JP3585629B2 - Magnetoresistive element and magnetic information reading method - Google Patents

Magnetoresistive element and magnetic information reading method Download PDF

Info

Publication number
JP3585629B2
JP3585629B2 JP06958196A JP6958196A JP3585629B2 JP 3585629 B2 JP3585629 B2 JP 3585629B2 JP 06958196 A JP06958196 A JP 06958196A JP 6958196 A JP6958196 A JP 6958196A JP 3585629 B2 JP3585629 B2 JP 3585629B2
Authority
JP
Japan
Prior art keywords
ferromagnetic
ferromagnetic conductive
magnetization
conductive layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06958196A
Other languages
Japanese (ja)
Other versions
JPH09260743A (en
Inventor
達也 岸
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP06958196A priority Critical patent/JP3585629B2/en
Publication of JPH09260743A publication Critical patent/JPH09260743A/en
Application granted granted Critical
Publication of JP3585629B2 publication Critical patent/JP3585629B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]

Description

【0001】
【発明の属する技術分野】
本発明は磁気抵抗効果素子及びこれを用いた磁気情報読み出し方法に関する。
【0002】
【従来の技術】
1988年に、磁性体と非磁性金属を積層した金属人工格子膜において、巨大な磁気抵抗効果が現れることが発見され(Baibich 他、Phys. Rev. Lett. 61 (1988)2472頁〜2475頁)、それ以来、この現象に関連した研究がさかんになされるようになってきた。
【0003】
最近は、これらの巨大な磁気抵抗を示す人工格子膜を用いた様々な応用が研究されており、例えば、磁気センサーや記録素子としての応用研究があり、特に、高速かつ高密度で不揮発メモリとして利用したもの(MRAM)が注目されている。
【0004】
また、トンネル絶縁膜を介して磁性層を積層した強磁性トンネル接合でも磁気抵抗効果がみいだされている。
例えば、FeとAl を用いた強磁性トンネル接合において両側のFe膜の保磁力が異なるように作成されている場合、磁化過程中に両側のFe膜の磁化が平行状態から反平行状態に変化し、トンネル抵抗が変化することで磁気抵抗効果が生じることが示されている(宮崎ら、Journal of Magnetism and Magnetic Materials 139(1995) L231−L234 )。特にこの系では、室温においても20%以上の大きな磁気抵抗効果がある。
【0005】
また、最近Moodera ら(Phys. Rev. Lett. 74(1995)3273 頁〜3276頁)によりCoFe/Al2 O3 /Coという組み合わせの強磁性トンネル接合においても接合の作成方法を改良することで、室温で10%以上の磁気抵抗が得られることが示されている。
【0006】
このように、強磁性トンネル接合に関しても大きな磁気抵抗効果が得られるようになってきたが、これについての応用研究はいまだほとんどなされておらず、磁気センサーや情報記憶素子としての応用例はほとんど報告されていない。
【0007】
【発明が解決しようとする課題】
この様に強磁性トンネル接合の磁気抵抗効果を用いた応用、特に記録素子としての応用は検討されてはいない状況にある。
本発明は以上の点を考慮してなされたもので、強磁性トンネル接合を用いて、非破壊若しくは多値の記録/読出しが行なえる新規な磁気抵抗効果素子及び磁気情報読み出し方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、第1の強磁性導電層と、第2の強磁性導電層と、前記第1及び第2の強磁性導電層の間に介在する第1のトンネル絶縁層と、第3の強磁性導電層と、前記第2及び第3の強磁性導電層の間に介在する第2のトンネル絶縁層と、前記第1及び第3の強磁性導電層の外側にそれぞれ設けられた第1及び第2の反強磁性層とを具備し、前記第2の強磁性導電層の保磁力が前記第1及び第3の強磁性導電層の保磁力よりも小さく、前記第1乃至第3の強磁性導電層のうちの隣り合う層の磁化の向きが実質的に互いに同じかまたは逆であることを特徴とする磁気抵抗効果素子である。例えば、前記第1及び第3の強磁性導電層の磁化の向きが実質的に互いに同じであり、前記第2の強磁性導電層の磁化の向きが前記第1及び第3の強磁性導電層の磁化の向きと実質的に互いに同じかまたは逆である磁気抵抗効果素子である。
【0009】
また、本発明は、第1の強磁性導電層と、第2の強磁性導電層と、前記第1及び第2の強磁性導電層の間に介在する第1のトンネル絶縁層と、第3の強磁性導電層と、前記第2及び第3の強磁性導電層の間に介在する第2のトンネル絶縁層と、前記第1及び第3の強磁性導電層の外側にそれぞれ設けられた第1及び第2の反強磁性層とを備え、前記第2の強磁性導電層の保磁力が前記第1及び第3の強磁性導電層の保磁力よりも小さく、前記第1乃至第3の強磁性導電層のうちの隣り合う層の磁化の向きが実質的に互いに同じかまたは逆である磁気抵抗効果素子の磁気情報読み出し方法であって、前記第2の強磁性導電層の磁化の向きを変化可能とし、前記第1及び第2のトンネル絶縁層を流れるトンネル電流に基づいて、前記第1乃至第3の強磁性導電層それぞれの磁化の向きの相対的関係を磁気情報として読み出すことを特徴とする磁気情報読み出し方法である。例えば、前記第1及び第3の強磁性導電層の磁化の向きが実質的に互いに同じであり、前記第2の強磁性導電層の磁化の向きが前記第1及び第3の強磁性導電層の磁化の向きと実質的に互いに同じかまたは逆であり、前記第1及び第3の強磁性導電層の磁化の向きと前記第2の強磁性導電層の磁化の向きとの相対的関係を磁気情報として読み出す磁気情報読み出し方法である。
【0010】
【発明の実施の形態】
図1を用いて本発明の原理を説明する。磁性積層体(6)は、第1の強磁性導電層(1),第1のトンネル絶縁層(2),第2の強磁性導電層(3),第2のトンネル絶縁層(4)及び第3の強磁性導電層(5)が順次積層された構造を採る。
【0011】
ここでは第2の強磁性導電層が(3)の保磁力が、第1及び第3の強磁性導電層(1)(5)の保磁力より小さいものとする。
磁気記録は第1及び第3の強磁性導電層(1)(5)を同じ方向に磁化することで行う。この図では上向きの磁化状態を“0”,下向きの磁化状態を“1”とする。
【0012】
第2の強磁性導電層(3)の磁化の向きは不定である。ただし第2の強磁性導電層(3)の保磁力(H )は第1及び第3の強磁性導電層の保磁力(H , H )よりも小とする。すなわちH ,H >H>H の磁化を印加することで中間に位置する第2の強磁性導電層(3)の磁化方向のみを制御することができる。
【0013】
まず“0”の状態の読み出しである。
電流磁界を用いて第2の強磁性導電層の磁化の向きを制御するものとする。すなわちこの磁性積層体に近接して導体格を設け、これに電流を流すことで磁界を印加するのである。正パルスをいれた場合は“0”と同方向に、負パルスをいれた場合は“1”と同方向に磁化の向きが定まるとする。
【0014】
正パルスを入力する前の第2の強磁性導電層の磁化の向きは不定であるが、便宜上“0”と同方向であるとする。なお必要に応じ正パルスを印加して初期状態を“0”の向きにしておいても良い。また逆でも良い。
【0015】
正パルスを印加した場合、第1,第2及び第3の強磁性導電層の磁化は同方向となり、磁性積層体(6)にはトンネル電流が流れ易くなる。一方、負パルスを印加した場合は、第1及び第2の強磁性導電膜の磁化に向きは逆であり、また第2及び第3の強磁性導電膜の磁化の向きは逆である。従って磁性積層体にはトンネル電流が非常に流れ難くなる。
【0016】
図1(a)には正負パルス印加のタイミングを示し、図1(b)は“0”の記録をもっている場合の磁化の向きを示し、それに伴い図1(c)はトンネル電流の大きさを示す。正パルスを印加した時はトンネル電流が流れ、負パルスを印加した時はトンネル電流が流れ難いことを示している。この図では正パルスと負パルス間を離しているが、連続させても良い。
【0017】
同図では正負パルスがないときの第2の強磁性導電層の磁化の向きは直前にかけられたパルスの状態が保持されることにしているが、第1及び第3の強磁性導電層との静磁接合等の影響で反転する可能性もある。従って、正負パルス印加時のトンネル電流を検出すれば良い。なお、電圧検出を行えば図1(c)のチャートは逆になることは言うまでもない。
【0018】
“1”の場合は“0”と逆で(図1(d),(e))、トンネル電流が小から大に変化することになる。
“0”,“1”の場合夫々正パルスを印加したときの磁性積層体(6)の両端に生じる電圧を基準とすれば、上述の例で電圧が上昇する場合(+ΔVの変位)は“0”、下降する場合(−ΔVの変位)は“1”と判断できる。すなわち出力の絶対量ではなく変位の符号で“0”,“1”が判断でき、S/N比に優れた読出しが可能になる。
【0019】
更に、この場合非破壊の読出しができる。
図2に3値データ“0”(図2(b)(c)),“1”(図2(d)(e)),“2”(図2(f)(g))を再生する場合について説明する。
【0020】
例えば、第1及び第3の強磁性導電層の磁化の向きが上向きの場合を“0”,下向きの場合を“2”,異なる場合を“1”とする。図1の例と同様に第2の強磁性導電層の磁化の向きは上向きを初期状態とする。図2(a)に外部磁場発生用の電流パルスの例を示し、図1と同様に同図(a)(e)(g)はタイミングをあわせて記載されている。
【0021】
正パルスを印加して第2の強磁性導電層の磁化を上向きとした場合、“0”のときは第1乃至第3の強磁性導電層の磁化がそろうのでトンネル電流が流れ易くなり、出力電圧は低く(V )、その他の場合は磁化がそろっていないのでトンネル電流が流れにくくなり、出力電圧は高く(V )なる。
【0022】
続いて負パルスを印加した場合、“2”のときは下向きに磁化がそろいV となるが、その他はV となる。
従って、正負のパルスを加えた場合、V →V となる場合が“0”、V →V となる場合が“1”、V →V となる場合が“2”と判断できる。
【0023】
この様に多値記録も可能である。しかも、読み出し前後で第1及び第3の強磁性導電層のスピンの向きは変わらず非破壊の読み出しができる。
第3に4値データ“0”(図3(b)(c)),“1”(図3(d)(e)),“2”(図3(f)(g)),“3“(図3(h)(i))を再生する場合について説明する。
【0024】
例えば、第1及び第3の強磁性導電層の磁化の向きが上向きの場合を“0”,下向きの場合を“3”,異なる場合を第1の強磁性層の磁化が上向きのとき“1”下向きのときを“2”とする。
【0025】
図1の例と同様に第2の強磁性導電層の磁化の向きは上向きを初期状態とする。図3(a)に外部磁場発生用の電流パルスの例を示し、図2と同様に同図(a)(e)(g)(i)はタイミングをあわせて記載されている。
【0026】
なお、図1,2の場合、H ,H >H(読み出し)>H であったが、H >H の関係を更に付加する。更に読み出し用として振幅小と大を用意し、H >H(大)>H >H(小)>H とする。
【0027】
正パルス(振幅小)を印加して第2の強磁性導電層の磁化を上向きとした場合、“0”のときは第1乃至第3の強磁性導電層の磁化がそろうのでトンネル電流が流れ易くなり、出力電圧は低く(V )、その他の場合は磁化がそろっていないのでトンネル電流が流れにくくなり、出力電圧は高く(V )なる。
【0028】
続いて負パルスを印加した場合、“4”のときは下向きに磁化がそろいV となるが、その他はV となる。
更に正パルス(大)を印加すると第3の強磁性層は記録状態によらず上向きとなるので“2”“3”以外はV となる。
【0029】
従って、正(小)負正(大)のパルスを加えた場合、V →V →V となる場合が“0”、V →V →V となる場合が“1”,V →V →V が“2”,V →V →V となる場合が“3”と判断できる。
【0030】
この様に破壊読出しではあるが4値記録も可能である。
本発明素子は例えば以下の様にして作成される。
強磁性層として、Fe、Co、Ni等の強磁性体やパーマロイ等の磁性合金、あるいは、ホイスラー合金等の半金属を用い、絶縁体層としてNiO、Al などの酸化物を用いることができる。ここで、強磁性層の膜厚は1nmから500nmが好ましく、絶縁層の膜厚は1nmから40nmが好ましい。
【0031】
接合の作成方法を、強磁性層としてFe、絶縁体層としてAl を用いた場合について説明すると以下のようになる。
強磁性トンネル接合をガラス基板上に作成する。強磁性層はイオンビームスパッタ法により作成する。この際、チェンバ内を1×10−6Torr以下の真空状態とした後、Arを1×10−4Torr導入し、Arイオンの加速電圧を600Vとして製膜を行う。また、第1と第3の強磁性層の膜厚は100nm、第2の強磁性層の膜厚は50nmとして、第2の強磁性層の保磁力が第1と第3の強磁性層の保磁力より小さくなるようにした。絶縁体層は、Alをイオンビームスパッタ法により膜厚5nmから25nmに製膜し、大気中で24時間自然酸化させてAl を形成する。
【0032】
接合の作成方法を、強磁性層としてFe、絶縁体層としてAlを用いた場合について説明すると以下のようになる。強磁性トンネル接合をガラス基板上に作成する。強磁性層はイオンビームスパッタ法により作成する。この際、チェンバ内を1×10−6Torr以下の真空状態とした後、Arを1×10−4Torr導入し、Arイオンの加速電圧を600Vとして製膜を行う。また、第1と第3の強磁性層の膜厚は100nm、第2の強磁性層の膜厚は50nmとして、第2の強磁性層の保磁力が第1と第3の強磁性層の保磁力より小さくなるようにした。絶縁体層は、Alをイオンビームスパッタ法により膜厚5nmから25nmに製膜し、大気中で24時間自然酸化させてAlを形成する。
【0033】
一層の絶縁体によって分けられた2種の強磁性層からなる強磁性トンネル接合については、Slonczewski により理論的解析が行われている(Phys. Rev. B39 (1989)6995頁〜7002頁)。これによると、トンネルコンダクタンス(G)は、絶縁体が無限に厚い極限では接合の透過係数に比例する。
【0034】
すなわち、Gは(1+εcos θ)に比例する。θは二つの強磁性層の磁化のなす角度を表わし、εは物質に依存した定数であり、0<ε≦1の値をとる。従って、強磁性層の磁化が平行の時(θ=0)コンダクタンスが最大値をとり、反平行のとき(θ=π)最小値となる。ホイスラー合金などの半金属を用いた場合はε=1である。
【0035】
本発明では、強磁性層が3層含まれており、二つのトンネル接合の組み合わせとなっている。全体の透過係数は、各トンネル接合の透過係数により表すことができ、特に、各トンネル接合の透過係数Tが小さい場合には、Tのトータルは T に比例する。
【0036】
従って、トンネル・コンダクタンス(Gtotal )は(1+εcos θ) に比例することになる。
従って3層の磁性層を有する方が磁場に関するコンダクタンスの微係数が大きくなることがわかる。図4にε=1の場合に比例係数を正規化して示す。従って、磁場の変化に対するトンネル電流の変化の検出が容易になり、磁気センサーに適している。
【0037】
さらに、第1と第3の強磁性層の磁化への外部磁場からの影響を小さくするために外側にFeMnのような反強磁性層を備えて、これらとの相互作用により第1と第3の強磁性層の磁化を固着することも考えられる。
【0038】
【発明の効果】
以上説明したように本発明によれば強磁性トンネル接合を用いた新規な磁気抵抗効果素子を得ることができ、多値若しくは非破壊読出しが可能な磁気記録方式を得ることができる。
【図面の簡単な説明】
【図1】本発明の概略図。
【図2】本発明の概略図。
【図3】本発明の概略図。
【図4】本発明の特性図。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetoresistance effect element and a method for reading magnetic information using the same.
[0002]
[Prior art]
In 1988, it was discovered that a giant magnetoresistance effect appeared in a metal artificial lattice film in which a magnetic material and a nonmagnetic metal were laminated (Baibich et al., Phys. Rev. Lett. 61 (1988) pp. 2472 to 2475). Since then, research related to this phenomenon has been actively conducted.
[0003]
Recently, various applications using artificial lattice films exhibiting these giant magnetoresistances have been studied.For example, there is application research as a magnetic sensor or a recording element. What has been used (MRAM) has attracted attention.
[0004]
Also, a magnetoresistance effect has been found in a ferromagnetic tunnel junction in which magnetic layers are stacked via a tunnel insulating film.
For example, in a ferromagnetic tunnel junction using Fe and Al 2 O 3 , when the coercive forces of the Fe films on both sides are different, the magnetization of the Fe films on both sides changes from a parallel state to an anti-parallel state during the magnetization process. It has been shown that a magnetoresistance effect is caused by a change in tunnel resistance (Miyazaki et al., Journal of Magnetics and Magnetic Materials 139 (1995) L231-L234). In particular, this system has a large magnetoresistance effect of 20% or more even at room temperature.
[0005]
Also recently, according to Moodera et al. (Phys. Rev. Lett. 74 (1995) pp. 3273 to 3276), the method of forming a ferromagnetic tunnel junction of the combination of CoFe / Al2O3 / Co is improved by improving the method of forming the junction at room temperature. It is shown that a magnetic resistance of 10% or more can be obtained.
[0006]
As described above, a large magnetoresistance effect has also been obtained for ferromagnetic tunnel junctions, but there has been little application research on this, and there have been almost no applications for magnetic sensors and information storage devices. It has not been.
[0007]
[Problems to be solved by the invention]
As described above, the application of the ferromagnetic tunnel junction using the magnetoresistance effect, particularly the application as a recording element has not been studied.
The present invention has been made in consideration of the above points, and provides a novel magnetoresistive element and a magnetic information reading method capable of performing non-destructive or multi-value recording / reading using a ferromagnetic tunnel junction. With the goal.
[0008]
[Means for Solving the Problems]
The present invention includes a first ferromagnetic conductive layer, a second ferromagnetic conductive layer, a first tunnel insulating layer interposed between the first and second ferromagnetic conductive layer, the third strong a magnetic conductive layer, and a second tunnel insulating layer interposed between the second and third ferromagnetic conductive layer, first and respectively provided on the outer side of the first and third ferromagnetic conductive layer and a second antiferromagnetic layer, said coercive force of the second ferromagnetic conductive layer rather smaller than the coercive force of the first and third ferromagnetic conductive layer, the first to third The magneto-resistance effect element is characterized in that adjacent magnetization directions of the ferromagnetic conductive layers are substantially the same or opposite to each other . For example, the magnetization directions of the first and third ferromagnetic conductive layers are substantially the same as each other, and the magnetization directions of the second ferromagnetic conductive layer are the first and third ferromagnetic conductive layers. Are magnetoresistive elements whose directions of magnetization are substantially the same as or opposite to each other.
[0009]
The present invention also provides a first ferromagnetic conductive layer, a second ferromagnetic conductive layer, a first tunnel insulating layer interposed between the first and second ferromagnetic conductive layers, , A second tunnel insulating layer interposed between the second and third ferromagnetic conductive layers, and first and third ferromagnetic conductive layers provided outside the first and third ferromagnetic conductive layers, respectively. A first antiferromagnetic layer and a second antiferromagnetic layer, wherein the coercive force of the second ferromagnetic conductive layer is smaller than the coercive force of the first and third ferromagnetic conductive layers. A method for reading magnetic information of a magnetoresistive element, wherein the magnetization directions of adjacent layers of the ferromagnetic conductive layers are substantially the same or opposite to each other, wherein the magnetization direction of the second ferromagnetic conductive layer is Can be changed, and based on the tunnel current flowing through the first and second tunnel insulating layers, the first through third A magnetic information reading method characterized by reading the relative relationship of ferromagnetic conductive layers each of the magnetization directions as magnetic information. For example, the magnetization directions of the first and third ferromagnetic conductive layers are substantially the same as each other, and the magnetization directions of the second ferromagnetic conductive layer are the first and third ferromagnetic conductive layers. And the magnetization directions of the first and third ferromagnetic conductive layers and the magnetization direction of the second ferromagnetic conductive layer are substantially the same or opposite to each other. This is a magnetic information reading method for reading as magnetic information.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The principle of the present invention will be described with reference to FIG. The magnetic laminate (6) includes a first ferromagnetic conductive layer (1), a first tunnel insulating layer (2), a second ferromagnetic conductive layer (3), a second tunnel insulating layer (4), A structure in which the third ferromagnetic conductive layer (5) is sequentially laminated is adopted.
[0011]
Here, it is assumed that the coercive force of the second ferromagnetic conductive layer (3) is smaller than the coercive force of the first and third ferromagnetic conductive layers (1) and (5).
Magnetic recording is performed by magnetizing the first and third ferromagnetic conductive layers (1) and (5) in the same direction. In this figure, the upward magnetization state is “0” and the downward magnetization state is “1”.
[0012]
The direction of magnetization of the second ferromagnetic conductive layer (3) is undefined. However, the coercive force (H 2 ) of the second ferromagnetic conductive layer (3) is smaller than the coercive force (H 1 , H 3 ) of the first and third ferromagnetic conductive layers. That H 1, H 3> H> second ferromagnetic conductive layer located intermediate by applying a magnetization of H 2 (3) can be controlled magnetization direction only.
[0013]
First, reading of the state of “0” is performed.
It is assumed that the direction of magnetization of the second ferromagnetic conductive layer is controlled using the current magnetic field. That is, a conductor is provided close to the magnetic laminate, and a magnetic field is applied by passing a current through the conductor. It is assumed that the direction of magnetization is determined in the same direction as “0” when a positive pulse is applied and in the same direction as “1” when a negative pulse is applied.
[0014]
The direction of magnetization of the second ferromagnetic conductive layer before the input of the positive pulse is undefined, but is assumed to be the same direction as “0” for convenience. If necessary, a positive pulse may be applied to set the initial state to the direction of “0”. The reverse is also possible.
[0015]
When a positive pulse is applied, the magnetizations of the first, second, and third ferromagnetic conductive layers have the same direction, and a tunnel current easily flows through the magnetic laminate (6). On the other hand, when a negative pulse is applied, the magnetization directions of the first and second ferromagnetic conductive films are opposite, and the magnetization directions of the second and third ferromagnetic conductive films are opposite. Therefore, it becomes very difficult for a tunnel current to flow through the magnetic laminate.
[0016]
FIG. 1A shows the timing of the application of the positive and negative pulses, FIG. 1B shows the direction of the magnetization in the case of recording “0”, and FIG. 1C shows the magnitude of the tunnel current accordingly. Show. When a positive pulse is applied, a tunnel current flows, and when a negative pulse is applied, a tunnel current hardly flows. Although the positive pulse and the negative pulse are separated in this figure, they may be continuous.
[0017]
In the figure, the direction of magnetization of the second ferromagnetic conductive layer when there is no positive / negative pulse is to maintain the state of the pulse applied immediately before. There is also a possibility of inversion due to the influence of magnetostatic joining or the like. Therefore, it is sufficient to detect the tunnel current when the positive and negative pulses are applied. Needless to say, if the voltage detection is performed, the chart of FIG.
[0018]
In the case of "1", it is opposite to "0" (FIGS. 1 (d) and (e)), and the tunnel current changes from small to large.
In the case of "0" and "1", when the voltage generated at both ends of the magnetic laminate (6) when a positive pulse is applied is used as a reference, when the voltage rises (displacement of + ΔV) in the above-described example, 0 ", and when descending (-ΔV displacement), it can be determined as" 1 ". That is, "0" and "1" can be determined not by the absolute amount of the output but by the sign of the displacement, and reading with an excellent S / N ratio becomes possible.
[0019]
Further, in this case, nondestructive reading can be performed.
In FIG. 2, ternary data "0" (FIGS. 2B and 2C), "1" (FIGS. 2D and 2E), and "2" (FIGS. 2F and 2G) are reproduced. The case will be described.
[0020]
For example, when the magnetization directions of the first and third ferromagnetic conductive layers are upward, “0” is set, when they are downward, “2”, and when they are different, “1”. As in the example of FIG. 1, the magnetization direction of the second ferromagnetic conductive layer is initially set to the upward direction. FIG. 2A shows an example of a current pulse for generating an external magnetic field, and FIGS. 2A, 2E, and 2G are described with the same timing as in FIG.
[0021]
When a positive pulse is applied to make the magnetization of the second ferromagnetic conductive layer upward, when "0", the magnetizations of the first to third ferromagnetic conductive layers are aligned, so that a tunnel current flows easily, and the output is increased. In other cases, the voltage is low (V L ), and in other cases, the magnetization is not uniform, so that the tunnel current becomes difficult to flow, and the output voltage becomes high (V H ).
[0022]
Subsequently, when a negative pulse is applied, in the case of “2”, the magnetization becomes VL in which the magnetization is uniform downward, but in other cases, it becomes VH .
Therefore, determination if the addition of positive and negative pulse, when the V LV H is "0", if the V H → V H "1" , if the V HV L "2" it can.
[0023]
In this way, multi-value recording is also possible. Moreover, the spin directions of the first and third ferromagnetic conductive layers do not change before and after reading, and non-destructive reading can be performed.
Third, quaternary data “0” (FIGS. 3 (b) and (c)), “1” (FIGS. 3 (d) and (e)), “2” (FIGS. 3 (f) and (g)), and “3” The case of reproducing “(FIG. 3 (h) (i))” will be described.
[0024]
For example, when the magnetization directions of the first and third ferromagnetic conductive layers are upward, “0” is set, when the magnetization directions are downward, “3”, and when they are different, “1” is set when the magnetization of the first ferromagnetic layer is upward. "Downward is defined as" 2 ".
[0025]
As in the example of FIG. 1, the magnetization direction of the second ferromagnetic conductive layer is initially set to the upward direction. FIG. 3A shows an example of a current pulse for generating an external magnetic field, and FIGS. 3A, 3E, 3G, and 3I are described with the same timing as in FIG.
[0026]
In addition, in the case of FIGS. 1 and 2, H 1 , H 3 > H (read)> H 2 , but the relationship of H 1 > H 3 is further added. Further, small and large amplitudes are prepared for reading, and H 1 > H (large)> H 3 > H (small)> H 2 .
[0027]
When a positive pulse (small amplitude) is applied to make the magnetization of the second ferromagnetic conductive layer upward, a tunnel current flows when the value is “0” because the magnetizations of the first to third ferromagnetic conductive layers are aligned. In other cases, the output voltage is low (V L ), and in other cases, since the magnetization is not uniform, the tunnel current is difficult to flow, and the output voltage is high (V H ).
[0028]
Subsequently, when a negative pulse is applied, in the case of "4", the magnetization becomes VL in which the magnetization is uniform downward, but the others become VH .
Further, when a positive pulse (large) is applied, the third ferromagnetic layer is directed upward regardless of the recording state, so that the voltage becomes VH except for "2" and "3".
[0029]
Therefore, positive (small) negative-positive cases plus pulse (large), if the V L → V H → V L "0", if the V H → V H → V L "1", The case where VHVHVH becomes “2” and the case where VHVLVH becomes “3” can be determined.
[0030]
Although destructive reading is thus performed, four-level recording is also possible.
The device of the present invention is produced, for example, as follows.
A ferromagnetic material such as Fe, Co, or Ni, a magnetic alloy such as Permalloy, or a semimetal such as a Heusler alloy is used for the ferromagnetic layer, and an oxide such as NiO or Al 2 O 3 is used for the insulating layer. Can be. Here, the thickness of the ferromagnetic layer is preferably 1 nm to 500 nm, and the thickness of the insulating layer is preferably 1 nm to 40 nm.
[0031]
The method of forming the junction will be described below in the case where Fe is used as the ferromagnetic layer and Al 2 O 3 is used as the insulator layer.
A ferromagnetic tunnel junction is created on a glass substrate. The ferromagnetic layer is formed by an ion beam sputtering method. At this time, after the inside of the chamber is evacuated to 1 × 10 −6 Torr or less, Ar is introduced at 1 × 10 −4 Torr, and the film is formed at an acceleration voltage of Ar ions of 600 V. The first and third ferromagnetic layers have a thickness of 100 nm, the second ferromagnetic layer has a thickness of 50 nm, and the coercive force of the second ferromagnetic layer is equal to that of the first and third ferromagnetic layers. It was made smaller than the coercive force. The insulator layer is formed by forming Al to a thickness of 5 nm to 25 nm by an ion beam sputtering method, and is naturally oxidized in the air for 24 hours to form Al 2 O 3 .
[0032]
The method of forming the junction will be described below in the case where Fe is used as the ferromagnetic layer and Al 2 O 3 is used as the insulator layer. A ferromagnetic tunnel junction is created on a glass substrate. The ferromagnetic layer is formed by an ion beam sputtering method. At this time, after the inside of the chamber is evacuated to 1 × 10 −6 Torr or less, Ar is introduced at 1 × 10 −4 Torr, and an acceleration voltage of Ar ions is set to 600 V to form a film. The first and third ferromagnetic layers have a thickness of 100 nm, the second ferromagnetic layer has a thickness of 50 nm, and the coercive force of the second ferromagnetic layer is equal to that of the first and third ferromagnetic layers. It was made smaller than the coercive force. The insulator layer is formed by forming Al to a thickness of 5 nm to 25 nm by an ion beam sputtering method, and is naturally oxidized in the air for 24 hours to form Al 2 O 3 .
[0033]
The theoretical analysis of a ferromagnetic tunnel junction composed of two types of ferromagnetic layers separated by one insulator has been performed by Slonczewski (Phys. Rev. B39 (1989) pp. 6995 to 7002). According to this, the tunnel conductance (G) is proportional to the transmission coefficient of the junction in the limit where the insulator is infinitely thick.
[0034]
That is, G is proportional to (1 + εcos θ). θ represents the angle between the magnetizations of the two ferromagnetic layers, ε is a substance-dependent constant, and takes a value of 0 <ε ≦ 1. Therefore, the conductance takes the maximum value when the magnetization of the ferromagnetic layer is parallel (θ = 0), and takes the minimum value when the magnetization of the ferromagnetic layer is antiparallel (θ = π). When a semimetal such as a Heusler alloy is used, ε = 1.
[0035]
In the present invention, three ferromagnetic layers are included, which is a combination of two tunnel junctions. The overall transmission coefficient can be represented by the transmission coefficient of each tunnel junction. In particular, when the transmission coefficient T of each tunnel junction is small, the total of T is proportional to T 2 .
[0036]
Therefore, the tunnel conductance (G total ) is proportional to (1 + εcos θ) 2 .
Therefore, it can be seen that having three magnetic layers increases the differential coefficient of the conductance with respect to the magnetic field. FIG. 4 shows the proportionality coefficient normalized when ε = 1. Therefore, it is easy to detect a change in the tunnel current with respect to a change in the magnetic field, which is suitable for a magnetic sensor.
[0037]
Further, an antiferromagnetic layer such as FeMn is provided on the outside to reduce the influence of an external magnetic field on the magnetization of the first and third ferromagnetic layers, and the first and third ferromagnetic layers are interacted with these layers. It is also conceivable to fix the magnetization of the ferromagnetic layer.
[0038]
【The invention's effect】
As described above, according to the present invention, a novel magnetoresistance effect element using a ferromagnetic tunnel junction can be obtained, and a magnetic recording system capable of multi-valued or non-destructive reading can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of the present invention.
FIG. 2 is a schematic diagram of the present invention.
FIG. 3 is a schematic diagram of the present invention.
FIG. 4 is a characteristic diagram of the present invention.

Claims (4)

第1の強磁性導電層と、第2の強磁性導電層と、前記第1及び第2の強磁性導電層の間に介在する第1のトンネル絶縁層と、第3の強磁性導電層と、前記第2及び第3の強磁性導電層の間に介在する第2のトンネル絶縁層と、前記第1及び第3の強磁性導電層の外側にそれぞれ設けられた第1及び第2の反強磁性層とを具備し、前記第2の強磁性導電層の保磁力が前記第1及び第3の強磁性導電層の保磁力よりも小さく、前記第1乃至第3の強磁性導電層のうちの隣り合う層の磁化の向きが実質的に互いに同じかまたは逆であることを特徴とする磁気抵抗効果素子。A first ferromagnetic conductive layer, a second ferromagnetic conductive layer, a first tunnel insulating layer interposed between the first and second ferromagnetic conductive layer, a third ferromagnetic conductive layer , the second and the second tunnel insulating layer interposed between the third ferromagnetic conductive layer, first and second anti-respectively provided on the outer side of the first and third ferromagnetic conductive layer comprising a ferromagnetic layer, the second ferromagnetic coercivity of the conductive layer is rather smaller than the coercive force of the first and third ferromagnetic conductive layer, the first to third ferromagnetic conductive layer Wherein the magnetization directions of adjacent layers are substantially the same or opposite to each other . 前記第1及び第3の強磁性導電層の磁化の向きが実質的に互いに同じであり、前記第2の強磁性導電層の磁化の向きが前記第1及び第3の強磁性導電層の磁化の向きと実質的に互いに同じかまたは逆であることを特徴とする請求項1記載の磁気抵抗効果素子。The directions of magnetization of the first and third ferromagnetic conductive layers are substantially the same as each other, and the direction of magnetization of the second ferromagnetic conductive layer is the same as that of the first and third ferromagnetic conductive layers. 2. The magnetoresistive element according to claim 1, wherein the directions are substantially the same as or opposite to each other. 第1の強磁性導電層と、第2の強磁性導電層と、前記第1及び第2の強磁性導電層の間に介在する第1のトンネル絶縁層と、第3の強磁性導電層と、前記第2及び第3の強磁性導電層の間に介在する第2のトンネル絶縁層と、前記第1及び第3の強磁性導電層の外側にそれぞれ設けられた第1及び第2の反強磁性層とを備え、前記第2の強磁性導電層の保磁力が前記第1及び第3の強磁性導電層の保磁力よりも小さく、前記第1乃至第3の強磁性導電層のうちの隣り合う層の磁化の向きが実質的に互いに同じかまたは逆である磁気抵抗効果素子の磁気情報読み出し方法であって、前記第2の強磁性導電層の磁化の向きを変化可能とし、前記第1及び第2のトンネル絶縁層を流れるトンネル電流に基づいて、前記第1乃至第3の強磁性導電層それぞれの磁化の向きの相対的関係を磁気情報として読み出すことを特徴とする磁気情報読み出し方法。A first ferromagnetic conductive layer, a second ferromagnetic conductive layer, a first tunnel insulating layer interposed between the first and second ferromagnetic conductive layers, and a third ferromagnetic conductive layer. A second tunnel insulating layer interposed between the second and third ferromagnetic conductive layers, and a first and a second anti-static layer provided outside the first and third ferromagnetic conductive layers, respectively. A ferromagnetic layer, wherein the coercive force of the second ferromagnetic conductive layer is smaller than the coercive force of the first and third ferromagnetic conductive layers, and the first to third ferromagnetic conductive layers A magnetic information reading method for a magnetoresistive element in which the directions of magnetization of adjacent layers are substantially the same or opposite to each other, wherein the direction of magnetization of the second ferromagnetic conductive layer can be changed; Based on the tunnel current flowing through the first and second tunnel insulating layers, the first to third ferromagnetic conductive layers and Magnetic information reading method characterized by reading the relative relationship between respective magnetization directions of the magnetic information. 前記第1及び第3の強磁性導電層の磁化の向きが実質的に互いに同じであり、前記第2の強磁性導電層の磁化の向きが前記第1及び第3の強磁性導電層の磁化の向きと実質的に互いに同じかまたは逆であり、前記第1及び第3の強磁性導電層の磁化の向きと前記第2の強磁性導電層の磁化の向きとの相対的関係を磁気情報として読み出すことを特徴とする請求項3記載の磁気情報読み出し方法。The directions of magnetization of the first and third ferromagnetic conductive layers are substantially the same as each other, and the direction of magnetization of the second ferromagnetic conductive layer is the same as that of the first and third ferromagnetic conductive layers. And the direction of magnetization of the first and third ferromagnetic conductive layers and the direction of magnetization of the second ferromagnetic conductive layer are represented by magnetic information. 4. The magnetic information reading method according to claim 3, wherein the magnetic information is read out as.
JP06958196A 1996-03-26 1996-03-26 Magnetoresistive element and magnetic information reading method Expired - Fee Related JP3585629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06958196A JP3585629B2 (en) 1996-03-26 1996-03-26 Magnetoresistive element and magnetic information reading method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06958196A JP3585629B2 (en) 1996-03-26 1996-03-26 Magnetoresistive element and magnetic information reading method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004198732A Division JP4346517B2 (en) 2004-07-06 2004-07-06 Magnetoresistive effect element and information storage element

Publications (2)

Publication Number Publication Date
JPH09260743A JPH09260743A (en) 1997-10-03
JP3585629B2 true JP3585629B2 (en) 2004-11-04

Family

ID=13406931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06958196A Expired - Fee Related JP3585629B2 (en) 1996-03-26 1996-03-26 Magnetoresistive element and magnetic information reading method

Country Status (1)

Country Link
JP (1) JP3585629B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10418101B1 (en) 2018-03-20 2019-09-17 Toshiba Memory Corporation Semiconductor memory device and method of controlling the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6611405B1 (en) 1999-09-16 2003-08-26 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetic memory device
US6469926B1 (en) * 2000-03-22 2002-10-22 Motorola, Inc. Magnetic element with an improved magnetoresistance ratio and fabricating method thereof
JP2002246567A (en) 2001-02-14 2002-08-30 Toshiba Corp Magnetic random access memory
JP3576111B2 (en) 2001-03-12 2004-10-13 株式会社東芝 Magnetoresistance effect element
US6590803B2 (en) 2001-03-27 2003-07-08 Kabushiki Kaisha Toshiba Magnetic memory device
US6593608B1 (en) * 2002-03-15 2003-07-15 Hewlett-Packard Development Company, L.P. Magneto resistive storage device having double tunnel junction
JP5540180B2 (en) * 2007-12-14 2014-07-02 国立大学法人東北大学 Magnetic field detection element and magnetic field detection device
WO2010041719A1 (en) * 2008-10-10 2010-04-15 株式会社アルバック Storage element
JP6069705B2 (en) * 2013-05-20 2017-02-01 富士通株式会社 Memory device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10418101B1 (en) 2018-03-20 2019-09-17 Toshiba Memory Corporation Semiconductor memory device and method of controlling the same

Also Published As

Publication number Publication date
JPH09260743A (en) 1997-10-03

Similar Documents

Publication Publication Date Title
Daughton Magnetoresistive memory technology
Grünberg Layered magnetic structures: History, highlights, applications
US4949039A (en) Magnetic field sensor with ferromagnetic thin layers having magnetically antiparallel polarized components
KR100344030B1 (en) Magnetic element, magnetic memory device, magnetoresistance effect head, and magnetic storage system
JP2001195878A (en) Magnetic resistance effective memory, reproducing method for information stored in the memory, and its reproducing device
KR20050083957A (en) Spin-injection device and magnetic device using spin-injection device
JPH09139068A (en) Information recording/reproducing method and information storage
JP3556457B2 (en) Spin-dependent conductive element and electronic and magnetic components using the same
JPH1041132A (en) Magnetic resistance effect film
JP3585629B2 (en) Magnetoresistive element and magnetic information reading method
JP3691898B2 (en) Magnetoresistive effect element, magnetic information reading method, and recording element
JP2001156358A (en) Magneto-resistance effect element and magnetic memory element
US20010022373A1 (en) Magnetic memory element and magnetic memory using the same
JP3547974B2 (en) Magnetic element, magnetic head and magnetic storage device using the same
US5773156A (en) Magnetoresistance effect element
JP3455055B2 (en) Magnetic element, magnetic head and magnetic storage device using the same
JP3593463B2 (en) Ferromagnetic tunnel effect element and magnetic device using the same
JPH113585A (en) Magnetic thin film memory element and its recording and reproducing method
JP4346517B2 (en) Magnetoresistive effect element and information storage element
JP4136028B2 (en) Magnetic thin film memory element, magnetic thin film memory using the same, and recording / reproducing method thereof
JP3677107B2 (en) Magnetoresistive effect element
JP3350311B2 (en) Magnetic thin film memory element and magnetic thin film memory
JP2003197872A (en) Memory using magneto-resistance effect film
Zheng et al. 3-D FEM micromagnetic modeling of spin-valve sensors
Hathaway et al. Resource letter STMN-1: Spin transport in magnetic nanostructures

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees