JPH08264858A - Magnetoresistive effect element - Google Patents

Magnetoresistive effect element

Info

Publication number
JPH08264858A
JPH08264858A JP8011034A JP1103496A JPH08264858A JP H08264858 A JPH08264858 A JP H08264858A JP 8011034 A JP8011034 A JP 8011034A JP 1103496 A JP1103496 A JP 1103496A JP H08264858 A JPH08264858 A JP H08264858A
Authority
JP
Japan
Prior art keywords
magnetic
magnetoresistive effect
semiconductor
metal particles
effect element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8011034A
Other languages
Japanese (ja)
Other versions
JP3677107B2 (en
Inventor
Koichiro Inomata
浩一郎 猪俣
Keiichirou Yuzusu
圭一郎 柚須
Haimoa Rojiyaa
ロジャー・ハイモア
Shiho Okuno
志保 奥野
Yoshiaki Saito
好昭 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP01103496A priority Critical patent/JP3677107B2/en
Publication of JPH08264858A publication Critical patent/JPH08264858A/en
Application granted granted Critical
Publication of JP3677107B2 publication Critical patent/JP3677107B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0063Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use in a non-magnetic matrix, e.g. granular solids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/40Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4
    • H01F1/401Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4 diluted

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE: To make small both the hysteresis and saturation magnetic field of a magnetoresistive effect element and to increase the rate of change of the magnetoresistance of the element by a method wherein the element is provided with a magnetic material of a constitution wherein magnetic metal particles containing at least one piece of a magnetic element out of magnetic elements consisting of Fe, Co and Ni are dispersed in a semiconductor matrix. CONSTITUTION: This magnetoresistive effect element has a magnetic material 3 of a constitution wherein magnetic metal particles 2 containing at least one kind of the magnetic element out of magnetic elements consisting of Fe, Co and Ni are dispersed in a semiconductor material 1. In a state that the magnetic field H of the element is zero, the directions of spins 4 of the particles 2 are random and in the case where the magnetic field H is larger than the saturation magnetic field Hs of the element, the directions of the spins 4 of the particles are made uniform. As a semiconductor material for constituting the matrix, a material having a small energy gap and a material having a great quantity of an impurity level are desirable. In concrete terms, it is desirable that the semiconductor material for constituting the matrix is material having an effective energy gap of IeV or smaller.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体マトリック
ス中に磁性金属粒子が分散した磁性体を用いた磁気抵抗
効果素子に関する。
TECHNICAL FIELD The present invention relates to a magnetoresistive effect element using a magnetic material in which magnetic metal particles are dispersed in a semiconductor matrix.

【0002】[0002]

【従来の技術】磁気抵抗効果は、ある種の磁性体に磁界
を加えることによって電気抵抗が変化する現象であり、
磁界センサや磁気ヘッド等に利用されている。例えば、
強磁性体を用いた磁気抵抗効果素子は、温度安定性に優
れ、かつ使用温度範囲が広いという特長を有している。
2. Description of the Related Art The magnetoresistive effect is a phenomenon in which the electric resistance changes when a magnetic field is applied to a certain kind of magnetic material.
It is used in magnetic field sensors and magnetic heads. For example,
A magnetoresistive effect element using a ferromagnetic material has characteristics of excellent temperature stability and a wide operating temperature range.

【0003】従来より、磁性体を用いた磁気抵抗効果素
子にはパーマロイ合金等の薄膜が広く用いられている
が、パーマロイ合金薄膜の磁気抵抗変化率は2〜3%程
度と小さいため、十分な感度が得られないという問題が
ある。
Conventionally, a thin film of permalloy alloy or the like has been widely used for a magnetoresistive effect element using a magnetic material, but the magnetoresistive change rate of the permalloy alloy thin film is as small as about 2 to 3%, so that it is sufficient. There is a problem that sensitivity cannot be obtained.

【0004】一方、近年、磁気抵抗効果を示す新しい材
料として、磁性層と非磁性金属層とが数オングストロー
ムから数十オングストロームのオーダーの周期で交互に
積層された構造を有し、非磁性金属層を介して相対する
磁性層がその磁気モーメントを反平行にした状態で磁気
的カップリングした人工格子膜が巨大な磁気抵抗効果を
示すとして注目されている。例えば、(Fe/Cr)n
の人工格子膜(Phys.Rev.Lett.61,2
472(1988))や、(Co/Cu)n の人工格子
膜(J.Mag.Mag.Mat.94,L1(199
1)、Phys.Rev.Lett.66,2125
(1991))等が見出されている。
On the other hand, in recent years, as a new material exhibiting a magnetoresistive effect, a magnetic layer and a non-magnetic metal layer have a structure in which they are alternately laminated at a cycle of the order of several angstroms to several tens of angstroms. Attention has been paid to the fact that an artificial lattice film in which magnetic layers opposed to each other through magnetic coupling are magnetically coupled in a state where their magnetic moments are antiparallel to each other has a huge magnetoresistive effect. For example, (Fe / Cr) n
Artificial lattice film (Phys. Rev. Lett. 61, 2)
472 (1988)) or an artificial lattice film of (Co / Cu) n (J. Mag. Mag. Mat. 94, L1 (199).
1), Phys. Rev. Lett. 66,2125
(1991)) and the like have been found.

【0005】このような人工格子膜は、数10%という
従来のパーマロイ合金薄膜よりも格段に大きな磁気抵抗
変化率を示す。このような巨大磁気抵抗効果は磁性層の
スピンの向きに依存した電子の散乱に起因している。
Such an artificial lattice film exhibits a remarkably large magnetoresistance change rate of several tens of percent as compared with the conventional permalloy alloy thin film. The giant magnetoresistive effect is due to electron scattering depending on the spin direction of the magnetic layer.

【0006】しかしながら、このような人工格子膜は、
大きな磁気抵抗効果を得るためには積層数を多くする必
要があるという問題や、飽和磁界(抵抗値が飽和する磁
界)が数テスラ(T)以上と大きくこのままでは磁気ヘ
ッド等への応用には不向きであるという問題を有してい
る。
However, such an artificial lattice film is
In order to obtain a large magnetoresistive effect, it is necessary to increase the number of stacked layers, and the saturation magnetic field (the magnetic field at which the resistance value saturates) is as large as several tesla (T) or more. It has the problem of being unsuitable.

【0007】一方、飽和磁界を小さくする目的で、強磁
性層/非磁性層/強磁性層のサンドイッチ構造の多層膜
を有し、一方の強磁性層に交換バイアスを及ぼして磁化
を固定しておき、他方の強磁性層を外部磁界により磁化
反転させることによって、2つの強磁性層の磁化方向の
相対的な角度を変化させる、いわゆるスピンバルブ膜が
開発されている。
On the other hand, for the purpose of reducing the saturation magnetic field, a multilayer film having a sandwich structure of ferromagnetic layer / nonmagnetic layer / ferromagnetic layer is provided, and exchange bias is applied to one ferromagnetic layer to fix the magnetization. In other words, a so-called spin valve film has been developed which changes the relative angle between the magnetization directions of the two ferromagnetic layers by reversing the magnetization of the other ferromagnetic layer by an external magnetic field.

【0008】しかし、このスピンバルブ膜は磁気抵抗変
化率が3〜4%程度とあまり大きくはなく、また多層膜
の抵抗そのものが数10μΩcmと小さいため、外部磁
界を検出するためには比較的大きな電流を流す必要があ
るという問題を有している。
However, this spin valve film has a magnetoresistance change rate of about 3 to 4%, which is not so large, and the resistance of the multilayer film itself is as small as several tens of μΩcm, so that it is relatively large for detecting an external magnetic field. There is a problem that it is necessary to pass an electric current.

【0009】さらに、最近、以上述べたような人工格子
膜とは異なり、非磁性金属マトリックス中に磁性超微粒
子を分散させた、いわゆるグラニュラー磁性膜も巨大磁
気抵抗効果を有することが見出されている(例えば、P
hys.Rev.Lett.68,3745(199
2))。
Furthermore, recently, unlike the artificial lattice film as described above, it has been found that a so-called granular magnetic film in which magnetic ultrafine particles are dispersed in a non-magnetic metal matrix also has a giant magnetoresistive effect. (For example, P
hys. Rev. Lett. 68, 3745 (199
2)).

【0010】このようなグラニュラー磁性膜は、磁界を
加えない状態では磁性超微粒子の性質により、各磁性超
微粒子のスピンは互いに不規則な方向を向いて抵抗が高
く、磁界を加えて各スピンを磁界の方向に揃えると抵抗
が低下し、その結果スピン依存散乱に基づく磁気抵抗効
果が発現する。
In such a granular magnetic film, due to the nature of the magnetic ultrafine particles when no magnetic field is applied, the spins of each magnetic ultrafine particle face irregular directions with each other and have high resistance. When aligned in the direction of the magnetic field, the resistance decreases, and as a result, a magnetoresistive effect based on spin-dependent scattering appears.

【0011】[0011]

【発明が解決しようとする課題】このような非磁性金属
マトリックス中に磁性超微粒子が分散したグラニュラー
磁性膜は、人工格子膜に比べて作製が容易であり、磁気
抵抗変化率も室温で20%程度の大きな値が得られる。
さらに、超微粒子は粒径が数nm程度と小さく単磁区の
ため、磁気抵抗曲線のヒステリシスが小さく、従って磁
気抵抗効果素子として用いた場合にノイズの小さいこと
が期待される。
A granular magnetic film in which magnetic ultrafine particles are dispersed in such a non-magnetic metal matrix is easier to manufacture than an artificial lattice film, and the magnetoresistance change rate at room temperature is 20%. A large value can be obtained.
Furthermore, since ultrafine particles have a small particle size of about several nm and are a single magnetic domain, the hysteresis of the magnetoresistive curve is small, and therefore, it is expected that noise will be small when used as a magnetoresistive effect element.

【0012】上述したような従来のグラニュラー磁性膜
においては、磁性超微粒子の粒径が比較的大きいと強磁
性的な磁気結合が生じて不規則なスピン配列を得ること
が困難であり、磁気抵抗効果が小さく、磁気抵抗効果素
子として用いるうえで好ましくない。従って、磁性微粒
子の粒径を数nm程度まで超微細化している。しかし、
このように超微粒子が分散されているがゆえにその性質
上飽和磁界が大きく、大きな磁気抵抗効果を得るために
は、本質的に数テスラ(T)以上の大きな磁界を加える
必要があり、実用上の課題となっている。
In the conventional granular magnetic film as described above, if the particle size of the magnetic ultrafine particles is relatively large, it is difficult to obtain an irregular spin alignment due to ferromagnetic magnetic coupling, which results in a magnetic resistance. The effect is small and it is not preferable for use as a magnetoresistive effect element. Therefore, the particle size of the magnetic fine particles is made ultrafine to about several nm. But,
Since the ultrafine particles are dispersed in this way, the saturation magnetic field is large in nature, and in order to obtain a large magnetoresistive effect, it is essentially necessary to apply a large magnetic field of several tesla (T) or more. Has become an issue.

【0013】本発明はかかる事情に鑑みてなされたもの
であり、その目的はヒステリシスおよび飽和磁界がとも
に小さく、磁気抵抗変化率の大きい磁気抵抗効果素子を
提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a magnetoresistive effect element having a small hysteresis and a large saturation magnetic field and a large magnetoresistance change rate.

【0014】[0014]

【課題を解決しようとする手段】本発明は、上記課題を
解決するために、第1に、半導体マトリックス中に、F
e,CoおよびNiからなる磁性元素のうち少なくとも
1種を含む磁性金属粒子が分散した磁性体を有すること
を特徴とする磁気抵抗効果素子を提供する。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, according to the present invention, firstly, in a semiconductor matrix, F
There is provided a magnetoresistive effect element having a magnetic material in which magnetic metal particles containing at least one kind of magnetic elements composed of e, Co and Ni are dispersed.

【0015】本発明は、第2に、半導体マトリックス中
に、Fe,CoおよびNiからなる磁性元素のうち少な
くとも1種を含む磁性金属粒子が分散した少なくとも1
層の磁性層と、少なくとも1層の非磁性層との積層膜を
有することを特徴とする磁気抵抗効果素子を提供する。
Secondly, the present invention relates to at least one magnetic metal particle containing at least one magnetic element consisting of Fe, Co and Ni dispersed in a semiconductor matrix.
Provided is a magnetoresistive effect element having a laminated film of a magnetic layer of at least one layer and at least one nonmagnetic layer.

【0016】本発明は、第3に、半導体マトリックス中
に、Fe,CoおよびNiからなる磁性元素のうち少な
くとも1種を含む磁性金属粒子が分散した少なくとも1
層の第1の磁性層と、Fe,CoおよびNiからなる磁
性元素のうち少なくとも1種を含む少なくとも1層の第
2の磁性層との積層膜を有することを特徴とする磁気抵
抗効果素子を提供する。
Thirdly, the present invention is at least one in which magnetic metal particles containing at least one magnetic element consisting of Fe, Co and Ni are dispersed in a semiconductor matrix.
A magnetoresistive effect element comprising a laminated film of a first magnetic layer of a layer and at least a second magnetic layer of at least one layer containing at least one of magnetic elements consisting of Fe, Co and Ni. provide.

【0017】本発明は、第4に、半導体マトリックス中
にFe,Co,およびNiのうち少なくとも1種を含む
磁性金属粒子が分散した第1の磁性層と、前記第1の磁
性層よりソフトな磁性を有する第2の磁性層との積層膜
を有することを特徴とする磁気抵抗効果素子を提供す
る。
Fourthly, the present invention relates to a first magnetic layer in which magnetic metal particles containing at least one of Fe, Co and Ni are dispersed in a semiconductor matrix, and a softer magnetic layer than the first magnetic layer. Provided is a magnetoresistive effect element having a laminated film with a second magnetic layer having magnetism.

【0018】磁性金属粒子が非磁性貴金属マトリックス
中に分散した構造を有する従来のグラニュラー磁性膜に
おいて、その飽和磁界が大きい理由は、磁性金属粒子の
大きさが数nmと小さいため超常磁性を示すことにあ
る。磁性金属粒子の大きさを、超常磁性を示さない程度
に大きくすれば飽和磁界は小さくなるが、その場合には
磁性金属粒子間の強磁性的な磁気結合が強まるため、零
磁界で各磁性金属粒子のスピン方向が揃ってしまい、磁
界を加えてもスピンの方向はあまり変化せず、その結果
大きな磁気抵抗効果が得られない。
In the conventional granular magnetic film having a structure in which magnetic metal particles are dispersed in a non-magnetic noble metal matrix, the reason why the saturation magnetic field is large is that the size of the magnetic metal particles is as small as a few nm and thus superparamagnetism is exhibited. It is in. If the size of the magnetic metal particles is made large enough not to exhibit superparamagnetism, the saturation magnetic field becomes smaller. In that case, however, the ferromagnetic magnetic coupling between the magnetic metal particles is strengthened. The spin directions of the particles are aligned, the spin directions do not change much even when a magnetic field is applied, and as a result, a large magnetoresistive effect cannot be obtained.

【0019】これに対し、本発明者らは、マトリックス
として半導体を用いた場合には、磁性金属粒子間には常
に反強磁性的磁気結合が働くため、磁界が零の状態では
各磁性金属粒子のスピンは互いに不規則になること、お
よびその磁気結合の強さは金属マトリックスを用いた場
合よりもかなり小さいことを見出した。
On the other hand, when the semiconductor is used as the matrix, the inventors of the present invention, since the antiferromagnetic magnetic coupling always works between the magnetic metal particles, the magnetic metal particles have no magnetic field. It was found that the spins of the two were disordered with respect to each other, and the strength of their magnetic coupling was much smaller than that with the metal matrix.

【0020】金属磁性粒子が半導体マトリックスに分散
している場合、一般に半導体のほうが金属よりもポテン
シャルが大きいので金属からの伝導電子は半導体をトン
ネル効果により流れる。この際のエネルギー準位を図1
に示す。図1では金属の電導帯の底のエネルギーを0と
し、半導体のポテンシャルの高さをUとしている。試料
に電圧Vを印加すると金属粒子間にはeVだけのポテン
シャルの差が生じ、一方の金属からの伝導電子が半導体
をトンネルして他方の金属に流れる。この時の様子を波
動関数Ψk (kは波数ベクトル)を用いて図1に示す。
When the metal magnetic particles are dispersed in the semiconductor matrix, the semiconductor generally has a larger potential than the metal, so that conduction electrons from the metal flow through the semiconductor by the tunnel effect. Figure 1 shows the energy levels in this case.
Shown in In FIG. 1, the energy of the bottom of the metal conduction band is 0, and the height of the potential of the semiconductor is U. When a voltage V is applied to the sample, a potential difference of only eV occurs between the metal particles, and conduction electrons from one metal tunnel through the semiconductor and flow to the other metal. The state at this time is shown in FIG. 1 using the wave function Ψ k (k is a wave number vector).

【0021】磁性粒子の分極率をP、2つの磁性粒子の
磁化の向き(図1中の矢印)のなす角度をθとすると、
コンダクタンスGは次式で与えられる(J.C.Slonczewsk
i,Phys.Rev.B39,6995(1989) )。
If the polarizability of the magnetic particles is P and the angle formed by the magnetization directions of the two magnetic particles (arrows in FIG. 1) is θ,
The conductance G is given by the following equation (JCSlonczewsk
i, Phys. Rev. B39, 6995 (1989)).

【0022】G=G0 (1+P2 cosθ) この式より、θ=0のときとθ=πのときとでGの差が
最も大きい。すなわち、外部磁場でθを変えることによ
り、コンダクタンス、あるいは抵抗を変化させることが
できる。これが磁性金属粒子と半導体マトリックスによ
って構成される系の磁気抵抗効果である。
G = G 0 (1 + P 2 cos θ) From this equation, the difference in G between θ = 0 and θ = π is the largest. That is, the conductance or the resistance can be changed by changing θ with the external magnetic field. This is the magnetoresistive effect of a system composed of magnetic metal particles and a semiconductor matrix.

【0023】トンネル電流は一般に小さいので磁性金属
粒子間の交換結合力は小さい。したがって、磁性金属粒
子が半導体マトリックスに分散した系では、磁性金属粒
子間に結合力の小さな反強磁性的磁気結合が生じること
となり、磁性金属粒子が貴金属マトリックスに分散した
従来のグラニュラー系に比べて本質的に飽和磁場は小さ
い。また、磁性粒子を超常磁性領域を超えて大きくする
ことができるので、この点からも飽和磁場が小さくな
る。
Since the tunnel current is generally small, the exchange coupling force between the magnetic metal particles is small. Therefore, in a system in which magnetic metal particles are dispersed in a semiconductor matrix, an antiferromagnetic magnetic coupling with a small coupling force is generated between the magnetic metal particles, compared to the conventional granular system in which magnetic metal particles are dispersed in a noble metal matrix. The saturation magnetic field is essentially small. Further, since the magnetic particles can be made larger than the superparamagnetic region, the saturation magnetic field becomes small also from this point.

【0024】すなわち、半導体マトリックスを用いるこ
とにより、 (1)磁性金属粒子の大きさが超微粒子の大きさを越え
て大きくなっても、零磁界で不規則スピン配列を実現す
ることができ、磁界を加えることによりスピンを揃える
ことができる。このため、磁界を加えることにより比較
的大きく電気抵抗を低下させることができ、比較的大き
な磁気抵抗効果を得ることができる。
That is, by using the semiconductor matrix, (1) even if the size of the magnetic metal particles exceeds the size of the ultrafine particles, it is possible to realize an irregular spin alignment with zero magnetic field, and Spin can be aligned by adding. Therefore, by applying a magnetic field, the electric resistance can be relatively lowered and a relatively large magnetoresistive effect can be obtained.

【0025】(2)さらにこの場合、上述したように磁
性金属粒子間の磁気的結合が弱いので、飽和磁界を小さ
くすることができ、小さな磁界で磁気抵抗効果を発現さ
せることができる。その結果、高感度の磁気抵抗効果素
子が実現される。
(2) Further, in this case, since the magnetic coupling between the magnetic metal particles is weak as described above, the saturation magnetic field can be reduced and the magnetoresistive effect can be exhibited with a small magnetic field. As a result, a highly sensitive magnetoresistive effect element is realized.

【0026】また、このようにマトリックスに半導体を
用い、半導体マトリックス中に磁性金属粒子を分散させ
た磁気抵抗効果素子は比抵抗が大きいため、出力電圧を
大きくとれるというメリットもある。したがって、小さ
な電流で磁気抵抗効果を検出することができ、磁気抵抗
効果型の磁気ヘッドや磁界センサーなどへの応用には大
きなメリットとなる。
Further, since the magnetoresistive effect element in which the semiconductor is used as the matrix and the magnetic metal particles are dispersed in the semiconductor matrix as described above has a large specific resistance, there is an advantage that a large output voltage can be obtained. Therefore, the magnetoresistive effect can be detected with a small current, which is a great advantage for application to a magnetoresistive effect type magnetic head, a magnetic field sensor, or the like.

【0027】[0027]

【発明の実施の形態】以下に、本発明を実施例に基づい
て説明する。図2は、半導体マトリックス中に磁性金属
粒子を分散させた基本構造を有する本発明の磁気抵抗効
果素子における磁性体を模式的に示す図である。この図
に示すように、本発明の磁気抵抗効果素子は、半導体マ
トリックス1中に、Fe,CoおよびNiからなる磁性
元素のうち少なくとも1種を含む磁性金属粒子2が分散
した磁性体3を有する。そして、図2(a)は磁界Hが
零の状態であり、磁性金属粒子2のスピン4の向きがラ
ンダムである。また(b)は磁界Hが飽和磁界HS より
も大きい場合であり、磁性金属粒子のスピン4の向きが
揃っている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below based on Examples. FIG. 2 is a diagram schematically showing a magnetic body in the magnetoresistive effect element of the present invention having a basic structure in which magnetic metal particles are dispersed in a semiconductor matrix. As shown in this figure, the magnetoresistive effect element of the present invention has a magnetic substance 3 in which magnetic metal particles 2 containing at least one kind of a magnetic element consisting of Fe, Co and Ni are dispersed in a semiconductor matrix 1. . In FIG. 2A, the magnetic field H is zero, and the spins 4 of the magnetic metal particles 2 are randomly oriented. Further, (b) is a case where the magnetic field H is larger than the saturation magnetic field H S , and the directions of the spins 4 of the magnetic metal particles are aligned.

【0028】半導体マトリックスを構成する半導体とし
ては、エネルギーギャップの小さい材料や不純物準位の
多い材料が好ましく、具体的には実効的エネルギーギャ
ップが1eV以下であることが好ましい。すなわち、半
導体の実効的エネルギーギャップが1eVを超えると絶
縁体的性質が支配的になる傾向にあるが、その値が1e
V以下であれば磁性体から半導体へのトンネル電流がよ
り大きくなり、また室温においてキャリアが半導体の伝
導帯に熱励起され得るので、コンダクタンスがより大き
くなるとともに磁性金属粒子間の磁気的結合をより反強
磁性的にすることができ、室温においてより大きな磁気
抵抗変化率を得ることができる。半導体の実効的エネル
ギーギャップのさらに好ましい範囲は0.1eV以下で
ある。
As the semiconductor constituting the semiconductor matrix, a material having a small energy gap or a material having a large number of impurity levels is preferable, and specifically, an effective energy gap is preferably 1 eV or less. That is, when the effective energy gap of the semiconductor exceeds 1 eV, the insulating property tends to dominate, but the value is 1 eV.
If it is V or less, the tunnel current from the magnetic substance to the semiconductor becomes larger, and the carriers can be thermally excited to the conduction band of the semiconductor at room temperature, so that the conductance becomes larger and the magnetic coupling between the magnetic metal particles becomes larger. It can be made antiferromagnetic, and a larger magnetoresistance change rate can be obtained at room temperature. A more preferable range of the effective energy gap of the semiconductor is 0.1 eV or less.

【0029】なお、ここでいう実効的エネルギーギャッ
プは、真性半導体のエネルギーギャップEg を意味する
とともに、不純物半導体における不純物準位と伝導帯の
バンドの底との差あるいは不純物準位とフェルミ準位と
の差をも意味するものである。
The effective energy gap referred to here means the energy gap E g of the intrinsic semiconductor, and also the difference between the impurity level in the impurity semiconductor and the bottom of the band of the conduction band or the impurity level and the Fermi level. It also means the difference with.

【0030】いずれにしてもマトリックスを構成する半
導体としては、トンネル電流が大きいか、または/およ
び室温において熱励起され、伝導帯に十分なキャリア濃
度をもつものであればよい。
In any case, the semiconductor forming the matrix may be one having a large tunnel current and / or being thermally excited at room temperature and having a sufficient carrier concentration in the conduction band.

【0031】このような半導体としては、遷移金属とS
iあるいはGeとの合金または化合物(結晶またはアモ
ルファス)、アモルファスSi、アモルファスGe、不
純物半導体などを用いることができる。マトリックスを
構成する半導体は1種類である必要はなく、2種以上の
複合相からなっていてもよい。また、不純物半導体は、
n型であってもp型であってもよく、ある程度キャリア
濃度の高いほうが好ましく、その不純物濃度は1020
1021cm-3の範囲が好ましい。さらに、半導体マトリ
ックスを構成する半導体としては、通常の半導体のみな
らず、欠陥を有する酸化物等、半導体的な挙動を示すも
の、例えばAl23 、MgOX であってもよい。
As such a semiconductor, a transition metal and S
An alloy or compound (crystal or amorphous) with i or Ge, amorphous Si, amorphous Ge, an impurity semiconductor, or the like can be used. The semiconductor constituting the matrix does not have to be one type, and may be composed of a composite phase of two or more types. In addition, the impurity semiconductor is
It may be n-type or p-type, and it is preferable that the carrier concentration is high to some extent, and the impurity concentration is 10 20 to
The range of 10 21 cm -3 is preferable. Further, the semiconductor constituting the semiconductor matrix is not limited to a normal semiconductor, but may be an oxide having a defect or the like, which exhibits a semiconductor-like behavior, such as Al 2 O 3 or MgO x .

【0032】磁性金属粒子は、Fe,CoおよびNiか
らなる磁性元素のうち少なくとも1種を含むものであ
り、これら元素の単体の他、CoFeに代表されるCo
基合金、Fe8 Nに代表されるFe基合金、NiFeに
代表されるNi基合金が含まれる。特に、磁性金属粒子
としてはFe,CoおよびNiからなる磁性元素のう
ち、少なくとも2種類以上からなるものであることが好
ましい。このように、磁性金属粒子として、Fe,C
o,Niのうち少なくとも2種類以上を含むものを用い
た場合には、Fe,Co,Niの単体を用いた場合より
も小さな磁界での磁気抵抗効果が非常に大きくなる。
The magnetic metal particles contain at least one kind of magnetic elements consisting of Fe, Co and Ni. In addition to simple elements of these elements, Co represented by CoFe is also used.
Base alloys, Fe-based alloys represented by Fe 8 N, and Ni-based alloys represented by NiFe are included. In particular, the magnetic metal particles are preferably composed of at least two kinds of magnetic elements composed of Fe, Co and Ni. Thus, as magnetic metal particles, Fe, C
When using at least two kinds of o and Ni, the magnetoresistive effect in a small magnetic field becomes very large as compared with the case of using Fe, Co and Ni alone.

【0033】磁性金属粒子の大きさは粒径で5〜100
nmの範囲であることが望ましく、粒径がこの範囲内に
あれば磁性金属粒子が単磁区であるため、磁気抵抗曲線
のヒステリシスを小さくすることができる。しかしなが
ら、その大きさが5nm未満では超微粒子的になるため
飽和磁界が大きくなり、100nmを超えると磁気抵抗
効果が大きく低下する。
The size of the magnetic metal particles is 5 to 100 in terms of particle size.
The range is preferably in the range of nm, and if the particle size is within this range, the magnetic metal particles are single magnetic domains, so that the hysteresis of the magnetic resistance curve can be reduced. However, if the size is less than 5 nm, it becomes ultrafine particles and the saturation magnetic field becomes large, and if it exceeds 100 nm, the magnetoresistive effect is greatly reduced.

【0034】飽和磁界を一層低下させる観点からは、磁
性金属粒子中の磁気異方性が小さいことが好ましく、こ
のため磁性金属粒子がアモルファス合金からなることが
好ましい。この理由は、アモルファス合金の結晶磁気異
方性は本質的に零であるからである。さらには磁歪が実
質的に零のアモルファス合金を用いれば磁気弾性に基づ
く磁気異方性も小さくなるのでより好ましい。磁歪が実
質的に零のアモルファス合金としては、(Nix Fey
Coza100-a (ただし、x=0〜0.10、y=
0.04〜0.10、z=0.90〜0.94、x+y
+z=1、a=65〜90、XはNb,Zr,Hf,S
i,B,C,およびPからなる群から選択される少なく
とも1種)で表される組成のものが挙げられる。
From the viewpoint of further reducing the saturation magnetic field, it is preferable that the magnetic anisotropy in the magnetic metal particles is small, and therefore it is preferable that the magnetic metal particles are made of an amorphous alloy. The reason for this is that the crystalline magnetic anisotropy of an amorphous alloy is essentially zero. Further, it is more preferable to use an amorphous alloy having substantially zero magnetostriction because the magnetic anisotropy based on magnetoelasticity is also reduced. As an amorphous alloy with substantially zero magnetostriction, (Ni x Fe y
Co z ) a X 100-a (where x = 0 to 0.10, y =
0.04-0.10, z = 0.90-0.94, x + y
+ Z = 1, a = 65 to 90, X is Nb, Zr, Hf, S
and at least one selected from the group consisting of i, B, C, and P).

【0035】また、磁性金属粒子が結晶質であっても、
磁歪定数λが10-5以下とゼロに近いものであれば飽和
磁界を低下させることができる。このように磁歪定数λ
がゼロに近い材料としてはCo90Fe10、Ni81
19、Ni66Fe16Co18などが挙げられる。
Even if the magnetic metal particles are crystalline,
If the magnetostriction constant λ is 10 −5 or less, which is close to zero, the saturation magnetic field can be reduced. Thus, the magnetostriction constant λ
Co 90 Fe 10 , Ni 81 F as materials whose
e 19 , Ni 66 Fe 16 Co 18, and the like.

【0036】このような半導体マトリックス中に磁性金
属粒子が分散した磁性体は、典型的には薄膜状であり、
分子線エピタキシー(MBE)法、各種スパッタ法、蒸
着法など通常の薄膜形成装置を用いて作製することがで
きる。また必ずしも薄膜である必要はなく、超急冷など
による薄帯であっても良い。
A magnetic material in which magnetic metal particles are dispersed in such a semiconductor matrix is typically in the form of a thin film,
It can be produced by using an ordinary thin film forming apparatus such as a molecular beam epitaxy (MBE) method, various sputtering methods and vapor deposition methods. Further, it does not necessarily have to be a thin film, and may be a thin band formed by ultra-quenching or the like.

【0037】本発明の磁気抵抗効果素子は、以上のよう
な半導体マトリックスに磁性金属粒子が分散した磁性体
を単層で備えるものであってもよいが、これに限らず、
半導体マトリックスにFe,CoおよびNiからなる磁
性元素のうち少なくとも1種を含む磁性金属粒子が分散
した少なくとも1層の磁性層と、少なくとも1層の非磁
性層との積層膜、または半導体マトリックスにFe,C
oおよびNiからなる磁性元素のうち少なくとも1種を
含む磁性金属粒子が分散した少なくとも1層の第1の磁
性層と、Fe,CoおよびNiからなる磁性元素のうち
少なくとも1種を含む少なくとも1層の第2の磁性層と
の積層膜を具備していてもよい。このような積層膜によ
れば、半導体マトリックス中に分散される磁性金属粒子
の形状を制御してその形状異方性に基づく磁気異方性を
小さくすることが可能であるため、より飽和磁界が低下
するとともに、より大きな磁気抵抗効果を得ることがで
きる。
The magnetoresistive effect element of the present invention may be provided with a single layer of a magnetic material in which magnetic metal particles are dispersed in the above semiconductor matrix, but is not limited to this.
A laminated film of at least one magnetic layer in which magnetic metal particles containing at least one of magnetic elements consisting of Fe, Co and Ni are dispersed in a semiconductor matrix, and at least one non-magnetic layer, or Fe in a semiconductor matrix , C
at least one first magnetic layer in which magnetic metal particles containing at least one magnetic element consisting of o and Ni are dispersed, and at least one layer containing at least one magnetic element consisting of Fe, Co, and Ni May have a laminated film with the second magnetic layer. With such a laminated film, it is possible to control the shape of the magnetic metal particles dispersed in the semiconductor matrix and reduce the magnetic anisotropy based on the shape anisotropy. Along with the decrease, a larger magnetoresistive effect can be obtained.

【0038】これら積層膜は例えば、図3に示すよう
に、半導体マトリックス11中にCo,FeおよびNi
からなる磁性元素のうち少なくとも1種を含む磁性金属
粒子12が分散した磁性層13と、非磁性層14とが交
互に積層された構造、および図4に示すように、半導体
マトリックス21中にCo,FeおよびNiからなる磁
性元素のうち少なくとも1種を含む磁性金属粒子22が
分散した第1の磁性層23と、Fe,Co,Niのうち
少なくとも1種の元素からなる第2の磁性層24とが交
互に積層された構造を有する。
These laminated films are formed, for example, in a semiconductor matrix 11 with Co, Fe and Ni as shown in FIG.
A structure in which magnetic layers 13 in which magnetic metal particles 12 containing at least one kind of a magnetic element consisting of are dispersed and non-magnetic layers 14 are alternately laminated, and as shown in FIG. , A first magnetic layer 23 in which magnetic metal particles 22 containing at least one kind of magnetic element composed of Fe and Ni are dispersed, and a second magnetic layer 24 composed of at least one kind of element selected from Fe, Co and Ni. It has a structure in which and are alternately stacked.

【0039】このような積層膜は、複数の磁性層13お
よび非磁性層14、または複数の第1の磁性層23およ
び第2の磁性層24を積層した構造を有していても、一
対の磁性層13間に非磁性層14を介在させた構造また
は一対の第1の磁性層23間に第2の磁性層24を介在
させた構造を有していてもよい。また、半導体マトリッ
クス中に分散される磁性金属粒子の形状を制御してその
形状異方性に基づく磁気異方性を小さくすることのみを
考慮すると、一対の非磁性層14の間に磁性層13を介
在させた構造または一対の第2の磁性層24の間に第1
の磁性層23を介在させた構造を有していてもよい。ま
た、これらを交互に積層した構造である場合に、積層数
は特に限定されるものではない。さらに、これらいずれ
の場合にも、積層膜を構成する各層が複数ある場合に、
それらの組成および膜厚は同一である必要はない。
Even if such a laminated film has a structure in which a plurality of magnetic layers 13 and non-magnetic layers 14 or a plurality of first magnetic layers 23 and second magnetic layers 24 are laminated, It may have a structure in which the non-magnetic layer 14 is interposed between the magnetic layers 13 or a structure in which the second magnetic layer 24 is interposed between the pair of first magnetic layers 23. Further, considering only the shape of the magnetic metal particles dispersed in the semiconductor matrix to reduce the magnetic anisotropy based on the shape anisotropy, the magnetic layer 13 is provided between the pair of nonmagnetic layers 14. Or a structure in which the first magnetic layer 24 is interposed between the pair of second magnetic layers 24.
It may have a structure with the magnetic layer 23 interposed. Further, in the case of a structure in which these are alternately stacked, the number of stacked layers is not particularly limited. Further, in any of these cases, when there are a plurality of layers constituting the laminated film,
Their composition and film thickness need not be the same.

【0040】図2に示す積層膜において、磁性層の厚さ
は0.5〜20nmが好ましく、非磁性層の厚さは1〜
10nmが好ましい。なお、磁性層13の間に介在させ
る非磁性層14の材料は、非磁性であれば特に限定され
ないが、その抵抗の観点から半導体を用いることが好ま
しい。このような半導体材料も特に限定されるものでは
ない。
In the laminated film shown in FIG. 2, the thickness of the magnetic layer is preferably 0.5 to 20 nm, and the thickness of the non-magnetic layer is 1 to
10 nm is preferred. The material of the non-magnetic layer 14 interposed between the magnetic layers 13 is not particularly limited as long as it is non-magnetic, but a semiconductor is preferably used from the viewpoint of its resistance. Such semiconductor material is also not particularly limited.

【0041】一方、図3に示す積層膜において、第1の
磁性膜の厚さは0.5〜20nmが好ましく、第2の磁
性膜の厚さは2〜30nmが好ましい。これら積層膜も
典型的には薄膜状であり、上述したような薄膜形成技術
を用いて形成することができる。また、超急冷などによ
る薄帯であっても良い。また、このような積層膜は、半
導体マトリックス中に磁性金属粒子が分散した磁性層と
非磁性層または磁性層とを交互に成膜して形成してもよ
いが、Co,FeおよびNiのうち少なくとも1種で構
成された磁性層と非磁性層とを交互に積層した後に熱処
理し、半導体元素を磁性層に拡散させることにより形成
することもできる。
On the other hand, in the laminated film shown in FIG. 3, the thickness of the first magnetic film is preferably 0.5 to 20 nm, and the thickness of the second magnetic film is preferably 2 to 30 nm. These laminated films are also typically thin films and can be formed using the thin film forming technique described above. Further, it may be a thin band formed by ultra-quenching. Further, such a laminated film may be formed by alternately forming a magnetic layer in which magnetic metal particles are dispersed in a semiconductor matrix and a non-magnetic layer or a magnetic layer. It can also be formed by alternately stacking magnetic layers and nonmagnetic layers made of at least one kind and then heat-treating them to diffuse the semiconductor element into the magnetic layers.

【0042】本発明に係る磁気抵抗効果素子はまた、半
導体マトリックス中にFe,Co,およびNiのうち少
なくとも1種を含む磁性金属粒子が分散した第1の磁性
層と、前記第1の磁性層よりソフトな磁性を有する第2
の磁性層との積層膜を具備していてもよい。このよう
に、ソフトな磁性を有する第2の磁性層を用いることに
より、十分な磁気抵抗変化率を維持しながら飽和磁界を
低下させることができる。
The magnetoresistive effect element according to the present invention also includes a first magnetic layer in which magnetic metal particles containing at least one of Fe, Co and Ni are dispersed in a semiconductor matrix, and the first magnetic layer. Second with softer magnetism
It may have a laminated film with the magnetic layer. As described above, by using the second magnetic layer having soft magnetism, the saturation magnetic field can be reduced while maintaining a sufficient magnetoresistance change rate.

【0043】ソフトな磁性を有するとは、磁気モーメン
トの向きが反転し易いことを示し、例えば強磁性体の時
保磁力(Hc)の大小で表すことができる。すなわち、
Hcが小さいほどソフトな磁性を有するということがで
きる。ここでは、第1の磁性層よりソフトな磁性を有す
るとは、第1の磁性層より小さい飽和磁界(Hs)を有
することをいい、第2の磁性層は、このようなソフトな
磁性をもたせるために、例えばFe,Co,Ni等の遷
移金属又は遷移金属を含む合金で形成されたソフト磁性
を示す物質、具体的にはパーマロイ、スーパーマロイや
センダストといった従来より用いられているソフト磁性
材料で形成されることが好ましい。
Having soft magnetism means that the direction of the magnetic moment is easily reversed, and can be expressed by the magnitude of the coercive force (Hc) of a ferromagnetic material, for example. That is,
It can be said that the smaller Hc is, the softer the magnetism is. Here, having softer magnetism than the first magnetic layer means having a saturation magnetic field (Hs) smaller than that of the first magnetic layer, and the second magnetic layer has such soft magnetism. Therefore, for example, a substance exhibiting soft magnetism formed of a transition metal such as Fe, Co, or Ni or an alloy containing a transition metal, specifically, a conventionally used soft magnetic material such as permalloy, supermalloy or sendust. It is preferably formed.

【0044】このソフトな磁性を有する第2の磁性層の
膜厚は0.5〜100nm程度が好ましく、さらに好ま
しくは1〜20nmである。このような積層膜は、例え
ば図5に示すように、半導体マトリックス31中に磁性
金属粒子32が分散した第1の磁性層33とソフトな磁
性を有する第2の磁性層34とにより形成される。基板
上に第1の磁性層33を形成した後、第2の磁性層34
を形成してもよいし、第2の磁性層34を形成した後第
1の磁性層33を形成してもよい。また、第1の磁性層
33は1つであっても複数であっても良く、例えば、図
6に示すように、2つの第1の磁性層33の間に第2の
磁性層34を介在させても良い。また、第2の磁性層3
4も1層であっても複数の層であっても良く、例えば図
7に示すように、第1の磁性層33と第2の磁性層34
とを交互に積層するようにしても良い。
The thickness of this second magnetic layer having soft magnetism is preferably about 0.5 to 100 nm, more preferably 1 to 20 nm. For example, as shown in FIG. 5, such a laminated film is formed by a first magnetic layer 33 in which magnetic metal particles 32 are dispersed in a semiconductor matrix 31 and a second magnetic layer 34 having soft magnetism. . After forming the first magnetic layer 33 on the substrate, the second magnetic layer 34 is formed.
May be formed, or the first magnetic layer 33 may be formed after the second magnetic layer 34 is formed. Further, the first magnetic layer 33 may be one or plural, and for example, as shown in FIG. 6, the second magnetic layer 34 is interposed between the two first magnetic layers 33. You may let me. In addition, the second magnetic layer 3
4 may be a single layer or a plurality of layers. For example, as shown in FIG. 7, the first magnetic layer 33 and the second magnetic layer 34 may be formed.
Alternatively, and may be laminated alternately.

【0045】これら磁気抵抗効果素子においては、金属
磁性粒子32が分散された第1の磁性層33中の磁気モ
ーメントは、磁気モーメントが反転し易いソフト磁性の
第2の磁性層34の相互作用により反転し易くなると考
えられる。すなわち、第1の磁性層33自体で得られる
高い磁気抵抗変化率を維持しながら、小さな磁界でその
磁気モーメントを反転することができるので、その結
果、高い感度を得ることができると考えられる。
In these magnetoresistive elements, the magnetic moment in the first magnetic layer 33 in which the metal magnetic particles 32 are dispersed is due to the interaction of the soft magnetic second magnetic layer 34 in which the magnetic moment is easily reversed. It is thought that it is easy to reverse. That is, it is considered that the magnetic moment can be reversed with a small magnetic field while maintaining the high magnetoresistance change rate obtained by the first magnetic layer 33 itself, and as a result, high sensitivity can be obtained.

【0046】なお、このような積層膜も上述した薄膜形
成技術などを用いて形成することができる。本発明の磁
気抵抗効果素子を実際に使用する際には、図8に示すよ
うに、電極が必要である。図8において、本発明に係る
磁気抵抗効果素子40は基板43上に形成される。そし
て一対の電極部41が磁気抵抗効果素子40に設けられ
る。一対のリード42が上記一対の電極部41にそれぞ
れ接続される。なお、磁性材料または非磁性材料からな
る下地層またはオーバーコートなどを磁気抵抗効果素子
に設けてもよい。
Note that such a laminated film can also be formed by using the above-mentioned thin film forming technique or the like. When actually using the magnetoresistive effect element of the present invention, electrodes are required as shown in FIG. In FIG. 8, the magnetoresistive effect element 40 according to the present invention is formed on the substrate 43. Then, the pair of electrode portions 41 are provided in the magnetoresistive effect element 40. A pair of leads 42 are connected to the pair of electrode portions 41, respectively. An underlayer or overcoat made of a magnetic material or a nonmagnetic material may be provided on the magnetoresistive effect element.

【0047】[0047]

【実施例】次に、半導体マトリックス中に磁性金属粒子
を分散させた基本構造を有する本発明の磁気抵抗効果素
子における磁性体の実施例を示す。 (実施例1)まず、FeおよびSiを蒸発源として、分
子線エピタキシー(MBE)法を用いて、熱酸化Si基
板上にFe、Si、Feの順番に成膜した。この際の基
板温度を100℃に設定した。ここでは各Feの膜厚を
4nmに固定しSiの膜厚を変化させた複数の膜を作成
した。
EXAMPLES Next, examples of magnetic materials in the magnetoresistive effect element of the present invention having a basic structure in which magnetic metal particles are dispersed in a semiconductor matrix will be shown. Example 1 First, Fe, Si, and Fe were sequentially formed on a thermally oxidized Si substrate by using a molecular beam epitaxy (MBE) method with Fe and Si as evaporation sources. The substrate temperature at this time was set to 100 ° C. Here, a plurality of films in which the film thickness of each Fe was fixed to 4 nm and the film thickness of Si was varied were prepared.

【0048】得られた膜の構造を透過型電子顕微鏡を用
いて観察した結果、いずれも明確な積層構造をとってお
らず、約10〜20nmの粒径を有するFe微粒子ある
いは強磁性Fe−Si合金微粒子がSiリッチのマトリ
ックス中に分散した、いわゆるグラニュラー構造を有し
ていた。
As a result of observing the structure of the obtained film using a transmission electron microscope, none of them had a clear laminated structure, and Fe fine particles having a particle diameter of about 10 to 20 nm or ferromagnetic Fe-Si. It had a so-called granular structure in which fine alloy particles were dispersed in a Si-rich matrix.

【0049】これらの膜について電気抵抗の温度変化を
測定した結果、室温での比抵抗は、Siの膜厚に依存し
て180μΩ・cmから280μΩ・cmの間であり、
室温近傍では比抵抗は温度上昇とともに低下した。この
ことから、電気抵抗は金属マトリックスを用いた従来の
グラニュラー膜より1桁以上大きく、またマトリックス
は半導体であることが確認された。一例として、図9に
Siの膜厚が2nmの場合の比抵抗の温度変化を示す。
As a result of measuring the temperature change of the electric resistance of these films, the specific resistance at room temperature is between 180 μΩ · cm and 280 μΩ · cm depending on the film thickness of Si,
The resistivity decreased with increasing temperature near room temperature. From this, it was confirmed that the electric resistance was one digit or more higher than that of the conventional granular film using a metal matrix, and the matrix was a semiconductor. As an example, FIG. 9 shows the temperature change of the specific resistance when the film thickness of Si is 2 nm.

【0050】電子線回折を用いてSiの膜厚が2nmの
場合の膜のマトリックス相を同定した結果、非磁性の半
導体FeSi化合物が主相であり、アモルファスSiも
若干含まれていることが確認された。
As a result of identifying the matrix phase of the film in the case where the film thickness of Si is 2 nm by using electron diffraction, it was confirmed that the non-magnetic semiconductor FeSi compound was the main phase and a small amount of amorphous Si was also contained. Was done.

【0051】続いて、直流4端子法を用いてこの膜の磁
気抵抗効果を測定した。得られた磁気抵抗効果曲線を図
10に示す。この図から明らかなように、磁気抵抗変化
率が3%であり、飽和磁界が0.03T(=0.3O
e)であった。この飽和磁界の値は非磁性金属マトリッ
クスを用いた従来のグラニュラー磁性膜よりも2桁以上
小さな値である。
Subsequently, the magnetoresistive effect of this film was measured by using the DC 4-terminal method. The obtained magnetoresistive effect curve is shown in FIG. As is clear from this figure, the rate of change in magnetoresistance is 3% and the saturation magnetic field is 0.03T (= 0.3O).
e). The value of this saturation magnetic field is two or more orders of magnitude smaller than that of the conventional granular magnetic film using a non-magnetic metal matrix.

【0052】(実施例2)次に、CoおよびSiを蒸発
源として、MBE法を用いて、熱酸化Si基板上にC
o、Si、Coの順番に成膜した。この際の基板温度を
100℃に設定した。ここでは各Coの膜厚を4nmに
固定しSiの膜厚を変化させた複数の膜を作成した。
(Embodiment 2) Next, by using MBE method with Co and Si as evaporation sources, C on a thermally oxidized Si substrate.
Films were formed in the order of o, Si, and Co. The substrate temperature at this time was set to 100 ° C. Here, a plurality of films in which the film thickness of each Co was fixed to 4 nm and the film thickness of Si was varied were formed.

【0053】得られた膜の構造を透過型電子顕微鏡を用
いて観察した結果、いずれも明確な積層構造をとってお
らず、約10〜20nmの粒径を有するCo微粒子ある
いは強磁性Co−Si合金微粒子がSiリッチのマトリ
ックス中に分散した、いわゆるグラニュラー構造を有し
ていた。
As a result of observing the structure of the obtained film using a transmission electron microscope, none of them had a clear laminated structure, and Co fine particles having a particle diameter of about 10 to 20 nm or ferromagnetic Co—Si. It had a so-called granular structure in which fine alloy particles were dispersed in a Si-rich matrix.

【0054】電子線回折を用いてこれらの膜のマトリッ
クス相を同定した結果、非磁性の半導体CoSi相とア
モルファスSi相とからなることが確認された。続い
て、直流4端子法を用いて磁気抵抗効果を測定した。S
iの膜厚が2nmの場合、磁気抵抗変化率が8%であ
り、飽和磁界が0.08Tであった。この飽和磁界の値
は非磁性金属マトリックスを用いた従来のグラニュラー
磁性膜よりも2桁以上小さな値である。
As a result of identifying the matrix phase of these films by using electron diffraction, it was confirmed that the film consisted of a non-magnetic semiconductor CoSi phase and an amorphous Si phase. Then, the magnetoresistive effect was measured using the direct current 4-terminal method. S
When the film thickness of i was 2 nm, the magnetoresistance change rate was 8% and the saturation magnetic field was 0.08T. The value of this saturation magnetic field is two or more orders of magnitude smaller than that of the conventional granular magnetic film using a non-magnetic metal matrix.

【0055】(実施例3)さらに、Ni80Fe20合金お
よびSiを蒸発源として、MBE法を用いて、熱酸化S
i基板上にNi80Fe20合金、Si、Ni80Fe20合金
の順番に成膜した。この際の基板温度を100℃に設定
した。ここでは各Ni80Fe20合金の膜厚を5nmに固
定しSiの膜厚を変化させた複数の膜を作成した。
(Example 3) Furthermore, thermal oxidation S was performed by using the MBE method with Ni 80 Fe 20 alloy and Si as evaporation sources.
The Ni 80 Fe 20 alloy, Si, and Ni 80 Fe 20 alloy were formed in this order on the i substrate. The substrate temperature at this time was set to 100 ° C. Here, a plurality of films in which the film thickness of each Ni 80 Fe 20 alloy was fixed to 5 nm and the film thickness of Si was varied were prepared.

【0056】得られた膜の構造を透過型電子顕微鏡を用
いて観察した結果、いずれも明確な積層構造をとってお
らず、約10〜20nmの粒径を有するNi80Fe20
金強磁性微粒子あるいはNi80Fe20−Si合金強磁性
微粒子がSiリッチのマトリックス中に分散した、いわ
ゆるグラニュラー構造を有していた。
As a result of observing the structure of the obtained film with a transmission electron microscope, Ni 80 Fe 20 alloy ferromagnetic fine particles having a grain size of about 10 to 20 nm without any clear laminated structure were observed. Alternatively, it had a so-called granular structure in which Ni 80 Fe 20 —Si alloy ferromagnetic fine particles were dispersed in a Si-rich matrix.

【0057】電子線回折を用いてこれらの膜のマトリッ
クス相を同定した結果、非磁性の半導体NiFeSi相
とアモルファスSi相とからなることが確認された。続
いて、直流4端子法を用いて磁気抵抗効果を測定した。
Siの膜厚が2nmの場合、磁気抵抗変化率が4%であ
り、また強磁性微粒子の磁歪定数λが10-6オーダーで
零に近いため、飽和磁界が特に小さく0.01Tであっ
た。この飽和磁界の値は非磁性金属マトリックスを用い
た従来のグラニュラー磁性膜よりも2桁以上小さな値で
ある。
As a result of identifying the matrix phase of these films by using electron diffraction, it was confirmed that the film consisted of a non-magnetic semiconductor NiFeSi phase and an amorphous Si phase. Then, the magnetoresistive effect was measured using the direct current 4-terminal method.
When the film thickness of Si was 2 nm, the magnetoresistance change rate was 4%, and the magnetostriction constant λ of the ferromagnetic fine particles was close to zero on the order of 10 −6 , so that the saturation magnetic field was particularly small and was 0.01T. The value of this saturation magnetic field is two or more orders of magnitude smaller than that of the conventional granular magnetic film using a non-magnetic metal matrix.

【0058】[0058]

【発明の効果】本発明によれば、ヒステリシス及び飽和
磁界がともに小さく、磁気抵抗変化率の大きい磁気抵抗
効果素子が提供される。
According to the present invention, there is provided a magnetoresistive effect element having both a small hysteresis and a saturated magnetic field and a large magnetoresistance change rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】隣接する磁性金属微粒子とそれらの間の半導体
マトリックスのエネルギ準位を示し、本発明の原理を説
明するための図。
FIG. 1 is a diagram showing the energy levels of adjacent magnetic metal fine particles and a semiconductor matrix between them, for explaining the principle of the present invention.

【図2】本発明の磁気抵抗効果素子における半導体マト
リックスに磁性金属粒子が分散した構造の磁性体を模式
的に示す断面図。
FIG. 2 is a sectional view schematically showing a magnetic body having a structure in which magnetic metal particles are dispersed in a semiconductor matrix in the magnetoresistive effect element of the present invention.

【図3】本発明の一実施形態に係る磁気抵抗効果素子を
示す断面図。
FIG. 3 is a sectional view showing a magnetoresistive effect element according to an embodiment of the present invention.

【図4】本発明の他の実施形態に係る磁気抵抗効果素子
を示す断面図。
FIG. 4 is a cross-sectional view showing a magnetoresistive effect element according to another embodiment of the present invention.

【図5】本発明のさらに他の実施形態に係る磁気抵抗効
果素子を示す断面図。
FIG. 5 is a cross-sectional view showing a magnetoresistive effect element according to still another embodiment of the present invention.

【図6】図5に示す実施形態の磁気抵抗効果素子の他の
例を示す断面図。
6 is a cross-sectional view showing another example of the magnetoresistive effect element according to the embodiment shown in FIG.

【図7】図5に示す実施形態の磁気抵抗効果素子のさら
に他の例を示す断面図。
7 is a sectional view showing still another example of the magnetoresistive effect element according to the embodiment shown in FIG.

【図8】本発明に係る磁気抵抗効果素子の実際の使用状
態を示す断面図。
FIG. 8 is a sectional view showing an actual use state of the magnetoresistive effect element according to the present invention.

【図9】本発明の実施例1に係る磁性体の電気抵抗の温
度変化を示す図。
FIG. 9 is a diagram showing a temperature change of electric resistance of the magnetic body according to the first embodiment of the invention.

【図10】本発明の実施例1に係る磁性体の磁気抵抗効
果曲線を示す図。
FIG. 10 is a diagram showing a magnetoresistive effect curve of the magnetic body according to Example 1 of the invention.

【符号の説明】[Explanation of symbols]

1,11,21,31……半導体マトリックス 2,12,22……磁性金属粒子 3……磁性体 4……スピン 13,23,24,33……磁性層 14……非磁性層 34……ソフト磁性層 40……磁気抵抗効果素子 41……電極部 42……リード 43……基板 1, 11, 21, 31 ... Semiconductor matrix 2, 12, 22 ... Magnetic metal particles 3 ... Magnetic material 4 ... Spin 13, 23, 24, 33 ... Magnetic layer 14 ... Nonmagnetic layer 34 ... Soft magnetic layer 40 ... Magnetoresistive element 41 ... Electrode part 42 ... Lead 43 ... Substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥野 志保 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 斉藤 好昭 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shiho Okuno 1 Komukai-shi Toshiba-cho, Kawasaki-shi, Kanagawa Prefecture Toshiba Research and Development Center (72) Inventor Yoshiaki Saito Komukai, Saiwai-ku, Kawasaki-shi, Kanagawa Toshiba Town No. 1 Inside Toshiba Research and Development Center

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 半導体マトリックス中に、Fe,Coお
よびNiからなる磁性元素のうち少なくとも1種を含む
磁性金属粒子が分散した磁性体を有することを特徴とす
る磁気抵抗効果素子。
1. A magnetoresistive effect element comprising a magnetic substance in which magnetic metal particles containing at least one kind of magnetic elements consisting of Fe, Co and Ni are dispersed in a semiconductor matrix.
【請求項2】 半導体マトリックス中に、Fe,Coお
よびNiからなる磁性元素のうち少なくとも1種を含む
磁性金属粒子が分散した少なくとも1層の磁性層と、少
なくとも1層の非磁性層との積層膜を有することを特徴
とする磁気抵抗効果素子。
2. A laminate of at least one magnetic layer in which magnetic metal particles containing at least one of magnetic elements consisting of Fe, Co and Ni are dispersed in a semiconductor matrix, and at least one non-magnetic layer. A magnetoresistive effect element having a film.
【請求項3】 半導体マトリックス中に、Fe,Coお
よびNiからなる磁性元素のうち少なくとも1種を含む
磁性金属粒子が分散した少なくとも1層の第1の磁性層
と、Fe,CoおよびNiからなる磁性元素のうち少な
くとも1種を含む少なくとも1層の第2の磁性層との積
層膜を有することを特徴とする磁気抵抗効果素子。
3. A semiconductor matrix comprising at least one first magnetic layer in which magnetic metal particles containing at least one of magnetic elements consisting of Fe, Co and Ni are dispersed, and Fe, Co and Ni. A magnetoresistive effect element having a laminated film with at least one second magnetic layer containing at least one of magnetic elements.
【請求項4】 前記磁性金属粒子は、Fe,Coおよび
Niからなる磁性元素のうち少なくとも2種以上を含む
ことを特徴とする請求項1ないし請求項3のいずれか1
項に記載の磁気抵抗効果素子。
4. The magnetic metal particle according to claim 1, wherein the magnetic metal particle contains at least two kinds of magnetic elements composed of Fe, Co and Ni.
The magnetoresistive effect element according to the item.
【請求項5】 前記磁性金属粒子は、その粒径が5〜1
00nmの範囲であることを特徴とする請求項1ないし
請求項4のいずれか1項に記載の磁気抵抗効果素子。
5. The magnetic metal particles have a particle size of 5 to 1
The magnetoresistive effect element according to claim 1, wherein the magnetoresistive effect element has a range of 00 nm.
【請求項6】 前記磁性金属粒子の磁歪が実質的に零で
あることを特徴とする請求項1ないし請求項5のいずれ
か1項に記載の磁気抵抗効果素子。
6. The magnetoresistive effect element according to claim 1, wherein the magnetostriction of the magnetic metal particles is substantially zero.
【請求項7】 前記半導体マトリックスの実効的エネル
ギーギャップが1eV以下であることを特徴とする請求
項1ないし請求項6のいずれか1項に記載の磁気抵抗効
果素子。
7. The magnetoresistive element according to claim 1, wherein the effective energy gap of the semiconductor matrix is 1 eV or less.
【請求項8】 前記非磁性層は半導体で形成されている
ことを特徴とする請求項2に記載の磁気抵抗効果素子。
8. The magnetoresistive effect element according to claim 2, wherein the non-magnetic layer is formed of a semiconductor.
【請求項9】 半導体マトリックス中にFe,Co,お
よびNiのうち少なくとも1種を含む磁性金属粒子が分
散した第1の磁性層と、前記第1の磁性層よりソフトな
磁性を有する第2の磁性層との積層膜を有することを特
徴とする磁気抵抗効果素子。
9. A first magnetic layer in which magnetic metal particles containing at least one of Fe, Co, and Ni are dispersed in a semiconductor matrix, and a second magnetic layer having softer magnetism than the first magnetic layer. A magnetoresistive element having a laminated film with a magnetic layer.
JP01103496A 1995-01-26 1996-01-25 Magnetoresistive effect element Expired - Fee Related JP3677107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01103496A JP3677107B2 (en) 1995-01-26 1996-01-25 Magnetoresistive effect element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-10654 1995-01-26
JP1065495 1995-01-26
JP01103496A JP3677107B2 (en) 1995-01-26 1996-01-25 Magnetoresistive effect element

Publications (2)

Publication Number Publication Date
JPH08264858A true JPH08264858A (en) 1996-10-11
JP3677107B2 JP3677107B2 (en) 2005-07-27

Family

ID=26345966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01103496A Expired - Fee Related JP3677107B2 (en) 1995-01-26 1996-01-25 Magnetoresistive effect element

Country Status (1)

Country Link
JP (1) JP3677107B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6613448B1 (en) 1999-03-25 2003-09-02 National Institute Of Advanced Industrial Science And Technology Magnetoresistance effect film and method of forming same
JP2004039757A (en) * 2002-07-01 2004-02-05 Sony Corp Magnetoresistive effect element and magnetic memory device
JP2010067769A (en) * 2008-09-10 2010-03-25 Res Inst Electric Magnetic Alloys Magnetic resistance film, and magnetic recording magnetic head, magnetic sensor and magnetic memory using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6613448B1 (en) 1999-03-25 2003-09-02 National Institute Of Advanced Industrial Science And Technology Magnetoresistance effect film and method of forming same
US6808740B2 (en) 1999-03-25 2004-10-26 National Institute Of Advanced Industrial Science And Technology Magnetoresistance effect film and method of forming same
JP2004039757A (en) * 2002-07-01 2004-02-05 Sony Corp Magnetoresistive effect element and magnetic memory device
JP2010067769A (en) * 2008-09-10 2010-03-25 Res Inst Electric Magnetic Alloys Magnetic resistance film, and magnetic recording magnetic head, magnetic sensor and magnetic memory using the same

Also Published As

Publication number Publication date
JP3677107B2 (en) 2005-07-27

Similar Documents

Publication Publication Date Title
US6205008B1 (en) Magnetic-resistance device, and magnetic head employing such a device
EP2264725B1 (en) Magnetic apparatus with magnetic thin film
US8125745B2 (en) Magnetic thin film, and magnetoresistance effect device and magnetic device using the same
US7336451B2 (en) Magnetic sensing element containing half-metallic alloy
KR100192192B1 (en) Magnetoresistance effect film, a method of manufacturing the same, and magnetoresistance effect device
EP0877398B1 (en) Magnetic element and magnetic head and magnetic memory device using thereof
KR100249976B1 (en) Magnetoresistive device and the method
JP6866694B2 (en) Magneto Resistive Sensor
JP3593472B2 (en) Magnetic element, magnetic memory and magnetic sensor using the same
JP3556457B2 (en) Spin-dependent conductive element and electronic and magnetic components using the same
US7158354B2 (en) Dual-type magnetic detecting element in which free magnetic layer and pinned magnetic layer have suitably selected β values
JP2004095583A (en) Magnetic detector
JP3946355B2 (en) Magnetic element, magnetic sensor and magnetic storage device using the same
JP4061590B2 (en) Magnetic thin film, magnetoresistive effect element and magnetic device using the same
JP3547974B2 (en) Magnetic element, magnetic head and magnetic storage device using the same
JP2005228998A (en) Magnetic thin film and magnetoresistance effect element and magnetic device using it
JP3585629B2 (en) Magnetoresistive element and magnetic information reading method
US5773156A (en) Magnetoresistance effect element
Arora et al. Spin torque switching in nanopillars with antiferromagnetic reference layer
JP3520192B2 (en) Magnetic element and magnetic component and electronic component using the same
RU2316783C2 (en) Magneto-resistive layered system and sensitive element on basis of such a layered system
JP3455055B2 (en) Magnetic element, magnetic head and magnetic storage device using the same
JP3677107B2 (en) Magnetoresistive effect element
JP3593463B2 (en) Ferromagnetic tunnel effect element and magnetic device using the same
JPH08321016A (en) Magnetoresistive film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees