JPH08264715A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH08264715A
JPH08264715A JP6902795A JP6902795A JPH08264715A JP H08264715 A JPH08264715 A JP H08264715A JP 6902795 A JP6902795 A JP 6902795A JP 6902795 A JP6902795 A JP 6902795A JP H08264715 A JPH08264715 A JP H08264715A
Authority
JP
Japan
Prior art keywords
dielectric
capacitor
dielectric film
capacitance
upper electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6902795A
Other languages
Japanese (ja)
Inventor
Sadayuki Yoshitomi
貞幸 吉富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6902795A priority Critical patent/JPH08264715A/en
Publication of JPH08264715A publication Critical patent/JPH08264715A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE: To prepare a capacitor of a small size not affected by a parasitic capacitance between electrodes and to facilitate the design of a high-integrated circuit by a method wherein an electrostatic relative permittivity of a dielectric film having a low permittivity and surrounding the outside of an upper electrode is made a specific value or below and further a dimensional component forming the dielectric film is made a specific length or below. CONSTITUTION: A pair of electrodes 1 and 3 are so laminated as to hold a dielectric 2 between them and a dielectric 4 of which the relative permittivity is smaller than that of the dielectric 2 is provided so that it covers the whole lateral side of the laminated body. An electrostatic relative permittivity of the dielectric film 4 is made 8.0 or below and the length of a dimensional component having a large effect on the capacitance of a semiconductor device is made 100μm or below. Then, the dielectric 4 is deposited on the upper side of an element having a three-layer structure. The film thickness thereof is about the same as the size in the vertical direction of a capacitor or above it. By etching the dielectric 4 until the upper electrode 3 of the capacitor is exposed, the capacitor is made to have a structure wherein it is protected by the lateral wall of the dielectric 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】半導体装置及びその製造方法に関
わる。
BACKGROUND OF THE INVENTION The present invention relates to a semiconductor device and a manufacturing method thereof.

【0002】[0002]

【従来の技術】コンデンサ容量素子は、基本的には、誘
電体を2つの金属電極でサンドイッチ状に挟む構造をし
ている。実際に半導体集積回路に組み込まれる場合に
は、図4に示すように、下地電極11・誘電体12・上
部電極13の3層を積み上げた構造で形成する場合が多
い。DRAMに用いられるようなキャパシタのように、
小さい面積で大きな容量を得る必要がある場合には、構
造をいわゆる“トレンチ形・スタッフ形”にするか、誘
電体をチタン酸バリウム・PZTなどの強誘電体にする
こと等が行われている。尚、図中符号14は寄生容量
(キャパシタンス)を示す。
2. Description of the Related Art A capacitor capacitive element basically has a structure in which a dielectric is sandwiched between two metal electrodes. When it is actually incorporated in a semiconductor integrated circuit, it is often formed with a structure in which three layers of a base electrode 11, a dielectric 12 and an upper electrode 13 are stacked as shown in FIG. Like capacitors used in DRAMs,
When it is necessary to obtain a large capacitance in a small area, a so-called "trench type / stuff type" structure is used, or a ferroelectric substance such as barium titanate / PZT is used. . In the figure, reference numeral 14 indicates a parasitic capacitance.

【0003】これに対し、アナログ集積回路は、高周波
動作・低消費電力が重要なキーポイントとなっている。
その中で、キャパシタの存在は高周波動作のパフォーマ
ンスに大きな影響力を及ぼす。キャパシタの持つ容量が
設計値からずれると、回路の持つ時定数にも狂いが生じ
てくることになる。キャパシタの素子寸法が縮小され、
素子自体の容量も小さくなるに伴い、素子回りの影響に
よる寄生容量の影響が見えて来る。特に上部電極−下地
基板間の寄生容量が大きな問題になってくる。平行平板
型の電極を用いたキャパシタの容量対電極依存性につい
て考えてみると、電極サイズの縮小に伴い容量値が設計
値より高容量側にずれてくることが懸念される。これ
は、図4中に示す素子下部に誘起された電荷と、素子上
部の空気層を介して上部電極間にキャパシタンス14が
形成されるためであると考えられる。 例えば、MOS
(Metal-Oxide-Semiconductor )キャパシタでは、誘電
体膜であるSiO2 膜表面に、外気の影響により生じた
イオンなどの電荷が蓄積し、電極近傍のSiO2 表面が
導電性を帯び、見かけの上部電極面積が増える。これに
対し、下部電極(Si基板)にはこの電荷に対する鏡像
電荷が蓄積されるので、特に基板表面反転時の反転層容
量が増加することが、A.S.Grove の著書“Physics and
Technology of Semiconductor Devices ”に紹介されて
いる。
On the other hand, in analog integrated circuits, high frequency operation and low power consumption are important key points.
Among them, the presence of capacitors has a great influence on the performance of high frequency operation. If the capacitance of the capacitor deviates from the design value, the time constant of the circuit will also become incorrect. The element size of the capacitor is reduced,
As the capacitance of the element itself becomes smaller, the influence of the parasitic capacitance due to the influence around the element becomes apparent. Particularly, the parasitic capacitance between the upper electrode and the base substrate becomes a big problem. Considering the capacitance-to-electrode dependency of a capacitor using parallel plate type electrodes, there is a concern that the capacitance value may deviate from the design value to a higher capacitance side as the electrode size decreases. It is considered that this is because the capacitance 14 is formed between the upper electrode via the electric charge induced in the lower part of the device shown in FIG. 4 and the air layer in the upper part of the device. For example, MOS
In (Metal-Oxide-Semiconductor) capacitor, the SiO 2 film surface is a dielectric film, a charge such as ion accumulation caused by the outside air impact, SiO 2 surfaces of the electrode vicinity charged conductivity, the upper part of the apparent The electrode area increases. On the other hand, since the lower electrode (Si substrate) accumulates the mirror image charge for this charge, the inversion layer capacitance increases especially when the substrate surface is inverted. This is because ASGrove's book “Physics and
Technology of Semiconductor Devices ”.

【0004】[0004]

【発明が解決しようとする課題】このように、今後微少
な素子サイズで設計値通りの容量値の低いキャパシタン
スを得るためには、この電極間の寄生容量を低減させる
ことが必要になる。本発明はこの様な低容量を得たい場
合に寄生容量値の低い半導体装置を提供することを目的
とする。
As described above, it is necessary to reduce the parasitic capacitance between the electrodes in order to obtain a capacitance having a low capacitance value as designed with a small element size in the future. An object of the present invention is to provide a semiconductor device having a low parasitic capacitance value when it is desired to obtain such a low capacitance.

【0005】[0005]

【課題を解決するための手段】素子下地電極側表面に生
じる電荷の誘起を防ぐために、本発明の半導体装置では
上部電極外側を、低誘電率を持つ第2の誘電体で取り囲
み、外部雰囲気と遮断する構造をとる。そして誘電体膜
の持つせいでんてき比誘電率が1MHz程度の測定周波
数で8.0以下である。さらに誘電体膜の2時元的な形
状を形成する寸法成分の主が100um以下であること
を特徴とする半導体装置とする。ここで、取り囲む第2
の誘電体は電極間に挟まれている第1の誘電体よりも比
誘電率が小さいことが望ましい。また、この第2の誘電
体を電極間に用いられている誘電体と置き換えることも
できるが、この場合、電極間の距離は電極外部に設けら
れた誘電体部の膜厚にして、十分短いことが望ましい。
In order to prevent the induction of charges generated on the surface of the element base electrode side, in the semiconductor device of the present invention, the outside of the upper electrode is surrounded by a second dielectric having a low dielectric constant, and an external atmosphere is provided. Take a structure to shut off. The dielectric constant of the dielectric film is 8.0 or less at the measurement frequency of about 1 MHz. Furthermore, the semiconductor device is characterized in that the main dimension component forming the two-dimensional shape of the dielectric film is 100 μm or less. Here, the second surrounding
It is desirable that the dielectric material (1) has a smaller relative permittivity than the first dielectric material sandwiched between the electrodes. Further, this second dielectric can be replaced with a dielectric used between the electrodes, but in this case, the distance between the electrodes is sufficiently short as the film thickness of the dielectric portion provided outside the electrodes. Is desirable.

【0006】[0006]

【作用】本発明者らは、上述の如き、容量値の設計値か
らのずれが、どの範囲に顕著に現れるかについて、検討
した。尚、誘電体物質には、窒化シリコン膜(膜厚10
0nm)を用いている。その結果、形成するキャパシタ
を正方形もしくは、長辺と短辺に極端に差のない長方形
とした場合に5pF以下の容量を一辺100μm以下の
サイズで形成しようとすると、単位面積辺りの容量値が
寸法の減少にともない反比例的に増加することが判明し
た。40umの素子で約6%、20umで約14%の増
加が観測された。これらWO寸法200um程度の素子
の持つ容量値にまで抑制する必要がある。
The present inventors have examined in what range the deviation of the capacitance value from the design value appears remarkably as described above. The dielectric substance is a silicon nitride film (film thickness 10
0 nm) is used. As a result, if the capacitor to be formed is a square or a rectangle with no significant difference between the long side and the short side, if a capacitance of 5 pF or less is formed with a size of 100 μm or less on a side, the capacitance value per unit area is It was found that it increases in inverse proportion to the decrease of. An increase of about 6% was observed for the 40 um element and about 14% for the 20 um element. It is necessary to suppress the capacitance value of the device having the WO dimension of about 200 μm.

【0007】低誘電体による保護効果により、問題の下
地電極側表面は外部雰囲気にさらされることがなく、電
荷の蓄積が生じなくなる。また、キャパシタンスの容量
は比誘電率に比例する。ここで用いられる保護用の誘電
体は比誘電率が低い故、問題になる浮遊キャパシタンス
も素子自体の持つキャパシタンスに比べて小さくなる。
この結果、上部電極から下部電極にかけて存在していた
並列寄生キャパシタンスが無視できるようになり、サイ
ズが小さくても設計値と変わらない容量を持つキャパシ
タを形成することができる。
Due to the protective effect of the low dielectric material, the surface of the underlying electrode in question is not exposed to the external atmosphere and charge accumulation does not occur. The capacitance of the capacitance is proportional to the relative permittivity. Since the protective dielectric used here has a low relative permittivity, the problematic stray capacitance becomes smaller than the capacitance of the element itself.
As a result, the parallel parasitic capacitance existing from the upper electrode to the lower electrode can be neglected, and it is possible to form a capacitor having a capacitance that is the same as the design value even if the size is small.

【0008】[0008]

【実施例】以下、本発明の実施例について説明する。図
1は、本発明の実施例による装置の断面を示し、一対の
電極1,3の間に誘電対2を狭持して積層し、かつこの
積層体の側面全体を覆うように、上記誘電体2の比誘電
率の小さい誘電体4を設けた構造を示す。
Embodiments of the present invention will be described below. FIG. 1 shows a cross-section of a device according to an embodiment of the present invention, in which a dielectric pair 2 is sandwiched between a pair of electrodes 1 and 3 and is laminated so that the entire side surface of the laminated body is covered with the dielectric layer. A structure in which a dielectric 4 having a small relative dielectric constant of the body 2 is provided is shown.

【0009】本方法を実施するための手段として、下に
示すような2通りの方法が挙げられる。第1の方法は、
電極間の誘電間の誘電体と異なる物質を用いる場合であ
り、図2に当素子を実現するための作成工程を示す。ま
ず、所望のキャパシタを下部電極1・第1の誘電体2・
上部電極3の3層構造で形成する(同図a)。次に完成
した素子上面に前記第1の誘電体2よりも比誘電率の低
い前記第2の誘電体4を堆積する(同図b)。ここで、
その膜厚はキャパシタの垂直方向のサイズと同程度また
はそれ以上にする。次に、当前記第2の誘電体4をキャ
パシタの上部電極3が露出するまでエッチングする(同
図c)。その結果、キャパシタは前記第2の誘電体の側
壁に守られる構造を持つことになる。
As means for carrying out this method, there are two methods as shown below. The first method is
This is a case where a material different from the dielectric material between the dielectrics between the electrodes is used, and FIG. First of all, a desired capacitor is attached to the lower electrode 1, the first dielectric 2,
The upper electrode 3 is formed with a three-layer structure (a in the figure). Next, the second dielectric 4 having a relative dielectric constant lower than that of the first dielectric 2 is deposited on the upper surface of the completed element (FIG. 8B). here,
The film thickness should be the same as or larger than the vertical size of the capacitor. Next, the second dielectric 4 is etched until the upper electrode 3 of the capacitor is exposed (FIG. 7C). As a result, the capacitor has a structure protected by the side wall of the second dielectric.

【0010】次に、第2の方法として、電極間の誘電体
と同じ物質を用いる場合には、図3に当素子を実現する
ための作成工程を示す。まず、下部電極1を形成、次ぎ
に第1の誘電体2を下部電極1上部に堆積させる(同図
a)。ここでこの第1の誘電体2を、下部電極1の寸法
よりも大きくかつ下部電極が外気に対し露出しないよう
な大きさにパターニングする(同図b)。次いで、当物
質の上部で、上部電極3を形成したい部分をエッチング
し、この部分の膜厚を周囲の膜厚よりも薄くする(同図
c)。ここで、薄くする膜厚は素子の設計値により一義
的に決定できる。最後に上部電極3を第1の誘電体2上
部に形成する。
Next, as a second method, when the same material as the dielectric material between the electrodes is used, a manufacturing process for realizing this element is shown in FIG. First, the lower electrode 1 is formed, and then the first dielectric 2 is deposited on the upper portion of the lower electrode 1 (a in the figure). Here, the first dielectric 2 is patterned to a size larger than the size of the lower electrode 1 and the size of the lower electrode not exposed to the outside air (FIG. 8B). Then, the portion where the upper electrode 3 is to be formed is etched on the upper portion of this material, and the film thickness of this portion is made thinner than the surrounding film thickness (FIG. 7C). Here, the film thickness to be thinned can be uniquely determined by the design value of the element. Finally, the upper electrode 3 is formed on the first dielectric 2.

【0011】上述の各実施例では、単位面積当たりの寸
法依存性がみられなくなり、100um以下の寸法を持
つ素子に観測された容量値の増加が素子寸法20umで
も200umの素子に比べ、約3%にまで押さえられ
た。
In each of the above-mentioned embodiments, the dimensional dependence per unit area is not observed, and the increase in the capacitance value observed in the element having a dimension of 100 μm or less is about 3 at the element dimension of 20 μm as compared with the element of 200 μm. It was held down to%.

【0012】[0012]

【発明の効果】本発明により、電極間の寄生容量の影響
の少ない小サイズのキャパシタが作成できるので、高集
積回路の設計が容易になるとともに、広い分野で使用す
ることが出来る。
As described above, according to the present invention, a small-sized capacitor which is less affected by the parasitic capacitance between electrodes can be produced, which facilitates the design of a highly integrated circuit and can be used in a wide range of fields.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明で提案するキャパシタの構造を示して
いる断面図。
FIG. 1 is a sectional view showing the structure of a capacitor proposed by the present invention.

【図2】 本発明を実現するための工程を示している工
程断面図。
FIG. 2 is a process sectional view showing a process for realizing the present invention.

【図3】 本発明のその他の実施例を示している工程断
面図。
FIG. 3 is a process cross-sectional view showing another embodiment of the present invention.

【図4】 従来構造のキャパシタで問題になる寄生容量
を示している断面図。
FIG. 4 is a cross-sectional view showing a parasitic capacitance which becomes a problem in a capacitor having a conventional structure.

【符号の説明】[Explanation of symbols]

1…下部電極 2…第1の誘電体 3…上部電極 4…第2の誘電体 DESCRIPTION OF SYMBOLS 1 ... Lower electrode 2 ... 1st dielectric material 3 ... Upper electrode 4 ... 2nd dielectric material

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】半導体基板と、この半導体基板の表面に形
成された下部電極と、この下部電極の表面に形成された
誘電体膜とこの誘電体膜の表面に形成された上部電極
と、前記下部電極、前記誘電体膜及び前記上部電極の両
側壁に形成された側壁誘電体膜とを備え、この側壁誘電
体膜は前記下部電極及び前記上部電極とは異なる導電膜
と隣接するものであり、前記誘電体膜の持つ静電的比誘
電率が8.0以下でかつ前記上部電極側から見た前記誘
電体膜の2時元的な形状を形成している寸法で、半導体
装置の容量成分に大きな影響を及ぼすであろう寸法成分
の長さが100um以下であることを特徴とする半導体
装置。
1. A semiconductor substrate, a lower electrode formed on the surface of the semiconductor substrate, a dielectric film formed on the surface of the lower electrode, and an upper electrode formed on the surface of the dielectric film, And a sidewall dielectric film formed on both side walls of the lower electrode, the dielectric film and the upper electrode, the sidewall dielectric film being adjacent to a conductive film different from the lower electrode and the upper electrode. The capacitance of the semiconductor device is such that the dielectric constant of the dielectric film is 8.0 or less and the two-dimensional shape of the dielectric film as viewed from the upper electrode side is formed. A semiconductor device having a dimension component length of 100 μm or less, which will have a great influence on the component.
【請求項2】前記下部電極及び前記上部電極と前記誘電
膜との間に現れる容量値は、前記上部電極と前記下部電
極の間に現れる容量値の10%以下の値であることを特
徴とする請求項1記載の半導体装置。
2. The capacitance value appearing between the lower electrode and the upper electrode and the dielectric film is 10% or less of the capacitance value appearing between the upper electrode and the lower electrode. The semiconductor device according to claim 1.
【請求項3】前記側壁誘電体膜の誘電率は前記誘電体膜
の誘電率より低いことを特徴とする請求項3記載の半導
体装置。
3. The semiconductor device according to claim 3, wherein the dielectric constant of the sidewall dielectric film is lower than the dielectric constant of the dielectric film.
JP6902795A 1995-03-28 1995-03-28 Semiconductor device Pending JPH08264715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6902795A JPH08264715A (en) 1995-03-28 1995-03-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6902795A JPH08264715A (en) 1995-03-28 1995-03-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH08264715A true JPH08264715A (en) 1996-10-11

Family

ID=13390698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6902795A Pending JPH08264715A (en) 1995-03-28 1995-03-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH08264715A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100306908B1 (en) * 1998-12-30 2001-12-17 김영환 Manufacturing method of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100306908B1 (en) * 1998-12-30 2001-12-17 김영환 Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
JP3207110B2 (en) Capacitor and method of forming the same
KR100815172B1 (en) Multilayer capacitor structure having an array of concentric ring-shaped plates for deep sub-micron cmos
JP3586638B2 (en) Semiconductor capacitance device
US8680649B2 (en) Multi-layer film capacitor with tapered film sidewalls
US20070102745A1 (en) Capacitor structure
US20070069274A1 (en) Varactor design using area to perimeter ratio for improved tuning range
KR960019740A (en) Method for Forming Cylindrical Stacked Capacitors in Semiconductor Devices
US20230019457A1 (en) Piezoelectric element and method for producing a piezoelectric element
WO2006087679A2 (en) Embedded dram with increased capacitance and method of manufacturing same
US20050082589A1 (en) Semiconductor device and manufacturing method of the same
JP3677674B2 (en) Semiconductor device
JPH08264715A (en) Semiconductor device
JPH09321248A (en) Semiconductor device
JPH07508136A (en) Manufacturing method of deep dish capacitor
JP2005236202A (en) Semiconductor device and its manufacturing method
JPH05190767A (en) Semiconductor device
EP3930008A1 (en) Electronic component comprising a 3d capacitive structure
TW494527B (en) Method for producing capacitor
JPH03257856A (en) Semiconductor device
JPH10335604A (en) Semiconductor storage device and its manufacture
KR100266020B1 (en) Capacitor and method of fabricating the same
CN111799373A (en) Metal-insulator-metal (MIM) capacitor
TW522573B (en) Structure and manufacturing method of capacitor device with metal-insulator-metal structure
JPH06291276A (en) Semiconductor memory and its manufacture
TW439177B (en) Method for forming capacitors