the sign given from the imaginary axis (q axis) to the real axis (d axis) is inverted.
These calculations may be performed on the stator coordinates (α-β axis or RST axis).

【0042】これら送電電力制御を行うことにより、フ
ィードバック制御作用による送電電力の調整ができる。
また、電力指令P* を操作して電力系統の安定化、電力
動揺防止、位相動揺防止などもできる特長がある。ま
た、上記挿入リャクタンスXiは、可変リャクタンス制
御により線路電流を制御する場合にも使用できる。さら
に、補償電圧印加手段12からの変分回転角指令△θ*
だけ回転を加えるベクトル回転手段28を備え、この出
力Vi* が前記補償電圧印加手段12への電圧ベクトル
指令になる。ここで、上記変分回転角指令△θは補償電
圧印加手段12に介在する電力を調整する機能を果た
し、その積算値に対応する量(巻線形交流機の速度)を
制御する作用を受け持つ。なお、ベクトルの回転は入力
ベクトルに次式の行列を左から掛けて得られる。
By performing these transmission power control, the transmission power can be adjusted by the feedback control action.
In addition, the power command P * can be operated to stabilize the power system, prevent power fluctuations, and prevent phase fluctuations. The insertion reactance Xi can also be used when the line current is controlled by the variable reactance control. Further, the variational rotation angle command Δθ * from the compensation voltage applying means 12
A vector rotating means 28 for applying rotation is provided, and this output Vi * serves as a voltage vector command to the compensation voltage applying means 12. Here, the variation rotation angle command Δθ has a function of adjusting the electric power interposed in the compensation voltage applying means 12 and has a function of controlling an amount (speed of the wire-wound AC machine) corresponding to the integrated value. The vector rotation can be obtained by multiplying the input vector by the matrix of the following equation from the left.

【0043】[0043]

【数3】 (Equation 3)

【0044】この実施例は、簡単な係数Xiの乗算で済
み、かつ、直交電圧を印加するため補償電圧印加手段1
2に介在する電力の平均値や積算値をほぼゼロにできる
ので、経済的となる特長がある。
In this embodiment, the simple multiplication of the coefficient Xi is sufficient, and the compensation voltage applying means 1 for applying the orthogonal voltage is used.
Since the average value and integrated value of the electric power intervening in 2 can be made almost zero, there is an economical advantage.

【0045】実施例5.図5は電気変数検出手段10お
よび指令値生成手段11に関する他の詳細部分実施例を
示す図である。同図において、51,53はd軸(実
軸)電流制御手段で、51はその電流比較部、53はそ
の電流制御演算部,52,54はq軸(虚軸)電流制御
手段で、52はその電流比較部、54はその電流制御演
算部である。さらに、55,58は同一軸へ与える電圧
指令値を決める係数掛け算手段(係数器)、56,57
は他軸(直交軸)へ与える電圧指令値を決める係数掛け
算手段(係数器)、59,60は指令値の合成手段(加
減算手段)である。
Example 5. FIG. 5 is a diagram showing another detailed partial embodiment of the electric variable detection means 10 and the command value generation means 11. In the figure, 51 and 53 are d-axis (real axis) current control means, 51 is a current comparison section thereof, 53 is a current control calculation section thereof, 52 and 54 are q-axis (imaginary axis) current control section, Is a current comparison unit, and 54 is a current control calculation unit. Further, 55 and 58 are coefficient multiplying means (coefficient multipliers) for determining the voltage command value to be given to the same axis, and 56 and 57.
Is a coefficient multiplying means (coefficient multiplier) for determining the voltage command value to be applied to the other axis (orthogonal axis), and 59 and 60 are command value synthesizing means (adding / subtracting means).

【0046】電流,電圧,電力および基準ベクトルの検
出演算部は前記図4と同じゆえ説明を省略する。次に、
内側制御ループで線路電流の制御を行う場合の電圧指令
値生成部の動作を説明する。電力比較部22で送電電力
Pが電力指令P* と比較され、その偏差が電力制御演算
部23に与えられ実軸電流指令値id* を出力する。こ
の時、電力制御演算部23は比例演算P,比例積分演算
PI,比例積分微分演算PIDなどの制御演算を行えば
よい。さらに、実軸電流idは電流比較部51で実軸電
流指令値id* と比較され、この電流偏差を電流制御演
算部53に与えて電流偏差応答量iedを出力する。こ
の時、電流制御演算部53は比例演算P,比例積分演算
PIなどの制御演算を行えばよい。
The current / voltage / power / reference vector detection / calculation unit is the same as in FIG. next,
The operation of the voltage command value generator when the line current is controlled by the inner control loop will be described. The electric power comparison unit 22 compares the transmitted electric power P with the electric power command P *, and the deviation is given to the electric power control calculation unit 23 to output the actual axis current command value id * . At this time, the power control calculation unit 23 may perform control calculation such as proportional calculation P, proportional integral calculation PI, and proportional integral differential calculation PID. Further, the actual axis current id is compared with the actual axis current command value id * by the current comparing section 51, and this current deviation is given to the current control calculating section 53 to output the current deviation response amount ied. At this time, the current control calculator 53 may perform control calculations such as proportional calculation P and proportional integral calculation PI.

【0047】他方、q軸電流制御側(虚軸電流制御側)
は、後述の補償電圧印加手段に介在する電力またはその
積分応答量である速度を制御するために活用し、このq
軸電流指令値iq* は補償電圧印加手段12から与えら
れる。q軸電流制御手段52,54の動作および特性付
けは上記d軸の場合と同様でよい。
On the other hand, q-axis current control side (imaginary axis current control side)
Is used to control the power that is present in the compensating voltage applying means, which will be described later, or the speed that is the amount of its integrated response.
The axis current command value iq * is given from the compensation voltage applying means 12. The operation and characterization of the q-axis current control means 52, 54 may be the same as in the case of the d-axis.

【0048】この様に、線路電流制御を行うことによ
り、フィードバック制御作用による線路電流の動揺抑制
作用が働く。ここでは、線路電流の2軸成分、即ち電流
ベクトルを制御する精細制御例を示しているが、実軸電
流制御系(線路の有効電流制御係)が主になる。また、
電流絶対値制御もできる。
By thus controlling the line current, the line current fluctuation suppression action by the feedback control action works. Here, an example of fine control for controlling the biaxial component of the line current, that is, the current vector is shown, but the actual axis current control system (line active current control section) is mainly used. Also,
Absolute current value control is also possible.

【0049】次に、2軸の線路電流制御手段から挿入電
圧指令値Vi* を決める部分につき詳しい動作を説明す
る。夫々の軸毎の制御演算手段53,54からの出力に
対して、係数掛け算手段55〜58および合成手段5
9,60は次式の行列演算を行う。
Next, the detailed operation of the portion for determining the insertion voltage command value Vi * from the biaxial line current control means will be described. Coefficient multiplication means 55 to 58 and synthesis means 5 are applied to the outputs from the control calculation means 53 and 54 for each axis.
9 and 60 perform the matrix calculation of the following equation.

【0050】[0050]

【数4】 [Equation 4]

【0051】ここに、k2は自軸電流を流すための直交
リャクタンス電圧を与える係数、k3は自軸電流を与え
るための抵抗降下電圧やダンピングを加えるための係数
である。この様に、直交他軸へのリャクタンス電圧のみ
ならず、同一軸(自軸)の電圧成分も与えることによ
り、線路電流の制御特性が改善される点が特長となる。
また、実軸電流指令id* を有効電流指令iP *に代え、
虚軸電流指令iq* を無効電流指令iQ *に代えて利用で
きる。さらに、虚軸電流指令iq* はゼロにして置き、
その変分が補償電圧印加手段12に介在する電力を左右
するので、補償電圧印加手段12からの変分虚軸電流指
令△iq* を受けて、これにより補償電圧印加手段12
に介在する電力およびその積算応答量(速度)を制御で
きる。以上の如くして得られた電圧指令値ベクトルVi
* は、補償電圧印加手段12への前記挿入電圧指令とし
て与えられる。
Here, k2 is a coefficient for giving a quadrature reactance voltage for flowing the self-axis current, and k3 is a coefficient for adding a resistance drop voltage and damping for giving the self-axis current. In this manner, not only the reactance voltage to the orthogonal other axis but also the voltage component of the same axis (self axis) is applied to improve the control characteristic of the line current.
Further, the actual axis current command id * is replaced with the active current command i P * ,
The imaginary axis current command iq * can be used in place of the reactive current command i Q *. Furthermore, the imaginary axis current command iq * is set to zero,
Since the variation influences the electric power that intervenes in the compensation voltage applying means 12, the variation imaginary axis current command Δiq * from the compensation voltage applying means 12 is received, and thereby the compensation voltage applying means 12 is received.
It is possible to control the electric power intervening in and the integrated response amount (speed). The voltage command value vector Vi obtained as described above
* Is given as the insertion voltage command to the compensation voltage applying means 12.

【0052】さらに、上記指令値生成手段11の指令入
力id* ,1q* に替えて、線路電流指令(絶対値)i
* ,有効電流指令iP *,無効電流指令iQ *や有効電力
指令P* ,無効電流指令Q* などを与え、上位制御手段
(図示せず)からこれら指令を与えることにより、系統
電流の制御,有効電流や無効電流の制御または有効電力
または無効電力の制御、ひいては潮流の制御,系統安定
化制御(電圧,電流,電力の安定化,脱調抑制,制御理
論的動特性上の安定化など)および系統の位相差動揺・
電力動揺の抑制,過渡特性および動特性のさらなる向上
などができる特長がある。
Further, instead of the command inputs id * and 1q * of the command value generating means 11, the line current command (absolute value) i
L * , active current command i P * , reactive current command i Q * , active power command P * , reactive current command Q *, etc. are given, and by giving these commands from a host control means (not shown), the system current Control, active current or reactive current control, active power or reactive power control, and eventually power flow control, system stabilization control (voltage, current, power stabilization, out-of-step suppression, control theoretical dynamic stability Etc.) and phase differential swing of the system
It has features that can suppress power fluctuations and further improve transient characteristics and dynamic characteristics.

【0053】実施例6.図6は巻線形交流機を用いる本
発明による補償電圧印加手段12の詳細実施例を示す図
で、図において、151R,151S,151Tは線路
電流の検出をも兼ね得る一次巻線の電流検出手段、16
9は二次励磁用電源(AC/AC電力変換器,AC−D
C−ACコンバータ・インバータまたはサイクロコンバ
ータなど)、160a,160b,160cは直流電流
も交流電流も検出できる電流検出手段、152,161
は3相/2相変換手段(電流の場合も電圧の場合と同じ
変換行列を用いて変換できる)、162,167はベク
トル回転手段、163,164は二次励磁電流制御手段
の比較部、165,166は二次励磁電流制御手段の電
流制御演算部、168は2相/3相変換手段である。
Example 6. FIG. 6 is a diagram showing a detailed embodiment of the compensation voltage applying means 12 according to the present invention using a winding type AC machine. In the figure, 151R, 151S and 151T are primary winding current detecting means which can also serve as line current detection. , 16
9 is a power supply for secondary excitation (AC / AC power converter, AC-D
C-AC converter / inverter or cycloconverter), 160a, 160b, 160c are current detecting means capable of detecting both direct current and alternating current, 152, 161
Is a three-phase / two-phase conversion means (can be converted by using the same conversion matrix as in the case of voltage also in the case of current), 162 and 167 are vector rotation means, 163 and 164 are comparison parts of secondary excitation current control means, and 165. , 166 are current control calculation units of the secondary excitation current control means, and 168 is a 2-phase / 3-phase conversion means.

【0054】さらに、155は機械的回転角度θmの検
出手段、156は上記回転角θmの出力に極対数npを
掛けて回転電気角θrに変換する手段である。さらに、
157は回転電気角θrから回転速度ωrを検出(演
算)する速度検出手段,158は速度制御手段、159
は電気角θeより回転電気角θrを引いて滑り角θsを
検出する滑り角検出手段、153はαβ軸の量から同期
回転座標のdq軸の量へ変換する座標変換手段、154
は挿入電圧指令Vi* および一次電流i1d,i1qか
ら二次励磁電流指令i2d* ,i2q* を生成する二次
励磁電流の指令値演算手段である。
Further, 155 is a detecting means for the mechanical rotation angle θm, and 156 is means for multiplying the output of the rotation angle θm by the number of pole pairs np to convert it into a rotating electrical angle θr. further,
157 is a speed detecting means for detecting (calculating) the rotation speed ωr from the rotating electrical angle θr, 158 is a speed control means, 159.
Is a slip angle detecting means for detecting the slip angle θs by subtracting the rotating electrical angle θr from the electrical angle θe, and 153 is a coordinate converting means for converting the amount of the αβ axis into the amount of the dq axes of the synchronous rotation coordinate, 154
Is a command value calculation means of the secondary excitation current for generating the secondary excitation current commands i2d * , i2q * from the insertion voltage command Vi * and the primary currents i1d, i1q.

【0055】次に、動作を説明する。同図において、速
度制御手段の出力は、前記指令値生成手段11へ帰還さ
れ、挿入電圧指令Vi* として帰還されてくる。この
時、前記指令値生成手段11で補償電圧印加手段12に
介在する電力、即ち巻線形交流機50の有効電力および
トルクに関係する量(iq* ,△θ* )が制御され、線
路電流と同相の電圧成分が挿入電圧指令Vi* に含まれ
て、その制御が行われる。この結果、巻線形交流機50
のトルクひいては速度が調整されて、速度制御系が完結
されるわけである。これらにより、補償電圧印加手段1
2、即ち巻線形交流機50に介在する電力とトルクを調
整し、巻線形交流機50の速度を制御できる。この速度
制御系の指令ωr* を上限下限の範囲で指令するものに
しておけば、速度の上限下限の範囲内で回転エネルギを
有効電力に変換して出し入れできる。
Next, the operation will be described. In the figure, the output of the speed control means is fed back to the command value generation means 11 and fed back as an insertion voltage command Vi * . At this time, the command value generating means 11 controls the electric power intervening in the compensation voltage applying means 12, that is, the amounts (iq * , Δθ * ) related to the effective power and torque of the wire-wound AC machine 50, and the line current and The in-phase voltage component is included in the insertion voltage command Vi * , and its control is performed. As a result, the winding type AC machine 50
The torque and eventually the speed are adjusted to complete the speed control system. With these, the compensation voltage applying means 1
2, that is, the electric power and torque existing in the wire-wound AC machine 50 can be adjusted to control the speed of the wire-wound AC machine 50. If the command ωr * of this speed control system is commanded within the upper and lower limits, the rotational energy can be converted into active power and taken in and out within the upper and lower limits of speed.

【0056】一方、ベクトル回転手段162が上記滑り
角θsだけ“滑り周波数の二次励磁電流ベクトルi2”
を逆回転させ(式3にて△θ* =−θsの変換行列を入
力電流ベクトルに左から掛ける)、同期回転座標の量に
変換する。この結果、同期回転座標の二次励磁電流ベク
トルi2d,i2qが得られ、同指令値i2d* ,i2
* と比較される。この指令値i2d* ,i2q* は二
次励磁電流の指令値演算手段154で次式の演算を行う
ことにより得られる。
On the other hand, the vector rotation means 162 causes the secondary excitation current vector i2 of the slip frequency by the slip angle θs.
Is reversely rotated (in Equation 3, the conversion matrix of Δθ * = − θs is multiplied from the input current vector from the left) to convert into the amount of synchronous rotation coordinates. As a result, the secondary excitation current vectors i2d and i2q in the synchronous rotation coordinates are obtained, and the command values i2d * and i2 are obtained.
Compared with q * . The command values i2d * and i2q * are obtained by the calculation of the following equation by the command value calculation means 154 for the secondary excitation current.

【0057】[0057]

【数5】 (Equation 5)

【0058】ここに、ωeは系統の角周波数,Mは巻線
形交流機の一次二次相互インダクタンス,L1は巻線形
交流機の一次インダクタンス,Ltは変圧器32のリー
ケージインダクタンスである。上式において、右辺の第
1項は一次電圧発生分の励磁電流,第2項は一次電流に
よる減磁磁束を打ち消す励磁電流を意味する。従って、
一次電流ベクトル[i1d,i1q]T と挿入電圧指令
ベクトル[Vid* ,Viq*T とから二次電流指令
ベクトル[i2d* ,i2q*T を決められる。これ
に先立ち、線路電流に比例する巻線形交流機50の一次
巻線電流i1(R,S,T)は3相/2相変換手段15
2で3相/2相変換した後、さらに、座標変換手段15
3で固定座標の量i1α,i1βを同期回転座標の量i
1d,i1qへ変換しておく。
Here, ωe is the angular frequency of the system, M is the primary secondary mutual inductance of the winding type AC machine, L1 is the primary inductance of the winding type AC machine, and Lt is the leakage inductance of the transformer 32. In the above equation, the first term on the right side means the exciting current for the primary voltage generation, and the second term means the exciting current for canceling the demagnetizing magnetic flux due to the primary current. Therefore,
The secondary current command vector [i2d * , i2q * ] T can be determined from the primary current vector [i1d, i1q] T and the insertion voltage command vector [Vid * , Viq * ] T. Prior to this, the primary winding current i1 (R, S, T) of the winding type AC machine 50 proportional to the line current is converted into a three-phase / two-phase conversion means 15.
After the three-phase / two-phase conversion by 2, the coordinate conversion means 15 is further added.
3, the fixed coordinate quantities i1α and i1β are changed to the synchronous rotation coordinate quantity i.
Convert to 1d and i1q.

【0059】さらに、同図において、二次励磁電流制御
手段の比較部163,164で比較した後,二次励磁電
流制御手段の電流制御演算部165,166で演算し
て、二次電圧指令V2d* ,V2q* を出力する。この
出力をベクトル回転手段167により滑り角θsだけ回
転させ、回転子座標の量V2α* ,V2β* に変換す
る。さらに、この出力を2相/3相変換して二次励磁用
電源169に与えるべき3相電圧指令V2* =[V
2u * ,V2V * ,V2W *T を得ることができる。これ
ら、二次励磁電流制御系により所望の二次励磁が得られ
る結果、前記所望の挿入電圧、即ち一次巻線電圧が得ら
れるわけである。
Further, in the figure, after comparison by the comparison units 163 and 164 of the secondary excitation current control means, calculation is performed by the current control calculation units 165 and 166 of the secondary excitation current control means to obtain the secondary voltage command V2d. * , V2q * are output. This output is rotated by the sliding angle θs by the vector rotating means 167 and converted into rotor coordinate amounts V2α * and V2β * . Further, a three-phase voltage command V2 * = [V which should be given to the secondary excitation power source 169 by converting this output into two-phase / three-phase
2u *, V 2V *, it is possible to obtain the V 2W *] T. As a result of desired secondary excitation being obtained by these secondary excitation current control systems, the desired insertion voltage, that is, the primary winding voltage is obtained.

【0060】実施例7.図7は巻線形交流機を用いた補
償電圧印加手段の他の一実施例を示す図で、二次電流指
令の決め方として一次電圧制御系を設けるものである。
同図において、71は補償電圧、即ち挿入電圧に比例す
る一次電圧の検出手段、72は一括座標変換手段、73
は電圧制御手段である。
Example 7. FIG. 7 is a diagram showing another embodiment of a compensation voltage applying means using a winding type AC machine, in which a primary voltage control system is provided as a method of determining a secondary current command.
In the figure, reference numeral 71 is a compensation voltage, that is, primary voltage detection means proportional to the insertion voltage, 72 is a collective coordinate conversion means, and 73.
Is a voltage control means.

【0061】一括座標変換手段72は2相/3相変換手
段152と座標変換手段153とに別けて実行しても良
いが、まとめて次式の演算で行うこともできる。この
点、前記実施例でも同様で、逆変換も同様にまとめて実
行できる。また、電流についても同様である。
The collective coordinate conversion means 72 may be executed separately for the two-phase / three-phase conversion means 152 and the coordinate conversion means 153, but it is also possible to collectively execute the following equations. In this respect, the same applies to the above-described embodiment, and the inverse conversion can be collectively performed in the same manner. The same applies to the current.

【0062】[0062]

【数6】 (Equation 6)

【0063】なお、逆変換は変換行列部が上式の変換行
列の転置で表される。さて、電圧制御手段73は前記電
流制御手段163〜166と同様の構成でよく、電圧制
御手段73の出力を二次電流指令ベクトル[i2d
* ’,i2q* ’]T として用いればよい。ただし、d
軸電圧はq軸励磁電流により得られ、q軸電圧はd軸励
磁電流により得られるので、d軸電圧制御手段の出力を
符号を変えてq軸励磁電流指令にし、q軸電圧制御手段
の出力をd軸励磁電流指令にする。
In the inverse transformation, the transformation matrix part is expressed by transposing the transformation matrix of the above equation. The voltage control means 73 may have the same configuration as the current control means 163 to 166, and the output of the voltage control means 73 may be the secondary current command vector [i2d].
* ', I2q * '] T. However, d
Since the axial voltage is obtained by the q-axis exciting current and the q-axis voltage is obtained by the d-axis exciting current, the sign of the output of the d-axis voltage control means is changed to the q-axis exciting current command, and the output of the q-axis voltage control means. Is the d-axis exciting current command.

【0064】以上の結果、二次巻線の過電流防止や電流
制限機能をも持たせ得る二次電流制御系をマイナールー
プに設け、その外側に挿入電圧の制御系を設けることが
できる。さらに、前記図4,図5の指令値生成手段11
と併せて、メジャーループで電力潮流や線路電流の制御
ができる。以上、この実施例では、補償電圧、即ち挿入
電圧を帰還制御しているので、この制御精度が高くでき
る特長がある。その他の、作用・特長は前記実施例図6
と同様である。
As a result, it is possible to provide the secondary current control system that can also have the function of preventing the overcurrent of the secondary winding and the current limiting function in the minor loop, and the control system of the insertion voltage outside the minor loop. Further, the command value generating means 11 shown in FIGS.
In addition, the power flow and line current can be controlled with a major loop. As described above, in this embodiment, since the compensation voltage, that is, the insertion voltage is feedback-controlled, the control accuracy is high. Other functions and features are shown in FIG.
Is the same as

【0065】[0065]

【発明の効果】以上のように、請求項1の発明によれ
ば、電力系統の線路にその発生電圧が直列に挿入される
一次巻線と二次励磁巻線とを備えた巻線形交流機を備え
るように構成したので、上記電力系統の電気変数の帰還
により二次励磁巻線が制御され、その電気変数を制御目
的と目標に合わせ得る効果がある。また、直列に挿入す
るのが巻線形交流機であるから過電流耐量が向上する。
一方、地絡事故電流が一次巻線に流れる時、二次巻線に
も過電流が流れるが、励磁電源は低電圧低周波小容量で
済むので、電流容量を大きくできる効果がある。これら
に伴い、総合信頼性が向上する効果がある。
As described above, according to the first aspect of the invention, the winding type AC machine having the primary winding and the secondary excitation winding in which the generated voltage is inserted in series in the line of the power system. Since the secondary excitation winding is controlled by the feedback of the electric variable of the power system, there is an effect that the electric variable can be matched with the control purpose and the target. Further, since the winding type AC machine is inserted in series, the overcurrent withstand capability is improved.
On the other hand, when a ground fault fault current flows through the primary winding, an overcurrent also flows through the secondary winding, but the exciting power supply can be of low voltage, low frequency and small capacity, so that the current capacity can be increased. As a result, the overall reliability is improved.

【0066】請求項2の発明によれば、上記電気変数の
検出手段の出力を受けて上記一次巻線が発生すべき電圧
指令値を生成する指令値生成手段と、上記指令値生成手
段の出力を受けて上記二次励磁巻線を励磁する励磁手段
とを備えるように構成したので、電力系統に必要な所望
の電圧指令を速応フィードフォァワード的に与え、これ
に従属させて二次励磁巻線が制御され、応答が改善され
る効果がある。
According to the second aspect of the present invention, the command value generating means for receiving the output of the electric variable detecting means and generating the voltage command value to be generated by the primary winding, and the output of the command value generating means. In response to the above, the excitation means for exciting the secondary excitation winding is provided, so that the desired voltage command necessary for the power system is given in a fast-response feedforward manner and the secondary voltage is subordinated to this. The excitation winding is controlled, and the response is improved.

【0067】請求項3の発明によれば、請求項1〜請求
項2の発明において、上記電気変数の検出手段が上記電
力系統の線路電流を検出する電流検出手段を備えるよう
に構成したので、電力系統に必要な所望の線路電流とな
るよう二次励磁巻線が制御され、線路電流制御や線路電
流を媒介変数とした潮流制御に適する効果がある。さら
に、過電流に対して電流制限制御が働く効果がある。
According to the invention of claim 3, in the inventions of claims 1 and 2, the means for detecting the electric variable comprises a current detecting means for detecting the line current of the electric power system. The secondary excitation winding is controlled so that the desired line current required for the electric power system is obtained, and there is an effect suitable for line current control and power flow control using the line current as a parameter. Further, there is an effect that the current limiting control works on the overcurrent.

【0068】請求項4の発明によれば、請求項1〜請求
項2の発明において、上記電気変数の検出手段が上記電
力系統の線路を介して送電される電力を検出する電力検
出手段を備えるように構成したので、電力系統に必要な
所望の送電電力となるよう二次励磁巻線が制御され、直
接的電力制御に適する効果がある。
According to a fourth aspect of the present invention, in the first and second aspects of the present invention, the electric variable detecting means includes electric power detecting means for detecting electric power transmitted through the line of the electric power system. With this configuration, the secondary excitation winding is controlled so that the desired transmission power required for the power system is obtained, and there is an effect suitable for direct power control.

【0069】請求項5の発明によれば、請求項2の発明
において、上記指令値生成手段が“上記一次巻線が発生
すべき少なくとも2軸ベクトル成分から成る電圧ベクト
ル指令値”を出力し、上記電圧ベクトル指令値に基づき
上記二次励磁巻線を励磁制御するように構成したので、
挿入電圧の2軸成分が区別されてフィードフォァワード
的にベクトル制御され、線路電流や電力の実軸虚軸2成
分のベクトル制御ができる効果がある。
According to the invention of claim 5, in the invention of claim 2, the command value generating means outputs "a voltage vector command value including at least two axial vector components to be generated by the primary winding", Since it is configured to control the excitation of the secondary excitation winding based on the voltage vector command value,
The two-axis components of the insertion voltage are distinguished and vector-controlled in a feed-forward manner, and there is an effect that vector control of the real-axis and imaginary-axis two-components of the line current and power can be performed.

【0070】請求項6の発明によれば、請求項5の発明
において、励磁手段が“上記一次巻線が発生すべき電圧
ベクトル指令値と上記一次巻線の電流またはその比例量
と”を入力として上記二次励磁電流を決定する二次励磁
電流の指令手段、およびこれに従属する二次励磁電流の
制御手段を備えるように構成したので、速応フィードフ
ォアワード的に二次励磁電流が制御できる効果がある。
According to the invention of claim 6, in the invention of claim 5, the exciting means inputs "the voltage vector command value to be generated by the primary winding and the current of the primary winding or its proportional amount". As the secondary excitation current command means for determining the secondary excitation current, and the secondary excitation current control means subordinate to the secondary excitation current command means, the secondary excitation current is controlled in a fast-response feedforward manner. There is an effect that can be done.

【0071】請求項7の発明によれば、請求項2〜請求
項6の発明において、上記指令値生成手段が“上記一次
巻線が発生すべき電圧指令に、上記線路の電流に対して
同相・逆相成分を含ませる指令値”を生成させると共
に、上記巻線形交流機の速度検出手段および速度制御手
段を備え、この速度制御手段の出力に応答して上記同相
・逆相成分を調整するように構成したので、上記巻線形
交流機に介在する電力によって速度が制御できる効果が
ある。
According to the invention of claim 7, in the inventions of claims 2 to 6, the command value generating means is "in-phase with the current of the line in the voltage command to be generated by the primary winding.・ Producing a command value "including a negative-phase component" and providing the speed detection means and the speed control means of the above-mentioned winding type AC machine, and adjusting the in-phase / negative-phase components in response to the output of the speed control means. Since it is configured as described above, there is an effect that the speed can be controlled by the electric power intervening in the winding type AC machine.

【0072】請求項8の発明によれば、上記交流機の回
転子に結合した励磁用交流機を備え、上記励磁用交流機
と上記励磁手段との間で励磁電力を授受するように構成
したので、電力系統の事故時にも上記励磁手段と上記励
磁用交流機との間で安定な励磁電力の授受ができる効果
がある。なお、請求項2〜請求項7の発明では制御特性
が改善される効果があり、請求項8の発明では励磁制御
系の信頼性が向上する効果がある。
According to the eighth aspect of the present invention, an exciting AC machine coupled to the rotor of the AC machine is provided, and exciting power is exchanged between the exciting AC machine and the exciting means. Therefore, even in the event of a power system failure, there is an effect that stable excitation power can be exchanged between the excitation means and the excitation AC machine. The inventions of claims 2 to 7 have the effect of improving the control characteristics, and the invention of claim 8 has the effect of improving the reliability of the excitation control system.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の一実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】 この発明の他の一実施例を示す図である。FIG. 2 is a diagram showing another embodiment of the present invention.

【図3】 この発明の他の一実施例を示す図である。FIG. 3 is a diagram showing another embodiment of the present invention.

【図4】 この発明の検出制御部に関する部分実施例を
示す図である。
FIG. 4 is a diagram showing a partial embodiment relating to a detection control unit of the present invention.

【図5】 この発明の検出制御部に関する他の部分実施
例を示す図である。
FIG. 5 is a diagram showing another partial embodiment relating to the detection control unit of the present invention.

【図6】 この発明の主回路および補償電圧印加手段部
に関する部分実施例を示す図である。
FIG. 6 is a diagram showing a partial embodiment relating to a main circuit and a compensation voltage applying section of the present invention.

【図7】 この発明の主回路および補償電圧印加手段部
に関する他の部分実施例を示す図である。
FIG. 7 is a diagram showing another partial embodiment of the main circuit and the compensation voltage applying means section of the present invention.

【図8】 従来の例を示す図である。FIG. 8 is a diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

10 電気変数検出手段、11 指令値生成手段、12
補償電圧印加手段、50 巻線形交流機、600 励
磁手段。
10 electric variable detecting means, 11 command value generating means, 12
Compensation voltage application means, 50-winding AC machine, 600 excitation means.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 電力系統の線路にその発生電圧が直列に
挿入される一次巻線と二次励磁巻線とを備えた巻線形交
流機と、上記電力系統の電気変数の検出手段と、上記検
出手段の出力を受けて上記二次励磁巻線を励磁する励磁
手段とを備えた電力系統の補償制御装置。
1. A winding type AC machine having a primary winding and a secondary excitation winding, the generated voltage of which is inserted in series in a line of a power system, a means for detecting an electric variable of the power system, and A compensation control device for a power system, comprising: excitation means for receiving the output of the detection means and exciting the secondary excitation winding.
【請求項2】 電力系統の線路にその発生電圧が直列に
挿入される一次巻線と二次励磁巻線とを備えた巻線形交
流機と、上記電力系統の電気変数の検出手段と、上記検
出手段の出力を受けて上記一次巻線が発生すべき電圧指
令値を生成する指令値生成手段と、上記指令値生成手段
の出力を受けて上記二次励磁巻線を励磁する励磁手段と
を備えた電力系統の補償制御装置。
2. A winding type AC machine having a primary winding and a secondary excitation winding, the generated voltage of which is inserted in series in a line of a power system, a means for detecting an electric variable of the power system, and Command value generation means for receiving the output of the detection means to generate a voltage command value to be generated by the primary winding, and excitation means for receiving the output of the command value generation means to excite the secondary excitation winding. Compensation control device for the power system equipped.
【請求項3】 上記電気変数の検出手段は、上記電力系
統の線路電流を検出する電流検出手段を備えることを特
徴とする請求項1または請求項2記載の電力系統の補償
制御装置。
3. The compensation control apparatus for the electric power system according to claim 1, wherein the electric variable detection unit includes a current detection unit for detecting a line current of the electric power system.
【請求項4】 上記電気変数の検出手段は、上記電力系
統の線路を介して送電される電力を検出する電力検出手
段を備えることを特徴とする請求項1または請求項2記
載の電力系統の補償制御装置。
4. The electric power system according to claim 1, wherein the electric variable detection means includes electric power detection means for detecting electric power transmitted through the line of the electric power system. Compensation control device.
【請求項5】 上記指令値生成手段は、上記一次巻線が
発生すべき少なくとも2軸ベクトル成分から成る電圧ベ
クトル指令値を出力し、上記電圧ベクトル指令値に基づ
き上記二次励磁巻線を励磁する励磁手段を備えたことを
特徴とする請求項2記載の電力系統の補償制御装置。
5. The command value generating means outputs a voltage vector command value composed of at least biaxial vector components to be generated by the primary winding, and excites the secondary excitation winding based on the voltage vector command value. The compensation control device for the electric power system according to claim 2, further comprising:
【請求項6】 上記励磁手段は、上記一次巻線が発生す
べき電圧ベクトル指令値と上記一次巻線の電流またはそ
の比例量とを入力として上記二次励磁電流を決定する二
次励磁電流の指令手段、およびこれに従属する二次励磁
電流の制御手段を備えることを特徴とする請求項5記載
の電力系統の補償制御装置。
6. The secondary excitation current for determining the secondary excitation current is input to the excitation means by a voltage vector command value to be generated by the primary winding and a current of the primary winding or a proportional amount thereof. 6. The compensation control device for the electric power system according to claim 5, further comprising command means and secondary excitation current control means dependent on the command means.
【請求項7】 上記指令値生成手段は、上記一次巻線が
発生すべき電圧指令に上記線路の電流に対して同相・逆
相の成分を含ませる指令値を生成させると共に、上記巻
線形交流機の速度検出手段および速度制御手段を備え、
この速度制御手段の出力に応答して上記同相・逆相の成
分を調整することを特徴とする請求項2から請求項6の
うち何れか1項記載の電力系統の補償制御装置。
7. The command value generating means generates a command value for causing a voltage command to be generated by the primary winding to include an in-phase component and an anti-phase component with respect to a current of the line, and the winding-type AC Equipped with speed detection means and speed control means of the machine,
7. The compensation control device for the electric power system according to claim 2, wherein the in-phase and anti-phase components are adjusted in response to the output of the speed control means.
【請求項8】 上記巻線形交流機の回転子に結合した励
磁用交流機を備え、上記励磁用交流機と上記励磁手段と
の間で励磁電力を授受することを特徴とする請求項1か
ら請求項7のうち何れか1項記載の電力系統の補償制御
装置。
8. An exciter AC machine coupled to a rotor of the wire-wound AC machine, and exciter power is exchanged between the exciter AC machine and the exciter means. The compensation control device for the electric power system according to claim 7.
JP7145028A 1995-06-12 1995-06-12 Compensation controller of power system Pending JPH08340638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7145028A JPH08340638A (en) 1995-06-12 1995-06-12 Compensation controller of power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7145028A JPH08340638A (en) 1995-06-12 1995-06-12 Compensation controller of power system

Publications (1)

Publication Number Publication Date
JPH08340638A true JPH08340638A (en) 1996-12-24

Family

ID=15375751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7145028A Pending JPH08340638A (en) 1995-06-12 1995-06-12 Compensation controller of power system

Country Status (1)

Country Link
JP (1) JPH08340638A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176236A (en) * 2008-01-28 2009-08-06 Hitachi Ltd Power conversion equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176236A (en) * 2008-01-28 2009-08-06 Hitachi Ltd Power conversion equipment

Similar Documents

Publication Publication Date Title
Hopfensperger et al. Stator-flux-oriented control of a doubly-fed induction machine: with and without position encoder
JP4022630B2 (en) Power conversion control device, power conversion control method, and program for power conversion control
US6838860B2 (en) Power generating system including permanent magnet generator and shunt AC regulator
Ahmed et al. A novel stand-alone induction generator system for AC and DC power applications
EP2741392A2 (en) Systems and methods for utilizing an active compensator to augment a diode rectifier
Amiri et al. An improved direct decoupled power control of doubly fed induction machine without rotor position sensor and with robustness to parameter variation
JP6190967B2 (en) Power generation system
US8742732B2 (en) Control method for doubly-fed electric generator
WO2006027941A1 (en) Servomotor current control method and servomotor
US9362841B2 (en) Power conversion apparatus and method of controlling the same
Tripathi et al. Analytical evaluation and reduction of torque harmonics in induction motor drives operated at low pulse numbers
JP4725011B2 (en) V / f control device for permanent magnet synchronous motor
CN104967384A (en) Doubly-fed wind generator stator and rotor magnetic linkage synchronous flux-weakening control method under power grid failure
EP2731262B1 (en) Variable frequency speed control system for motor
Abdel-Rahim et al. An unsymmetrical two-phase induction motor drive with slip-frequency control
CN107681692B (en) Alternating current excitation power supply fault ride-through control system
JP6583827B2 (en) AC motor control method and control apparatus
EP4050788A1 (en) Power conversion device
JPH08340638A (en) Compensation controller of power system
JP3242814B2 (en) Power system compensation controller
Kumar et al. A Robust Rotor Flux Based S-PLL for Permanent Magnet Synchronous Generator
Al-Nimma et al. Modeling and simulation of a speed sensor less vector controlled induction motor drive system
JPH11103600A (en) Method of controlling voltage of induction generator
Masic et al. Model of the Stand-Alone Self-Excited Induction Generator With Saturation Effects and Terminal Voltage Regulation
JPS60219983A (en) Drive controller of induction motor