JPH08264522A - Ferroelectric memory element - Google Patents

Ferroelectric memory element

Info

Publication number
JPH08264522A
JPH08264522A JP7064019A JP6401995A JPH08264522A JP H08264522 A JPH08264522 A JP H08264522A JP 7064019 A JP7064019 A JP 7064019A JP 6401995 A JP6401995 A JP 6401995A JP H08264522 A JPH08264522 A JP H08264522A
Authority
JP
Japan
Prior art keywords
ferroelectric
memory element
resin
film
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7064019A
Other languages
Japanese (ja)
Inventor
Masahiko Hirai
匡彦 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP7064019A priority Critical patent/JPH08264522A/en
Publication of JPH08264522A publication Critical patent/JPH08264522A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE: To minimize deterioration of ferroelectric by protecting a memory element or employing a resin insulation film for isolating the memory element from the interconnection. CONSTITUTION: An MOSFET 6 is formed on a single crystal of Si 1 and a capacitor is formed by a platinum electrode 3 and a ferroelectric thin film 4 of PbZrTiO3 . It is then coated with a polyimide protective film 8. The protective film 8 is formed by applying an ester bond type resin, solidifying the resin except the contact hole through irradiation with UV-rays, developing the resin and curing at 350 deg.. Consequently, the protective film 8 exhibits spontaneous polarization of about 20μC/cm<2> . PbTiO3 and PbLaZrTiO3 are also applicable as the ferroelectric thin film 4. Photosensitive polyimide film 8 is also applicable. With such arrangement, deterioration of ferroelectric can be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は強誘電体記憶素子に関
し、特に強誘電体を用いた不揮発性メモリに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferroelectric memory device, and more particularly to a non-volatile memory using a ferroelectric substance.

【0002】[0002]

【従来の技術】最近開発が進められている強誘電体記憶
素子、すなわちFRAM(Ferroelectric
Random Access Memory)の多く
は、DRAMのキャパシタを強誘電体キャパシタに置き
換えた構成をしており(特開平2−113496号公
報)、その保護膜として、多くは窒化シリコン被膜を用
いており、その形成には原料ガスとしてシラン、ジクロ
ルシラン、アンモニアなどを用いてプラズマCVDなど
の方法で形成されている。
2. Description of the Related Art A ferroelectric memory device, which has been recently developed, that is, an FRAM (Ferroelectric)
Many of the Random Access Memories) have a structure in which the DRAM capacitor is replaced with a ferroelectric capacitor (Japanese Patent Laid-Open No. 2-113496), and a silicon nitride film is mostly used as a protective film thereof. It is formed by a method such as plasma CVD using silane, dichlorosilane, ammonia or the like as a raw material gas.

【0003】また、配線と素子を分離する層間絶縁膜も
同様に、原料ガスとしてシラン、酸化窒素、酸素などを
用いてプラズマCVDなどの方法で形成されている。
Similarly, the interlayer insulating film for separating the wiring from the element is also formed by a method such as plasma CVD using silane, nitrogen oxide, oxygen or the like as a source gas.

【0004】[0004]

【発明が解決しようとする課題】しかし、これらのガス
はいずれも水素元素を多量に含み、これが強誘電体の劣
化をもたらしていると考えられ、保護膜、層間絶縁膜形
成後に強誘電体の自発分極が大きく低下する現象がみら
れる。従って、この問題を解決することは、強誘電体記
憶素子製造上の大きな課題であった。
However, all of these gases contain a large amount of hydrogen element, which is considered to cause the deterioration of the ferroelectric substance. There is a phenomenon that the spontaneous polarization is significantly reduced. Therefore, solving this problem has been a major problem in manufacturing the ferroelectric memory element.

【0005】本発明は、このような従来の未解決の課題
を解決するべく行われたものであり、強誘電体の劣化を
伴わずに保護膜、層間絶縁膜を形成し、再現性、安定性
に優れ、かつ生産上の収率向上に優れた強誘電体記憶素
子を提供することを課題とする。
The present invention has been made in order to solve the above-mentioned unsolved problems of the related art, and a protective film and an interlayer insulating film are formed without deterioration of the ferroelectric substance, and the reproducibility and stability are improved. An object of the present invention is to provide a ferroelectric memory element which is excellent in productivity and is improved in yield in production.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に係る発明は、MOSトランジスタおよび
強誘電体を用いたキャパシタからなる記憶素子、または
ゲート絶縁膜部分に強誘電体を有するMOSトランジス
タからなる記憶素子がSi単結晶基板上に形成された強
誘電体記憶素子において、前記記憶素子を保護するかま
たは配線と分離する絶縁膜が樹脂被膜であることを特徴
とする。
In order to solve the above-mentioned problems, the invention according to claim 1 provides a memory element comprising a MOS transistor and a capacitor using a ferroelectric substance, or a ferroelectric substance in a gate insulating film portion. In a ferroelectric memory element in which a memory element including a MOS transistor included therein is formed on a Si single crystal substrate, an insulating film that protects the memory element or separates it from wiring is a resin film.

【0007】また、請求項2に係る発明は、前記強誘電
体がPbTiO3 、PbZrTiO 3 またはPbLaZ
rTiO3 からなることを特徴とする。さらに、請求項
3に係る発明は、前記樹脂被膜がポリイミド構造を有す
る樹脂であることを特徴とする。さらに、請求項4に係
る発明は、前記ポリイミド構造を有する樹脂は感光性で
あることを特徴とする。
According to a second aspect of the present invention, the ferroelectric
Body is PbTiO3, PbZrTiO 3Or PbLaZ
rTiO3It is characterized by consisting of. Further claims
In the invention according to 3, the resin coating has a polyimide structure
The resin is a resin. Further, according to claim 4,
According to the invention, the resin having the polyimide structure is photosensitive.
It is characterized by being.

【0008】本発明において、強誘電体を用いたキャパ
シタとは、導電体により強誘電体層をはさんだ構造をも
つキャパシタのことである。また、ゲート絶縁膜部分に
強誘電体を有するトランジスタとは、ゲート絶縁膜とし
て直接強誘電体をSi基板上に形成した構造またはゲー
ト酸化膜として常誘電体膜、強誘電体膜の積層膜をSi
基板上に形成した構造等のことである。
In the present invention, a capacitor using a ferroelectric substance is a capacitor having a structure in which a ferroelectric layer is sandwiched by a conductor. Further, a transistor having a ferroelectric substance in the gate insulating film portion means a structure in which a ferroelectric substance is directly formed on a Si substrate as a gate insulating film or a laminated film of a paraelectric film and a ferroelectric film as a gate oxide film. Si
A structure formed on a substrate.

【0009】本発明における樹脂被膜としては、炭素、
水素、酸素等を構成元素とした様々なものがあるが、そ
の中でもポリイミド構造をもつ樹脂が最も好ましい。ポ
リイミド構造を有する樹脂とは、CONHCOイミド結
合をもつ樹脂であり、活性水素を発生することなく膜形
成が可能である。また、感光性のポリイミド構造を有す
る樹脂とは、主に紫外線によりポリイミド構造を完成
し、固化する特性などの感光性を有する樹脂である。
The resin coating used in the present invention is carbon,
Although there are various substances having hydrogen, oxygen and the like as constituent elements, a resin having a polyimide structure is most preferable. The resin having a polyimide structure is a resin having a CONHCO imide bond, and can form a film without generating active hydrogen. The resin having a photosensitive polyimide structure is a resin having photosensitivity such as a property of completing the polyimide structure mainly by ultraviolet rays and solidifying.

【0010】樹脂被膜は、スピンコートによって塗布さ
れることが可能であり、回転するプレートに基板を固定
したうえで回転し、樹脂溶剤を表面に滴下することによ
って膜を塗布することができる。また、樹脂成分を霧上
に基板に吹き付けて塗布することもでき、ノズルから樹
脂成分を基板表面に吹き付けながら乾燥さてゆくことが
できる。この場合、ごく表面部分だけを乾燥させること
により、乾燥時の樹脂の収縮による応力の蓄積を最小限
にとどめることができる。
The resin film can be applied by spin coating, and the film can be applied by fixing the substrate on a rotating plate and then rotating and dropping a resin solvent on the surface. Alternatively, the resin component can be sprayed onto the substrate to be sprayed, and the resin component can be dried while being sprayed onto the substrate surface from the nozzle. In this case, by only drying the surface portion, the accumulation of stress due to the shrinkage of the resin during drying can be minimized.

【0011】[0011]

【作用】従来酸化シリコン、窒化シリコン保護膜形成後
に、強誘電体の自発分極低下などの劣化現象が見られた
のに対し、本発明によれば、保護膜形成時に水素が発生
することが少なく強誘電体の劣化も最小限にとどめるこ
とができる。
In contrast to the conventional deterioration phenomenon such as a decrease in spontaneous polarization of the ferroelectric substance, which was observed after the formation of the protective film of silicon oxide or silicon nitride, according to the present invention, hydrogen is less likely to be generated during the formation of the protective film. The deterioration of the ferroelectric can be minimized.

【0012】[0012]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】[0013]

【実施例1】まず、図1に示すように、Si単結晶基板
1上に、MOS−FET6が形成され、白金電極3およ
びPbZrTiO3 強誘電体薄膜4からなるキャパシタ
が形成される。これに、図2に示すように窒化Siの保
護膜7をコーティングしたものと、ポリイミド保護膜8
をコーティングしたものを作成した。
Example 1 First, as shown in FIG. 1, a MOS-FET 6 is formed on a Si single crystal substrate 1, and a capacitor composed of a platinum electrode 3 and a PbZrTiO 3 ferroelectric thin film 4 is formed. This is coated with a Si nitride protective film 7 as shown in FIG. 2 and a polyimide protective film 8
Was coated.

【0014】窒化Si膜は、基板温度約300度、ソー
スガスにアンモニア、モノシラン、窒素を用い、圧力約
1TorrにおいてプラズマCVDにより成膜した。こ
れらにコンタクトホールを開けるために、フォトリソグ
ラフィーとドライエッチにより加工した。ポリイミド樹
脂としてエステルボンドタイプの樹脂を塗布し、紫外線
照射によりコンタクトホール以外の部分を固化させ、現
像、350度のキュアリングにより仕上げた。
The Si nitride film was formed by plasma CVD at a substrate temperature of about 300 ° C., using ammonia, monosilane, and nitrogen as a source gas at a pressure of about 1 Torr. In order to open contact holes in these, processing was performed by photolithography and dry etching. An ester bond type resin was applied as the polyimide resin, the portions other than the contact holes were solidified by irradiation with ultraviolet rays, and development and curing at 350 degrees were performed.

【0015】このサンプルのキャパシタ部分を用い、強
誘電体の自発分極をプロービングにより測定した。窒化
Siによる保護膜を形成したものは、自発分極約5マイ
クロクーロン/cm2 であるが、ポリイミド樹脂による
保護膜を形成したものは自発分極約20マイクロクーロ
ン/cm2 となり、ポリイミド樹脂を保護膜に用いたも
のは、明らかに強誘電体の劣化を抑制した。
Using the capacitor portion of this sample, the spontaneous polarization of the ferroelectric substance was measured by probing. A protective film formed of Si nitride has a spontaneous polarization of about 5 microcoulombs / cm 2 , whereas a protective film formed of a polyimide resin has a spontaneous polarization of about 20 microcoulombs / cm 2 , and the polyimide resin is a protective film. The material used in Example 1 clearly suppressed the deterioration of the ferroelectric substance.

【0016】[0016]

【実施例2】まず、図3に示すように、Si単結晶基板
9上に強誘電体PbZrTiO3 とCeO2 バッファ膜
からなるゲート12を形成し、導電層13を形成し、ソ
ース10とドレイン11を形成して、MFIS−FET
を備えたサンプルを用意した。
Example 2 First, as shown in FIG. 3, a gate 12 made of a ferroelectric PbZrTiO 3 and CeO 2 buffer film is formed on a Si single crystal substrate 9, a conductive layer 13 is formed, and a source 10 and a drain are formed. 11 to form MFIS-FET
A sample provided with was prepared.

【0017】これに、図4に示すように窒化Si層間絶
縁膜14を形成したものとポリイミド樹脂層間絶縁膜1
5をコーティングしたものを作成した。窒化Si膜は、
基板温度約300度、ソースガスにアンモニア、モノシ
ラン、窒素を用い、圧力約1Torrにおいてプラズマ
CVDにより成膜した。これにコンタクトホールを開け
るため、フォトリソグラフィーとドライエッチにより加
工した。ポリイミド樹脂としてエステルボンドタイプの
樹脂を塗布し、紫外線照射によりコンタクトホール以外
の部分を固化させ、現像、350度のキュアリングによ
り仕上げた。
On this, a silicon nitride interlayer insulating film 14 is formed as shown in FIG.
5 was coated. The Si nitride film is
A film was formed by plasma CVD at a substrate temperature of about 300 ° C., using ammonia, monosilane, and nitrogen as a source gas at a pressure of about 1 Torr. In order to open a contact hole in this, processing was performed by photolithography and dry etching. An ester bond type resin was applied as the polyimide resin, the portions other than the contact holes were solidified by irradiation with ultraviolet rays, and development and curing at 350 degrees were performed.

【0018】このサンプルに図5に示すような配線を行
い、ドレイン電圧の経時変化を測定した。窒化Siによ
る保護膜を形成したサンプルは、5ボルトの電圧が約6
分で4ボルトに低下したのに対し、ポリイミド樹脂によ
る保護膜を形成したサンプルは、1週間経っても全く電
圧の低下は観測できなかった。ポリイミド樹脂を保護膜
に用いたものは、明らかに強誘電体の劣化を抑制したこ
とが分かった。
Wiring as shown in FIG. 5 was conducted on this sample, and the change with time of the drain voltage was measured. The sample with the protective film made of Si nitride has a voltage of 5 V of about 6
While the voltage dropped to 4 volts in a minute, in the sample having the protective film formed of the polyimide resin, no voltage drop was observed even after 1 week. It was found that the one using the polyimide resin as the protective film obviously suppressed the deterioration of the ferroelectric substance.

【0019】[0019]

【発明の効果】本発明によれば、保護膜形成時に水素が
発生することが少ないため強誘電体の劣化が少ないとい
う効果を有する。
According to the present invention, since hydrogen is less likely to be generated when the protective film is formed, the ferroelectric substance is less deteriorated.

【図面の簡単な説明】[Brief description of drawings]

【図1】MOS−FETと強誘電体を用いたキャパシタ
とからなる記憶素子の断面図である。
FIG. 1 is a cross-sectional view of a memory element including a MOS-FET and a capacitor using a ferroelectric substance.

【図2】図1の記憶素子に窒化Siの保護膜を施したも
のと、ポリイミド保護膜を施したものを示す断面図であ
る。。
FIG. 2 is a cross-sectional view showing the memory element of FIG. 1 provided with a protective film of Si nitride and the one provided with a polyimide protective film. .

【図3】ゲート部分に強誘電体とバッファ膜を備えたM
OS−FETからなる記憶素子の断面図である。
FIG. 3 is an M having a ferroelectric film and a buffer film in the gate portion.
It is sectional drawing of the memory element which consists of OS-FET.

【図4】図4の記憶素子に窒化Siの保護膜を施したも
のと、ポリイミド保護膜を施したものを示す断面図であ
る。
FIG. 4 is a cross-sectional view showing a memory element of FIG. 4 provided with a protective film of Si nitride and a memory element of FIG. 4 provided with a polyimide protective film.

【図5】記憶保持時間測定回路を示す。FIG. 5 shows a memory retention time measurement circuit.

【符号の説明】[Explanation of symbols]

1 n型Si単結晶基板 2 Si酸化物薄膜 3 白金電極 4 PbZrTiO3 薄膜 5 多結晶Siゲート電極 6 ゲート酸化膜 7 窒化Si層間絶縁膜 8 ポリイミド樹脂層間絶縁膜 9 n型Si単結晶基板 10 ソース 11 ドレイン 12 CeO2 バッファ膜 13 PbTiO3 薄膜 14 窒化Si層間絶縁膜 15 ポリイミド樹脂層間絶縁膜 16 アルミニウム電極1 n-type Si single crystal substrate 2 Si oxide thin film 3 platinum electrode 4 PbZrTiO 3 thin film 5 polycrystalline Si gate electrode 6 gate oxide film 7 nitrided Si interlayer insulating film 8 polyimide resin interlayer insulating film 9 n-type Si single crystal substrate 10 source 11 Drain 12 CeO 2 buffer film 13 PbTiO 3 thin film 14 Si nitride interlayer insulating film 15 Polyimide resin interlayer insulating film 16 Aluminum electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/788 29/792 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01L 29/788 29/792

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 MOSトランジスタおよび強誘電体を用
いたキャパシタからなる記憶素子、またはゲート絶縁膜
部分に強誘電体を有するMOSトランジスタからなる記
憶素子がSi単結晶基板上に形成された強誘電体記憶素
子において、前記記憶素子を保護するかまたは配線と分
離する絶縁膜が樹脂被膜であることを特徴とする強誘電
体記憶素子。
1. A ferroelectric material in which a memory element including a MOS transistor and a capacitor using a ferroelectric substance, or a memory element including a MOS transistor having a ferroelectric substance in a gate insulating film portion is formed on a Si single crystal substrate. A ferroelectric memory element, wherein in the memory element, an insulating film that protects the memory element or separates from the wiring is a resin film.
【請求項2】 前記強誘電体がPbTiO3 、PbZr
TiO3 またはPbLaZrTiO3 からなることを特
徴とする請求項1に記載の強誘電体記憶素子。
2. The ferroelectric material is PbTiO 3 or PbZr.
The ferroelectric memory element according to claim 1, which is made of TiO 3 or PbLaZrTiO 3 .
【請求項3】 前記樹脂被膜がポリイミド構造を有する
樹脂であることを特徴とする請求項1または2に記載の
強誘電体記憶素子。
3. The ferroelectric memory element according to claim 1, wherein the resin film is a resin having a polyimide structure.
【請求項4】 前記ポリイミド構造を有する樹脂が感光
性であることを特徴とする請求項3に記載の強誘電体記
憶素子。
4. The ferroelectric memory element according to claim 3, wherein the resin having a polyimide structure is photosensitive.
JP7064019A 1995-03-23 1995-03-23 Ferroelectric memory element Withdrawn JPH08264522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7064019A JPH08264522A (en) 1995-03-23 1995-03-23 Ferroelectric memory element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7064019A JPH08264522A (en) 1995-03-23 1995-03-23 Ferroelectric memory element

Publications (1)

Publication Number Publication Date
JPH08264522A true JPH08264522A (en) 1996-10-11

Family

ID=13246039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7064019A Withdrawn JPH08264522A (en) 1995-03-23 1995-03-23 Ferroelectric memory element

Country Status (1)

Country Link
JP (1) JPH08264522A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709991B1 (en) 1997-05-23 2004-03-23 Nec Corporation Method of fabricating semiconductor device with capacitor
US6812083B2 (en) * 2002-12-18 2004-11-02 Ememory Technology Inc. Fabrication method for non-volatile memory
US9647200B1 (en) 2015-12-07 2017-05-09 International Business Machines Corporation Encapsulation of magnetic tunnel junction structures in organic photopatternable dielectric material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709991B1 (en) 1997-05-23 2004-03-23 Nec Corporation Method of fabricating semiconductor device with capacitor
US6812083B2 (en) * 2002-12-18 2004-11-02 Ememory Technology Inc. Fabrication method for non-volatile memory
US9647200B1 (en) 2015-12-07 2017-05-09 International Business Machines Corporation Encapsulation of magnetic tunnel junction structures in organic photopatternable dielectric material
US10002904B2 (en) 2015-12-07 2018-06-19 International Business Machines Corporation Encapsulation of magnetic tunnel junction structures in organic photopatternable dielectric material
US10008536B2 (en) 2015-12-07 2018-06-26 International Business Machines Corporation Encapsulation of magnetic tunnel junction structures in organic photopatternable dielectric material

Similar Documents

Publication Publication Date Title
JP3098474B2 (en) Method for manufacturing semiconductor device
US6674109B1 (en) Nonvolatile memory
KR100395468B1 (en) Semiconductor device having a hydrogen barrier layer
JP2921556B2 (en) Deactivation method and structure using hard ceramic material etc.
JP3202893B2 (en) Method for producing tantalum oxide thin film by low temperature ozone plasma annealing
KR100477287B1 (en) Semiconductor memory device and manufacturing method with the same
US6627462B1 (en) Semiconductor device having a capacitor and method for the manufacture thereof
JP3833841B2 (en) Semiconductor device and manufacturing method thereof
KR100307884B1 (en) Method of fabricating semiconductor device with capacitor
JPH05259297A (en) Manufacture of semiconductor device
EP1256979B1 (en) Passivation layer on a semiconductor device with a ferroelectric layer
TW508756B (en) Method to produce a micro-electronic element and micro-electronic element
JPH08264522A (en) Ferroelectric memory element
JP3416150B2 (en) Method for producing dielectric layer or ferroelectric layer having high dielectric constant ε
US5966624A (en) Method of manufacturing a semiconductor structure having a crystalline layer
EP0495994A1 (en) Semiconductor device and its manufacturing method
JP5076429B2 (en) Manufacturing method of semiconductor device
JP3871407B2 (en) Semiconductor device and manufacturing method thereof
JPH1174471A (en) Semiconductor device and its manufacture
JP3514940B2 (en) Method of forming ferroelectric thin film
JP2000150677A (en) Ferroelectric gate memory and fabrication thereof
JP3031881B2 (en) Manufacturing method of polysilicon electrode
JP2001177069A (en) Semiconductor element equipped with capacitor, and its manufacturing method
JPH11224934A (en) Ferroelectric memory device
JPH05121759A (en) Semiconductor memory element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604