JPH08264206A - Nonaqueous battery - Google Patents

Nonaqueous battery

Info

Publication number
JPH08264206A
JPH08264206A JP8013255A JP1325596A JPH08264206A JP H08264206 A JPH08264206 A JP H08264206A JP 8013255 A JP8013255 A JP 8013255A JP 1325596 A JP1325596 A JP 1325596A JP H08264206 A JPH08264206 A JP H08264206A
Authority
JP
Japan
Prior art keywords
electrode plate
battery
active material
insulating film
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8013255A
Other languages
Japanese (ja)
Other versions
JP3178586B2 (en
Inventor
Masaya Yamashita
昌哉 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP01325596A priority Critical patent/JP3178586B2/en
Publication of JPH08264206A publication Critical patent/JPH08264206A/en
Application granted granted Critical
Publication of JP3178586B2 publication Critical patent/JP3178586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: To provide a lithium ion secondary battery capable of ensuring safety even if short circuit between a positive active material and a negative electrode is generated by abnormal heat from the outside, crush of the battery in the stacking direction, or piercing with a nail or the like. CONSTITUTION: Layer structure of an electrode plate stacking body is formed by stacking an insulating film 14, a positive electrode side current collector foil 11a, a positive active material 11b, a separator 13, a negative active material 12b, a negative electrode side current collector foil 12a, an insulating film 14, the positive electrode side current collector foil 11a... from a battery can side to the inside in order. Even when short circuit between the positive active material 11b and a negative electrode is generated, short circuit between the current collectors 11a, 12a is almost simultaneously generated, almost all current in the short circuit part flows to the current collectors 11a, 12a, and temperature rising in the positive active material (LiCoO2 ) 11b is suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水系電池に関す
る。特に、安全性を確保するために特定の構造を有する
非水系電池に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous battery. In particular, it relates to a non-aqueous battery having a specific structure for ensuring safety.

【0002】[0002]

【従来の技術】非水系の電解液を用いるリチウムイオン
二次電池は、高電圧、高容量、高出力、重量が軽いた
め、携帯型電子機器の電源として採用されつつある。こ
のようなリチウムイオン二次電池は、一般に、正極板と
負極板の間にセパレータとして微細な孔径を有する多孔
質樹脂膜を介在させて渦巻き状に捲いた電極板積層体
を、負極となる円筒形のステンレス電池缶内に有してい
る。正極板としては、正極活物質としてリチウム複合酸
化物(LiCoO2 等)を含む材料を塗布したアルミニ
ウム箔の集電体が用いられ、負極板としては、負極活物
質として炭素を含む材料を塗布した銅箔の集電体が用い
られる。
2. Description of the Related Art A lithium ion secondary battery using a non-aqueous electrolyte is being adopted as a power source for portable electronic devices because of its high voltage, high capacity, high output and light weight. Such a lithium-ion secondary battery generally has a cylindrical electrode plate laminate, which is wound in a spiral shape with a porous resin film having a fine pore size interposed as a separator between a positive electrode plate and a negative electrode plate, to form a negative electrode. It is contained in a stainless steel battery can. An aluminum foil current collector coated with a material containing a lithium composite oxide (LiCoO 2 etc.) as a positive electrode active material was used as the positive electrode plate, and a material containing carbon as a negative electrode active material was coated as the negative electrode plate. A copper foil current collector is used.

【0003】現在流通しているリチウムイオン二次電池
の電極板積層体は、アルミニウム箔の両面に活物質被膜
がある一枚の正極板と、銅箔の両面に活物質被膜がある
一枚の負極板と、二枚のセパレータとを、負極板、セパ
レータ、正極板、セパレータの順に重ね、且つ負極板が
外側になるようにして渦巻き状に巻いて得られる構造又
は銅箔の両面に活物質被膜がある負極板、セパレータ、
アルミニウム箔の片面に活物質被膜がある二枚の正極板
(アルミニウム箔側同士を合わせて活物質被膜側を外側
に向けて配置)、セパレータの順に重ね、且つ負極板が
外側になるようにして渦巻き状に巻いて得られる構造を
有する。
The electrode plate laminate for lithium ion secondary batteries currently in circulation is composed of one positive electrode plate having an active material coating on both sides of an aluminum foil and one positive electrode plate having an active material coating on both sides of a copper foil. A negative electrode plate and two separators, a negative electrode plate, a separator, a positive electrode plate, a separator are stacked in this order, and the negative electrode plate is wound on a spirally wound structure or an active material on both sides of the structure. Negative electrode plate with a coating, separator,
Two positive electrode plates with an active material coating on one side of the aluminum foil (the aluminum foil sides are placed side by side with the active material coating side facing outward), the separators are stacked in this order, and the negative electrode plate is on the outside. It has a structure obtained by spirally winding.

【0004】このようなリチウムイオン二次電池には、
回路の異常や誤った使い方などによって、電池の正極と
負極とが短絡して電池内部の温度が上昇した場合の安全
性を確保するために、従来より、安全弁、温度ヒュー
ズ、PTC素子等が備えてあるが、様々な使用環境や不
慮の事故に備えて、より一層の安全対策が求められてい
る。
In such a lithium ion secondary battery,
In order to ensure safety when the temperature inside the battery rises due to short circuit between the positive electrode and negative electrode of the battery due to circuit abnormality or incorrect usage, a safety valve, temperature fuse, PTC element, etc. have been provided conventionally. However, further safety measures are required for various usage environments and unexpected accidents.

【0005】例えば、過充電状態において、釘等の鋭利
な導電体が電池缶に刺し入れられた場合、外部から異常
に加熱された場合、電池が電極板積層体の積層方向で押
しつぶされた場合など、しばしば、内部で急激な温度上
昇を引き起こす。
For example, when a sharp conductor such as a nail is stabbed in a battery can in an overcharged state, when it is abnormally heated from the outside, or when the battery is crushed in the stacking direction of the electrode plate stacks. As a result, it often causes a rapid temperature rise inside.

【0006】[0006]

【発明が解決しようとする課題】上記のような場合に電
池内部で正極と負極の短絡が起こることは明らかである
が、何故、内部で急激な温度上昇を引き起こすかは不明
であった。本発明者は、次の原因によりかかる現象が起
こることを見いだし、本発明を完成するに至った。
It is clear that the short circuit between the positive electrode and the negative electrode occurs inside the battery in the above case, but it was not clear why the temperature rises rapidly inside the battery. The present inventors have found that such a phenomenon occurs due to the following causes, and have completed the present invention.

【0007】電池に導電体である釘等が刺し入れられる
と、この釘の先端は、負極である電池缶を貫通して負極
となった状態で内部の正極板に接触するため、この釘を
介した短絡が生じる。また、電池が外部から異常加熱さ
れると、有機材料であるセパレータが先ず溶融するた
め、このセパレータによって絶縁されていた正極板と負
極板とが接触して短絡が生じる。さらに、電池が電極板
積層体の積層方向で押しつぶされると、電極板積層体の
内周側に大きなストレスがかかってセパレータが破断
し、正極板と負極板とが接触して短絡が生じる。
When a nail, which is a conductor, is inserted into the battery, the tip of the nail penetrates the battery can, which is the negative electrode, and contacts the internal positive electrode plate in the state where it becomes the negative electrode. Through the short circuit. Further, when the battery is abnormally heated from the outside, the separator, which is an organic material, first melts, so that the positive electrode plate and the negative electrode plate, which are insulated by the separator, come into contact with each other to cause a short circuit. Furthermore, when the battery is crushed in the stacking direction of the electrode plate laminate, a large stress is applied to the inner peripheral side of the electrode plate laminate, the separator is broken, and the positive electrode plate and the negative electrode plate come into contact with each other to cause a short circuit.

【0008】このような短絡時には、電極板積層体を構
成する部材の中でリチウム複合酸化物(正極活物質)の
抵抗値が比較的高いため、短絡電流の通過によってリチ
ウム複合酸化物の温度は上昇しやすい。そして、この昇
温によって生じた熱で電池内部の有機溶媒が分解反応を
起こしやすくなる。また、このような短絡が充電状態の
電池に生じると、充電状態におけるリチウム複合酸化物
は、リチウムがイオンとしてある程度抜け出ている不安
定な状態にあるため、温度上昇によって分解されて活性
な酸素を発生しやすい。この酸素によって、リチウム複
合酸化物を被着させているアルミニウム箔や有機溶媒に
反応が生じやすくなる。
At the time of such a short circuit, the lithium composite oxide (positive electrode active material) has a relatively high resistance value among the members constituting the electrode plate laminate, so that the temperature of the lithium composite oxide is reduced by the passage of the short circuit current. Easy to rise. Then, the heat generated by this temperature rise easily causes the decomposition reaction of the organic solvent inside the battery. Further, when such a short circuit occurs in the battery in the charged state, the lithium composite oxide in the charged state is in an unstable state in which lithium is released as ions to some extent. Likely to happen. This oxygen facilitates the reaction of the aluminum foil and the organic solvent on which the lithium composite oxide is deposited.

【0009】本発明は、外部から異常に加熱された場
合、釘等の鋭利な導電体が電池缶に刺し入れられた場
合、および電池が電極板積層体の積層方向で押しつぶさ
れた場合でも、正極活物質と負極との短絡を生じ難くす
るか、生じた場合でもこれに伴う正極活物質の昇温を抑
制して、安全性を確保することのできる非水系電池を提
供することを課題とするものである。
According to the present invention, even if the battery is abnormally heated from the outside, a sharp conductor such as a nail is stabbed in the battery can, or the battery is crushed in the stacking direction of the electrode plate stack, To make a short circuit between the positive electrode active material and the negative electrode less likely to occur, or to suppress the temperature rise of the positive electrode active material accompanying this even if it occurs, to provide a non-aqueous battery that can ensure safety and To do.

【0010】[0010]

【課題を解決するための手段】前記課題を解決するため
に、本発明は、集電体箔の片面のみに正極活物質を有す
る正極板と、集電体箔の片面のみに負極活物質を有する
負極板と、セパレータと、絶縁膜と、からなる電極板積
層体を電池缶内に有し、前記電極板積層体は、正極板の
正極活物質を有する面と負極板の負極活物質を有する面
とがセパレータを介して対向配置された単位電池層同士
が、絶縁膜を介して積層されているものである非水系電
池を提供する。
In order to solve the above-mentioned problems, the present invention provides a positive electrode plate having a positive electrode active material on only one side of a current collector foil and a negative electrode active material on only one side of the current collector foil. A negative electrode plate having, a separator, and an insulating film, and has an electrode plate laminated body in a battery can, the electrode plate laminated body, the surface having the positive electrode active material of the positive electrode plate and the negative electrode active material of the negative electrode plate. Provided is a non-aqueous battery in which unit battery layers whose surfaces are opposed to each other with a separator interposed therebetween are laminated with an insulating film interposed therebetween.

【0011】前記電極板積層体の作製方法の具体例とし
ては、単位電池層と絶縁膜とを重ね合わせて捲回機によ
り渦巻き状等に捲く方法(捲回型)、単位電池層を絶縁
膜を挟んで平行に重ね合わせる方法(単純積層型)、単
位電池層と絶縁膜とを重ね合わせたものを所定幅で折り
返しながら平行に配置する方法(つづら折り型)等が挙
げられる。
Specific examples of the method for producing the above electrode plate laminate include a method in which a unit battery layer and an insulating film are superposed and wound in a spiral shape by a winding machine (a winding type), or the unit battery layer is an insulating film. Examples of the method include a method of stacking in parallel with each other (simple stacking type), a method of stacking a unit battery layer and an insulating film stacked in parallel while folding back with a predetermined width (zigzag folding type), and the like.

【0012】本発明の非水系電池の構造は、正極活物質
面と負極活物質面とがセパレータを挟んで対向し、活物
質を有しない正負の集電体箔面同士が絶縁膜を挟んで対
向している。従って、外部からの異常加熱や電池の積層
方向の押しつぶし、または釘刺し等によって正極活物質
と負極との短絡が生じる際には、必ず活物質を有しない
正負の集電体箔面同士の短絡も生じる。集電体箔の抵抗
値は、正極活物質の抵抗値より低いので、短絡部分にお
いても電流が主に抵抗値の低い集電体箔に流れ、正極活
物質に流れる電流は少なくなる。そのため、短絡時に正
極活物質の異常な昇温を抑えることができる。
In the structure of the non-aqueous battery of the present invention, the positive electrode active material surface and the negative electrode active material surface face each other with the separator interposed therebetween, and the positive and negative current collector foil surfaces having no active material sandwich the insulating film. Facing each other. Therefore, when a short circuit occurs between the positive electrode active material and the negative electrode due to abnormal heating from the outside, crushing in the stacking direction of the battery, or piercing with a nail, a short circuit occurs between the positive and negative current collector foil surfaces that do not have the active material. Also occurs. Since the resistance value of the current collector foil is lower than the resistance value of the positive electrode active material, the current mainly flows to the current collector foil having a low resistance value even in the short-circuited portion, and the current flowing to the positive electrode active material decreases. Therefore, abnormal temperature rise of the positive electrode active material can be suppressed at the time of short circuit.

【0013】本発明の非水系電池において、電池缶は、
負極となる物質、正極となる物質、そのいずれでもない
樹脂のような導電性のない物質でもよい。電池缶が樹脂
のような導電性のない物質の場合は、電池缶に外部電極
を設けることができる。電池缶が負極となる場合は、活
物質を有しない正極板の面が電池缶と絶縁膜を介して向
き合っていることが好ましい。この場合、釘刺し事故の
際に、釘の先端は、負極である電池缶を貫通して負極と
なった状態で内部の正極板に接触して短絡するが、釘等
の先端が少しだけ刺し入れられたような場合には、その
先端は正極活物質に接触する前に必ず集電体箔に接触す
るため、正極活物質にはほとんど電流が流れないからで
ある。
In the non-aqueous battery of the present invention, the battery can is
It may be a substance that becomes a negative electrode, a substance that becomes a positive electrode, or a non-conductive substance such as a resin that is neither of them. When the battery can is made of a non-conductive material such as resin, the battery can can be provided with external electrodes. When the battery can serves as the negative electrode, it is preferable that the surface of the positive electrode plate having no active material faces the battery can through the insulating film. In this case, in the event of a nail stab accident, the tip of the nail penetrates the battery can, which is the negative electrode, and contacts the internal positive electrode plate in the state where it becomes the negative electrode, causing a short circuit. This is because, in the case of being put in, the tip always contacts the current collector foil before coming into contact with the positive electrode active material, so that almost no current flows through the positive electrode active material.

【0014】この構成は、捲回型にあっては、単位電池
層の正極板側を外側にして捲き、少なくともその最外周
に絶縁膜を捲いて電極板積層体を作製し、これを電池缶
内に入れることによって得られる。単純積層型にあって
は、例えば、複数の単位電池層を正極板側と負極板側と
を対向させてその間に絶縁膜を挟んで積層することによ
って電極板積層体を作製し、これを、積層方向の中心で
当該負極板側を合わせて配置し、少なくとも各単位電池
層の両端面と電池缶との間に絶縁膜を配置し、必要なら
電極板積層体の最上面と電池缶との間、最下面と電池缶
との間にも絶縁膜を配置することにより得られる。つづ
ら折り型にあっては、電池缶の内側面のうち、折り返し
単位面に平行な内側面に正極板側が配置されるようにし
て単位電池層を折ることによって電極板積層体を作製
し、少なくとも前記内側面に配置された正極板と当該内
側面との間に絶縁膜を配置することにより得られる。
With this construction, in the wound type, the unit battery layer is wound with the positive electrode plate side facing outward, and an insulating film is wound at least on the outermost periphery of the unit battery layer to prepare an electrode plate laminate, which is then put into a battery can. Obtained by putting in. In the simple stacking type, for example, an electrode plate stack is manufactured by stacking a plurality of unit battery layers by facing the positive electrode plate side and the negative electrode plate side and sandwiching an insulating film therebetween, The negative electrode plate side is aligned with the center of the stacking direction, an insulating film is placed between at least both end surfaces of each unit battery layer and the battery can, and if necessary, the uppermost surface of the electrode plate laminate and the battery can In addition, it is obtained by disposing an insulating film between the lowermost surface and the battery can. In the zigzag fold type, an electrode plate laminate is produced by folding the unit battery layer so that the positive electrode plate side is arranged on the inner side surface parallel to the folded unit surface among the inner side surfaces of the battery can, and at least the above It is obtained by disposing an insulating film between the positive electrode plate arranged on the inner side surface and the inner side surface.

【0015】正極板と負極板の集電体箔は、片面全体に
活物質が被着されていてもいいし、部分的に被着されて
いてもいいが、片面全体に活物質が被着されているもの
が、製造が容易なので好ましい。なお、もう一方の面に
は全く活物質が被着されておらず、全面的に集電体面が
露呈していることが必要である。正極の集電体箔として
は、アルミニウム、チタン及びステンレスなどの金属箔
があり、アルミニウムが好ましい。正極の集電体箔の厚
みは、一般に5〜100μm、好ましくは8〜50μ
m、更に好ましくは10〜50μmである。
The current collector foils of the positive electrode plate and the negative electrode plate may be coated with the active material on one side or may be partially coated, but the active material is coated on the entire one side. Those which have been described are preferable because they are easily manufactured. In addition, it is necessary that the active material is not deposited on the other surface at all and the current collector surface is entirely exposed. Examples of the current collector foil for the positive electrode include metal foils such as aluminum, titanium and stainless steel, with aluminum being preferred. The thickness of the collector foil of the positive electrode is generally 5 to 100 μm, preferably 8 to 50 μm.
m, and more preferably 10 to 50 μm.

【0016】負極の集電体箔としては、銅、ニッケル及
びステンレススチール等の金属箔があり、銅、ステンレ
ススチールが好ましい。負極の集電体箔の厚みは、一般
に6〜50μm、好ましくは8〜25μmである。正
極、負極の集電体箔の形状は、エキスパンデッドメタ
ル、パンチドメタルの形状でよく、金属均等体としての
カーボンクロス、カーボンペーパー等を用いることもで
きる。
As the current collector foil for the negative electrode, there are metal foils such as copper, nickel and stainless steel, and copper and stainless steel are preferable. The thickness of the current collector foil of the negative electrode is generally 6 to 50 μm, preferably 8 to 25 μm. The shape of the collector foil of the positive electrode and the negative electrode may be an expanded metal shape or a punched metal shape, and carbon cloth, carbon paper or the like as a metal equivalent may be used.

【0017】正極、負極の活物質層の厚さは、好ましく
は30〜300μm、更に好ましくは70〜130μm
である。正極活物質としては、Li,Na,Caなどの
アルカリ金属またはアルカリ土類金属と、Co,Ni,
Mn,Feなどの遷移金属との複合酸化物、もしくは、
前記アルカリ金属またはアルカリ土類金属と遷移金属と
非遷移金属との複合酸化物を用いることができる。 負
極活物質としては、コークス、グラファイト、非晶質カ
ーボンなどの炭素粒子が用いられ、その形状は、破砕
状、鱗片状、球状などいずれであってもよい。
The thickness of the active material layers of the positive electrode and the negative electrode is preferably 30 to 300 μm, more preferably 70 to 130 μm.
Is. Examples of the positive electrode active material include alkali metals or alkaline earth metals such as Li, Na and Ca, Co, Ni and
Complex oxides with transition metals such as Mn and Fe, or
A composite oxide of the above-mentioned alkali metal or alkaline earth metal, transition metal and non-transition metal can be used. As the negative electrode active material, carbon particles such as coke, graphite and amorphous carbon are used, and the shape thereof may be any of crushed shape, scale shape and spherical shape.

【0018】非水の電解質は、特に限定しないが、例え
ば、LiClO4、LiBF4 、LiAsF6、CF3SO3Li等の電解質をエ
ーテル類、ケトン類、カーボネート類の有機溶媒に溶解
して有機電解液として使用することができる。また、固
体電解質を用いてもよい。セパレータとしては、電子伝
導機能がなくイオン伝導機能があり、有機溶媒の耐性が
高い、微細な孔径を有する多孔質膜が用いられ、例えば
ポリエチレン、ポリプロピレン等のポリオレフィン系の
樹脂からなる微多孔膜、またはポリオレフィン系の多孔
質繊維を織ったものまたはその不織布等が挙げられる。
The non-aqueous electrolyte is not particularly limited. For example, an electrolyte such as LiClO 4 , LiBF 4 , LiAsF 6 , CF 3 SO 3 Li is dissolved in an organic solvent of ethers, ketones, carbonates to form an organic solvent. It can be used as an electrolyte. Moreover, you may use a solid electrolyte. The separator has an ionic conduction function without an electronic conduction function, high resistance to organic solvents, a porous membrane having a fine pore size is used, for example, polyethylene, a microporous membrane made of a polyolefin resin such as polypropylene, Alternatively, a woven porous polyolefin fiber or a non-woven fabric thereof may be used.

【0019】絶縁膜としては、電子伝導機能がなくイオ
ン伝導機能のある前記セパレータと同じものを使用して
もよいが、電子伝導機能もなくイオン伝導機能もないも
のを使用することが好ましい。すなわち、電子伝導機能
もなくイオン伝導機能もない絶縁膜は、電子伝導機能は
ないがイオン伝導機能のある絶縁膜に比べて安価である
ことに加えて強度も高いため、膜厚を極端に薄くしても
必要な強度を保持できる。具体的には、イオン伝導機能
も電子伝導機能もなくて有機溶媒の耐性が高いもの、例
えば、ポリエチレン、ポリプロピレン、エチレン・プロ
ピレン共重合体等のポリオレフィン系の合成樹脂膜を使
用することがより好ましい。
As the insulating film, the same one as the separator having no electron conducting function and having ionic conducting function may be used, but it is preferable to use one having neither electron conducting function nor ionic conducting function. That is, an insulating film having neither an electron conducting function nor an ionic conducting function has an extremely thin thickness because it is inexpensive and has high strength as compared with an insulating film having no electron conducting function but an ionic conducting function. However, the required strength can be maintained. Specifically, it is more preferable to use one having neither an ionic conduction function nor an electron conduction function and high resistance to an organic solvent, for example, a polyolefin-based synthetic resin film such as polyethylene, polypropylene, or an ethylene / propylene copolymer. .

【0020】絶縁膜の膜厚は、セパレータの膜厚より薄
いと、絶縁膜がセパレータと同じ厚さである場合と比べ
て、同じ大きさの電池缶用の電極板積層体として積層で
きる単位電池層の合計長さを長くすることができる。従
って、セパレータの膜厚より薄い膜厚を有する絶縁膜を
使用することが好ましい。また、絶縁膜の融点が前記セ
パレータの融点より低いことが好ましい。これは、電池
が外部から異常加熱された場合に、絶縁膜の方がセパレ
ータより先に溶融するため、絶縁膜を介して対向してい
る正極、負極の集電体箔同士の短絡が、セパレータを介
して対向している正極、負極の活物質同士の短絡より先
に起きるからである。
When the thickness of the insulating film is smaller than that of the separator, the unit battery can be laminated as an electrode plate laminate for a battery can having the same size as compared with the case where the insulating film has the same thickness as the separator. The total length of the layers can be increased. Therefore, it is preferable to use an insulating film having a thickness smaller than that of the separator. Further, it is preferable that the melting point of the insulating film is lower than the melting point of the separator. This is because when the battery is abnormally heated from the outside, the insulating film melts before the separator, so that a short circuit between the positive and negative electrode current collector foils facing each other through the insulating film causes This is because it occurs before a short circuit occurs between the active materials of the positive electrode and the negative electrode that face each other through.

【0021】特に、絶縁膜の融点はセパレータの融点よ
り5〜150℃程度低いことが好ましい。当該融点の差
が5℃より小さいと、電池缶内に通常存在する温度分布
によってセパレータの方が先に溶融する可能性があり、
150℃より大きいと、通常の使用状態での電池内温度
(−20〜100℃)の範囲で絶縁膜が溶融する可能性
がある。
In particular, the melting point of the insulating film is preferably lower than that of the separator by about 5 to 150 ° C. If the melting point difference is less than 5 ° C., the separator may be melted earlier due to the temperature distribution normally existing in the battery can.
If the temperature is higher than 150 ° C, the insulating film may melt within the temperature range (-20 to 100 ° C) in the battery under normal use.

【0022】本発明の電池は、電極板積層体が捲回型で
ある場合に、当該電極板積層体の捲回中心にセンターピ
ンを有していてもよい。センターピンとしては、周面に
欠部を有する筒体、又は棒材の周面にその周方向に連続
する凹部を有するもの、又はコイルバネであることが好
ましい。このようなセンターピンを用いることによって
以下の作用が得られる。
The battery of the present invention may have a center pin at the winding center of the electrode plate laminate when the electrode plate laminate is a wound type. As the center pin, it is preferable to use a cylindrical body having a cutout portion on the peripheral surface thereof, one having a recessed portion continuous in the circumferential direction on the peripheral surface of the bar material, or a coil spring. The following effects can be obtained by using such a center pin.

【0023】すなわち、本発明の電池において電極板積
層体の積層方向(軸に交差する方向)で押しつぶされる
と、電極板積層体の内周側に大きなストレスがかかって
セパレータが破断し、正極板と負極板とが接触して短絡
が生じるが、その際に、センターピンも潰れて筒体の欠
部の縁が外側に開き、又は棒材の凹部若しくはコイルバ
ネの線材の隙間に電極板積層体の内周側部分が食い込ん
で、電極板積層体を内周側から破断する。これにより、
短絡が促進されて広範囲に生じるため、当該正極活物質
の単位体積当たりに流れる電流が少なくなって当該正極
活物質の昇温が抑えられる。
That is, in the battery of the present invention, when the electrode plate laminate is crushed in the laminating direction (the direction intersecting the axis), a large stress is applied to the inner peripheral side of the electrode plate laminate, the separator is broken, and the positive plate. And the negative electrode plate come into contact with each other to cause a short circuit, and at that time, the center pin is also crushed and the edge of the cutout portion of the cylinder body is opened outward, or the electrode plate laminated body is formed in the recess of the rod or the gap of the wire of the coil spring. The inner peripheral portion of the electrode bites into and the electrode plate laminate is broken from the inner peripheral side. This allows
Since the short circuit is promoted to occur in a wide range, the current flowing per unit volume of the positive electrode active material is reduced, and the temperature rise of the positive electrode active material is suppressed.

【0024】ここで、前記筒体とは、中空で軸方向両端
が開放された管状のものであり、軸方向に垂直な断面外
形は円に限定されない。筒体の厚さは特に限定されない
が、欠部の面積との兼ね合いで、通常時に所定の強度を
保持できて、且つ積層方向に所定の押しつぶし力がかか
ったときに共に潰れる程度の厚さとする。また、前記欠
部とは、筒体の外周面から内周面まで貫通する貫通穴の
ことを意味し、筒体の軸方向に平行に延びるものであっ
ても、軸方向と交差する方向に延びるものであってもよ
く、筒体の軸方向一端から他端に至るものであってもよ
いし、一端にのみ至るもの、両端ともに至らないもので
あってもよい。
Here, the tubular body is a tubular body which is hollow and is open at both ends in the axial direction, and the cross-sectional outer shape perpendicular to the axial direction is not limited to a circle. The thickness of the cylindrical body is not particularly limited, but in consideration of the area of the cutout portion, the thickness should be such that it can maintain a predetermined strength in normal times, and can be crushed together when a predetermined crushing force is applied in the stacking direction. . Further, the notch means a through hole penetrating from the outer peripheral surface to the inner peripheral surface of the tubular body, and even if it extends parallel to the axial direction of the tubular body, it does not extend in the direction intersecting the axial direction. It may extend, may extend from one end to the other end in the axial direction of the tubular body, may extend only to one end, or may not reach both ends.

【0025】欠部が筒体の軸方向に平行に延びるもので
ある場合には、周方向に少なくとも二個あることが好ま
しい。特に、筒体の軸方向と平行に延びる欠部が周方向
に三つ以上あれば、押しつぶし方向がいずれの積層方向
であっても必ずいずれかの欠部の縁が外側に開くため、
前記作用が確実に得られる。また、欠部が二つの場合に
は、筒体の軸を中心に対向配置しないことにより、押し
つぶし方向がいずれの積層方向であっても必ずいずれか
の欠部の縁が外側に開くため、前記作用が確実に得られ
る。
When the cutouts extend parallel to the axial direction of the cylindrical body, it is preferable that there are at least two cutouts in the circumferential direction. In particular, if there are three or more notches extending parallel to the axial direction of the tubular body in the circumferential direction, the edges of any notches always open outward regardless of which stacking direction is the crushing direction.
The above-mentioned action is surely obtained. Further, in the case where there are two cutouts, the edges of any cutouts always open outward regardless of the stacking direction in the crushing direction by not arranging them facing each other around the axis of the tubular body. The action is surely obtained.

【0026】欠部が筒体の軸方向と交差する方向に延び
るものである場合には、その延び方向が軸方向と直交す
るものであってもよいし、斜めに交差するものであって
もよい。このような欠部の例としては、筒体が円筒であ
る場合に、その断面円の円弧に沿って形成されたもの、
および円周面に螺旋状に形成されているもの等が挙げら
れる。この場合、押しつぶし方向が軸に交差するいずれ
の方向であっても必ず欠部の縁が外側に開くため、前記
作用が確実に得られる。
When the cutout portion extends in a direction intersecting the axial direction of the cylindrical body, the extending direction may be orthogonal to the axial direction or may intersect diagonally. Good. As an example of such a cutout, when the tubular body is a cylinder, one formed along the arc of the cross-sectional circle,
And those formed in a spiral shape on the circumferential surface. In this case, the edge of the notch always opens outward regardless of the crushing direction intersecting the axis, so that the above-mentioned action is surely obtained.

【0027】また、欠部の縁面は波状に形成しているこ
とが好ましい。波状とは、基準線に対して振幅がある凹
凸を意味し、その形状は三角波、矩形波、正弦波などい
ずれのものであってもよい。この場合、潰れて外側に開
いた欠部の縁が波状の突起となるため、電極板積層体が
破断されやすいとともに、破断箇所が分散されやすくな
る。
Further, it is preferable that the edge surface of the cut portion is formed in a wavy shape. The wavy shape means an unevenness having an amplitude with respect to the reference line, and the shape may be any of a triangular wave, a rectangular wave, a sine wave, and the like. In this case, since the edge of the crushed and open outward portion becomes a wavy projection, the electrode plate laminate is easily broken and the broken portions are easily dispersed.

【0028】センターピンが、棒材の周面に、その周方
向に連続する凹部が形成されたものである場合の例とし
ては、ネジ軸のように、棒材の周面に所定幅の凹部が螺
旋状に形成されているものや、螺旋状ではなく棒材の断
面円に沿った周溝が長さ方向に多数形成されているもの
等が挙げられる。また、この場合の棒材は、中実であっ
ても中空であってもよいが、中空であると、内部圧力が
上昇した場合に電池缶内のガスがその中空部から安全弁
の方向へ導かれるため好ましい。なお、棒材が中空の場
合の前記凹部は、棒材の外周面から内周面側に向けて内
周面を貫通しない深さで形成されたものに限定される。
また、凹部が深いほど前記食い込み度合いが高くなるた
め、凹部が深いものが好ましい。
As an example of the case where the center pin is formed by forming a continuous recess in the circumferential surface of the bar, a recess having a predetermined width is formed on the peripheral surface of the bar like a screw shaft. There are those in which a plurality of peripheral grooves are formed in the length direction along the cross-section circle of the bar, instead of in a spiral shape. The rod in this case may be solid or hollow. However, if the rod is hollow, the gas in the battery can is guided from the hollow portion toward the safety valve when the internal pressure rises. It is preferable because it is avoided. In the case where the rod is hollow, the recess is limited to one formed so as not to penetrate the inner peripheral surface from the outer peripheral surface of the rod toward the inner peripheral surface.
Further, the deeper the recess is, the higher the above-mentioned bite degree is. Therefore, it is preferable that the recess is deep.

【0029】センターピンがコイルバネの場合、ピッチ
が線材直径より大きくて、無負荷時に隣合う線材間に隙
間を有するものが好ましい。コイルバネの隣合う線材間
の隙間は線材直径の2〜3倍であることが好ましい。線
材の断面形状は特に限定されず、円でも菱形等の多角形
でもよい。線材の断面が菱形であるスプリングのよう
に、外周面に鋸の歯状の凹部が形成されたものである
と、無負荷時に隣合う線材同士に隙間がないコイルバネ
であっても、前記押しつぶし時にこの凹部に電極板積層
体の内周部分が食い込み易くなるため好ましい。
When the center pin is a coil spring, it is preferable that the pitch is larger than the diameter of the wire rod and there is a gap between the adjacent wire rods when there is no load. The gap between adjacent wire rods of the coil spring is preferably 2-3 times the wire rod diameter. The cross-sectional shape of the wire is not particularly limited, and may be a circle or a polygon such as a rhombus. When a saw tooth-shaped recess is formed on the outer peripheral surface like a spring in which the wire rod has a rhombic cross-section, even if the coil spring has no gap between adjacent wire rods when there is no load, it is This is preferable because the inner peripheral portion of the electrode plate laminate is easily bited into this recess.

【0030】センターピンの材質は特に限定されない
が、耐食性と強度とを兼ね備えた金属であるステンレス
鋼が好ましい。
The material of the center pin is not particularly limited, but stainless steel, which is a metal having both corrosion resistance and strength, is preferable.

【0031】[0031]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1は、本発明の第一実施形態に相
当する、電極板積層体が捲回型である円筒状の非水系電
池を示す横断面図である。この電池は、積層方法が捲回
型である電極板積層体1を、円筒形の電池缶2に収納し
たリチウムイオン二次電池である。また、電極板積層体
1の捲回中心には、細い円筒状のセンターピン3が挿入
してある。このセンターピン3は、電池缶2内の内部圧
力が上昇した場合に、電池缶2内のガスを安全弁の方向
へ導く流路の働きをするものであって、ステンレス等に
より形成されている。なお、符号15は正極側のタブで
あり、符号16は負極側のタブである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing a cylindrical non-aqueous battery having a wound electrode plate laminate, which corresponds to the first embodiment of the present invention. This battery is a lithium ion secondary battery in which an electrode plate laminate 1 whose winding method is a winding method is housed in a cylindrical battery can 2. Further, a thin cylindrical center pin 3 is inserted in the winding center of the electrode plate laminate 1. The center pin 3 functions as a flow path that guides the gas inside the battery can 2 toward the safety valve when the internal pressure inside the battery can 2 rises, and is made of stainless steel or the like. Reference numeral 15 is a tab on the positive electrode side, and reference numeral 16 is a tab on the negative electrode side.

【0032】電極板積層体1は、アルミニウムからなる
集電体箔11aの片面のみに、LiCoO2 を含む材料
が正極活物質11bとして塗布された正極板11と、銅
からなる集電体箔12aの片面のみに、炭素粒子を含む
材料が負極活物質12bとして塗布された負極板12
と、正極活物質11bと負極活物質12bとの間に配置
されたポリエチレン微多孔膜からなるセパレータ13
と、正極側集電体箔11aと負極側集電体箔12aとの
間に配置された前記セパレータ13と同じ膜からなる絶
縁膜14とで構成されている。
The electrode plate laminate 1 comprises a positive electrode plate 11 in which a material containing LiCoO 2 is applied as a positive electrode active material 11b on only one surface of a current collector foil 11a made of aluminum, and a current collector foil 12a made of copper. A negative electrode plate 12 in which a material containing carbon particles is applied as a negative electrode active material 12b on only one surface of
And a separator 13 composed of a polyethylene microporous film disposed between the positive electrode active material 11b and the negative electrode active material 12b.
And an insulating film 14 made of the same film as the separator 13 arranged between the positive electrode side current collector foil 11a and the negative electrode side current collector foil 12a.

【0033】この電極板積層体1は、正極側集電体箔1
1a、正極活物質11b、セパレータ13、負極活物質
12b、負極側集電体箔12a、絶縁膜14の順に層を
重ねて絶縁膜14を内側にして(すなわち正極側集電体
箔11aを外側にして)、捲回機により渦巻き状に捲
き、最外周にさらに絶縁膜14を捲くことにより作製さ
れている。これにより、電極体積層体1の層構造は、電
池缶2側から内側に向けて、絶縁膜14、正極側集電体
箔11a、正極活物質11b、セパレータ13、負極活
物質12b、負極側集電体箔12a、絶縁膜14、正極
側集電体箔11a・・・の順になっている。
This electrode plate laminate 1 comprises a positive electrode side current collector foil 1
1a, the positive electrode active material 11b, the separator 13, the negative electrode active material 12b, the negative electrode side current collector foil 12a, and the insulating film 14 are laminated in this order with the insulating film 14 inside (that is, the positive electrode side current collector foil 11a outside. Then, it is produced by spirally winding with a winding machine and further winding the insulating film 14 on the outermost periphery. Thereby, the layer structure of the electrode assembly 1 is such that the insulating film 14, the positive electrode side current collector foil 11a, the positive electrode active material 11b, the separator 13, the negative electrode active material 12b, and the negative electrode side are directed inward from the battery can 2 side. The current collector foil 12a, the insulating film 14, and the positive electrode side current collector foil 11a are in this order.

【0034】また、この電極板積層体1においては、正
極活物質11bと負極活物質12bとが対向配置された
正極11および負極12と、その間に配置されたセパレ
ータ13とで形成される単位電池層4内では電池作用が
生じるが、絶縁膜14が介在された単位電池層4同士の
間(すなわち、正負の集電体箔11a,12aの間)で
は電池作用が生じない。
Further, in this electrode plate laminate 1, a unit battery formed of a positive electrode 11 and a negative electrode 12 in which a positive electrode active material 11b and a negative electrode active material 12b are arranged to face each other, and a separator 13 arranged therebetween. Although the cell action occurs in the layer 4, the cell action does not occur between the unit cell layers 4 with the insulating film 14 interposed (that is, between the positive and negative current collector foils 11a and 12a).

【0035】したがって、図2に示すように、電池が積
層方向で押しつぶされた場合には、一般に、センターピ
ン3に隣接する最内周のセパレータ13および絶縁膜1
4が受けるストレスが最も大きいことから、ここから順
次外周方向へセパレータ13および絶縁膜14の破断が
生じ、例えば図2のB,Cにおいて正極活物質11bと
負極活物質12bとの短絡が生じるが、これとほぼ同時
にA,Dにおける正負の集電体箔11a,12a同士の
短絡も生じる。これにより、短絡部分でも電流のほとん
どは集電体箔11a,12aに流れて安全に内部放電さ
れるため、LiCoO2 からなる正極活物質11bに流
れる電流は少なくなって、LiCoO2の昇温が抑えら
れる。
Therefore, as shown in FIG. 2, when the battery is crushed in the stacking direction, the innermost separator 13 and the insulating film 1 which are adjacent to the center pin 3 are generally provided.
Since the stress applied to No. 4 is the largest, the separator 13 and the insulating film 14 are sequentially broken from here in the outer peripheral direction, and for example, a short circuit occurs between the positive electrode active material 11b and the negative electrode active material 12b in B and C of FIG. At about the same time, a short circuit occurs between the positive and negative current collector foils 11a and 12a in A and D. Thus, the current collector foil 11a for most current in the short circuit portion, because it is securely disarm flows to 12a, the current flowing in the positive electrode active material 11b consisting of LiCoO 2 becomes smaller, raising the temperature of LiCoO 2 is It can be suppressed.

【0036】そのため、充電状態の短絡であっても、L
iCoO2 の昇温に伴う酸素の発生およびこの酸素によ
るアルミニウム(正極側集電体箔)や有機溶媒(電解質
溶媒)の反応が抑えられるため、電池内部に大きなエネ
ルギーが生じることが防止されて、電池の安全性が確保
される。また、図3に示すように、鋭利な釘等からなる
導電体5が電池缶2を突き破って電池内部に進入した場
合には、電池缶2を貫通する時点で負極となった導電体
5の先端は、絶縁膜14、正極側の集電体箔11a、正
極活物質11b、セパレータ13、負極活物質12b、
負極側の集電体箔12a、絶縁膜14・・・の順に貫通
しながら接触していく。このように、導電体5を介して
正極活物質11bと負極活物質12bとの短絡が生じる
が、前述のように、これとほぼ同時に正負の集電体11
a,12a同士の短絡も生じるため、短絡部分でも電流
のほとんどは集電体11a,12aに流れて安全に内部
放電される。これにより、前記と同様に、充電状態の短
絡であっても、電池内部に大きなエネルギーが生じるこ
とが抑えられて、電池の安全性が確保される。
Therefore, even if the charging state is short-circuited, L
Generation of oxygen accompanying temperature rise of iCoO 2 and reaction of aluminum (positive electrode side current collector foil) and organic solvent (electrolyte solvent) due to this oxygen are suppressed, so that large energy is prevented from being generated inside the battery, The safety of the battery is ensured. Further, as shown in FIG. 3, when the conductor 5 made of a sharp nail or the like penetrates the battery can 2 and enters the inside of the battery, the conductor 5 that becomes the negative electrode at the time of penetrating the battery can 2. The tip has an insulating film 14, a collector foil 11a on the positive electrode side, a positive electrode active material 11b, a separator 13, a negative electrode active material 12b,
The current collector foil 12a on the negative electrode side, the insulating film 14 ... Thus, a short circuit occurs between the positive electrode active material 11b and the negative electrode active material 12b via the conductor 5, but as described above, at the same time as this, the positive and negative current collectors 11 are formed.
Since a short circuit occurs between a and 12a, most of the current flows through the current collectors 11a and 12a even in the short-circuited portion, and the internal discharge is safely performed. Thereby, similarly to the above, even if a short circuit occurs in the charged state, generation of a large amount of energy inside the battery is suppressed, and the safety of the battery is ensured.

【0037】また、釘等の導電体5が電池缶2からセン
ターピン3の手前まで刺し入れられた場合には、この導
電体5は、正極活物質11bに接触する前に必ず正極側
の集電体11aに接触するため、短絡部分でも電流の大
部分は正極側の集電体11aに流れて、正極活物質11
bにはほとんど流れない。従って、この電池は、釘等の
鋭利な導電体5が、積層方向に少しだけ刺し入れられた
場合の安全性について特に優れたものとなる。
When a conductor 5 such as a nail is stabbed from the battery can 2 to a position just before the center pin 3, the conductor 5 is always collected on the positive electrode side before coming into contact with the positive electrode active material 11b. Since it contacts the current collector 11a, most of the current flows to the current collector 11a on the positive electrode side even in the short-circuited portion, and the positive electrode active material 11
It hardly flows to b. Therefore, this battery is particularly excellent in safety when a sharp conductor 5 such as a nail is stabbed in the stacking direction a little.

【0038】なお、この第一実施形態においては、単位
電池層4の間(すなわち、正極側集電体箔11aと負極
側集電体箔12aとの間)に配置される絶縁膜14とし
て、セパレータ13と同じ膜を用いているため、単位電
池層4同士の間で電池作用が生じないことに伴って、電
池の安全性は確保される反面、電気容量の低下は避けら
れない。すなわち、従来の構造と比較して、前記構造の
正負極板を同じ長さだけ巻いた場合には容量が半分にな
り、活物質が正負極とも一面にしかない分だけ正負極板
を長く捲いた場合でも同じ容量とはできない。
In the first embodiment, as the insulating film 14 arranged between the unit battery layers 4 (that is, between the positive electrode side current collector foil 11a and the negative electrode side current collector foil 12a), Since the same film as that of the separator 13 is used, the battery action is not generated between the unit battery layers 4, so that the safety of the battery is secured, but the decrease of the electric capacity is unavoidable. That is, in comparison with the conventional structure, when the positive and negative electrode plates having the above structure are wound by the same length, the capacity is halved, and the positive and negative electrode plates are wound longer by the amount that the active material is on only one side of the positive and negative electrodes. Even if it is not the same capacity.

【0039】これに対して、図4に示す本発明の第二実
施形態の電池では、絶縁膜14としてセパレータ13よ
り膜厚の薄いものを用いているため、同じ大きさの電池
缶2用の電極板積層体1として積層できる単位電池層4
の長さを長くすることができる。これによって、前述の
ように電池の安全性を確保しながら電気容量も大きくす
ることができる。例えば、通常の電池に使用されるセパ
レータの膜厚は25〜35μmであるが、絶縁膜14と
して35μmのセパレータの代わりに12μmの絶縁膜
(例えばポリプロピレン樹脂膜)を使用することによっ
て、電池缶2の直径が18mm高さが65mmである場
合には、約8〜10%初期容量が増加する。
On the other hand, in the battery according to the second embodiment of the present invention shown in FIG. 4, since the insulating film 14 having a smaller film thickness than the separator 13 is used, the battery can 2 having the same size is used. Unit battery layer 4 that can be stacked as the electrode plate stack 1
The length of can be increased. As a result, the electric capacity can be increased while ensuring the safety of the battery as described above. For example, the thickness of the separator used in a normal battery is 25 to 35 μm, but by using a 12 μm insulating film (for example, a polypropylene resin film) as the insulating film 14 instead of the 35 μm separator, the battery can 2 If the diameter is 18 mm and the height is 65 mm, the initial capacity increases by about 8-10%.

【0040】また、第一および第二実施形態の電池で
は、電池缶2と正極板12とが絶縁膜14を介して対向
しているため、絶縁膜14にイオン伝導機能があると、
正極板12と負極である電池缶2との間で充放電が起こ
り、充電時に電池缶2に金属リチウムが析出し、過放電
時に電池缶材料が溶けだす恐れがある。そのため、絶縁
膜14として、例えばポリプロピレン樹脂膜等のイオン
伝導機能のないものを使用することによって、充電時に
おける電池缶2への金属リチウムの析出、および過放電
時における電池缶材料の溶出を防止することができる。
Further, in the batteries of the first and second embodiments, since the battery can 2 and the positive electrode plate 12 face each other with the insulating film 14 interposed therebetween, if the insulating film 14 has an ion conducting function,
Charge and discharge may occur between the positive electrode plate 12 and the battery can 2 that is the negative electrode, metal lithium may be deposited on the battery can 2 during charging, and the battery can material may melt during overdischarging. Therefore, as the insulating film 14, for example, a polypropylene resin film having no ion conducting function is used to prevent the deposition of metallic lithium in the battery can 2 during charging and the elution of the battery can material during overdischarging. can do.

【0041】さらに、絶縁膜14の材質をセパレータ1
3より融点の低いものとすれば、電池が外部から異常加
熱された場合に、絶縁膜14がセパレータ13より先に
溶融して、絶縁膜14を介して対向している正負の集電
体箔11a,12a同士の短絡が、セパレータ13を介
して対向している正負の活物質11b,12b同士の短
絡より先に起きる。これにより、短絡電流が集電体箔1
1a,12aのみに流れて正極活物質11bには流れな
いようにできるため、前記実施形態の構成で、絶縁膜1
4の融点がセパレータ13の融点より低いものである
と、電池が外部から異常加熱された場合の安全性につい
て特に優れたものとなる。
Furthermore, the material of the insulating film 14 is changed to the separator 1
If the melting point is lower than 3, the insulating film 14 is melted before the separator 13 when the battery is abnormally heated from the outside, and the positive and negative current collector foils facing each other through the insulating film 14 are provided. The short circuit between 11a and 12a occurs before the short circuit between the positive and negative active materials 11b and 12b facing each other through the separator 13. Thereby, the short-circuit current is reduced to the collector foil 1.
Since it is possible to prevent the positive electrode active material 11b from flowing only in the insulating film 1a and 12a, the insulating film
When the melting point of No. 4 is lower than the melting point of the separator 13, the safety is particularly excellent when the battery is abnormally heated from the outside.

【0042】図5は、本発明の第三実施形態に相当す
る、電極板積層体が捲回型である円筒状の非水系電池を
示す横断面図である。この電池は、図1と同様のリチウ
ムイオン二次電池であるが、電極板積層体1の捲回中心
には、図1のセンタ−ピン3とは異なる、本発明の非水
系電池に使用可能な第二のセンターピン3aが挿入され
ている。
FIG. 5 is a cross-sectional view showing a cylindrical non-aqueous battery having a wound electrode plate laminate, which corresponds to the third embodiment of the present invention. This battery is a lithium-ion secondary battery similar to that of FIG. 1, but can be used for the non-aqueous battery of the present invention, which is different from the center pin 3 of FIG. 1 at the winding center of the electrode plate laminate 1. The second center pin 3a is inserted.

【0043】このセンターピン3aは、SUS304等
のステンレス鋼で作製され、中空の円筒体の周面に、軸
方向と平行に延びる所定幅(円筒体が外径4.0mm、
厚さ0.4mmの場合に例えば0.3mm)の欠部31
を有するものであり、この欠部31は、円筒体の長さ方
向の一端から他端まで同じ幅で形成されている。この第
三実施形態では、前記第一および第二実施例とは異なり
センターピン3aに欠部31が形成されているため、電
池が積層方向で押しつぶされた場合には、図6に想像線
で示すように、センターピン3aも潰れて欠部31の縁
が外側に開き、電極板積層体1を内周側から破断するた
め、正負極の集電体箔11a,12a同士の短絡が促進
されて広範囲に生じる。したがって、この第三実施形態
の電池は、前記第一および第二実施形態の電池よりも、
電池の積層方向での押しつぶしに対する安全性が高いも
のとなる。
The center pin 3a is made of stainless steel such as SUS304, and has a predetermined width (the cylindrical body has an outer diameter of 4.0 mm, which extends parallel to the axial direction on the peripheral surface of the hollow cylindrical body.
When the thickness is 0.4 mm, for example, the notch 31 of 0.3 mm)
The cutout 31 is formed with the same width from one end to the other end in the length direction of the cylindrical body. In the third embodiment, unlike the first and second embodiments, the notch 31 is formed in the center pin 3a. Therefore, when the battery is crushed in the stacking direction, the imaginary line is shown in FIG. As shown, the center pin 3a is also crushed and the edge of the notch 31 is opened to the outside, and the electrode plate laminate 1 is broken from the inner peripheral side. Therefore, the short circuit between the positive and negative electrode current collector foils 11a and 12a is promoted. Occur over a wide area. Therefore, the battery according to the third embodiment is better than the batteries according to the first and second embodiments.
The safety against crushing in the stacking direction of the batteries is high.

【0044】図7は、本発明の非水系電池に使用可能な
第三のセンターピンを示す正面図である。また、図8は
図7のA−A線断面であり、図9はこのセンターピンの
作用を説明するための概要図である。このセンターピン
3bは、SUS304等のステンレス鋼で作製され、図
7および8から分かるように、第二のセンターピン3a
の欠部31と同じに形成された、中空の円筒体の周面に
軸方向と平行に延びる所定幅(円筒体が外径4.0m
m、厚さ0.4mmの場合に例えば0.3mm)の割口
32だけでなく、同様の幅で軸方向に平行に延びて円筒
体の端面に達しないスリット33a〜33c,34a〜
34cを有している。
FIG. 7 is a front view showing a third center pin usable in the non-aqueous battery of the present invention. 8 is a cross section taken along the line AA of FIG. 7, and FIG. 9 is a schematic diagram for explaining the action of this center pin. This center pin 3b is made of stainless steel such as SUS304 and, as can be seen from FIGS. 7 and 8, the second center pin 3a.
A predetermined width extending parallel to the axial direction on the peripheral surface of a hollow cylindrical body formed in the same manner as the cutout portion 31 (the cylindrical body has an outer diameter of 4.0 m
m, and a thickness of 0.4 mm, for example, not only the slit 32 of 0.3 mm), but also slits 33a to 33c, 34a that extend in parallel with the axial direction and do not reach the end surface of the cylindrical body.
34c.

【0045】スリット33a〜33cは、軸方向に平行
な一つの直線に沿って所定間隔を開けて直列に配置され
ており、スリット34a〜34cは、軸方向に平行な別
の直線に沿って所定間隔を開けて直列に配置されてい
る。割口32とこれらのスリット33a〜33c,34
a〜34cは、センターピン3bの断面円において、そ
の円周を三等分する配置となっている。
The slits 33a to 33c are arranged in series along a straight line parallel to the axial direction at a predetermined interval, and the slits 34a to 34c are predetermined along another straight line parallel to the axial direction. They are arranged in series at intervals. Split 32 and these slits 33a to 33c, 34
a to 34c are arranged to divide the circumference of the center pin 3b into three equal parts.

【0046】したがって、このセンターピン3bを有す
る図1の電池が積層方向で押しつぶされた場合には、セ
ンターピン3bも潰れて割口32およびスリット33a
〜33c,34a〜34cの縁が外側に開き、電極板積
層体1を内周側から破断するため、前記短絡が促進され
て広範囲に生じる。特に、図9に想像線で示すように、
電池の押しつぶし方向がセンターピン3bの欠部の一つ
(ここでは割口32)と一致する場合には、割口32の
縁が内側に入って電極板積層体1を破断しなくなるが、
これ以外のスリット33a〜33c,34a〜34cの
縁が外側に開くため、押しつぶし方向によらずに電極板
積層体1が確実に破断される。また、このセンターピン
3bは、図5のセンターピン3aと比較して、電極板積
層体1の円周方向に多数の短絡が生じるため、このセン
ターピン3bを有する電池は、前記第三実施形態の電池
よりも、電池の積層方向での押しつぶしに対する安全性
が高いものとなる。
Therefore, when the battery of FIG. 1 having the center pin 3b is crushed in the stacking direction, the center pin 3b is also crushed and the split port 32 and the slit 33a are crushed.
Since the edges of ~ 33c and 34a to 34c open outward and the electrode plate laminate 1 is broken from the inner peripheral side, the short circuit is promoted and occurs in a wide range. In particular, as shown by the imaginary line in FIG.
When the crushing direction of the battery coincides with one of the cutouts of the center pin 3b (here, the split opening 32), the edge of the split opening 32 enters inside and the electrode plate laminate 1 does not break,
Since the edges of the other slits 33a to 33c and 34a to 34c open outward, the electrode plate laminate 1 is reliably broken regardless of the crushing direction. Further, since the center pin 3b causes a large number of short circuits in the circumferential direction of the electrode plate laminate 1 as compared with the center pin 3a of FIG. 5, the battery having the center pin 3b is the same as the third embodiment. The battery has higher safety against crushing in the stacking direction of the battery.

【0047】図10は、本発明の非水系電池に使用可能
な第四のセンターピンを示す正面図である。この図から
分かるように、このセンターピン3cは、第二のセンタ
ーピン3aの欠部31の縁面が、長さ方向両端部を除い
て三角波状に形成されたものに相当する。すなわち、こ
のセンターピン3cの欠部35は、長さ方向両端部の平
行部35aと中央部の波形部35bとで構成される。ま
た、このセンターピン3cには、電極板積層体の捲回中
心に挿入されやすくするために、長さ方向両端部に端部
に向けて径が小さくなるテーパ部36が形成されてい
る。
FIG. 10 is a front view showing a fourth center pin usable in the non-aqueous battery of the present invention. As can be seen from this figure, the center pin 3c corresponds to the one in which the edge surface of the notch 31 of the second center pin 3a is formed in a triangular wave shape except both ends in the length direction. That is, the notch 35 of the center pin 3c is composed of the parallel portions 35a at both ends in the length direction and the corrugated portion 35b at the center. Further, the center pin 3c is formed with a tapered portion 36 having a diameter that decreases toward the end at both ends in the length direction in order to facilitate insertion into the winding center of the electrode plate laminate.

【0048】従って、このセンターピン3cを有する図
1の電池が積層方向で押しつぶされた場合には、電極板
積層体の積層方向での押しつぶしに伴って、このセンタ
ーピン3cが潰れると、外側に開いた波形部35bの縁
が鋸の歯状の突起となるため、センターピン3aを有す
る電池の場合よりも、電極板積層体1が破断されやすい
とともに、破断箇所が分散されやすい。そのため、この
センターピン3cを有する電池は、センターピン3aを
有する電池よりも、電池の積層方向での押しつぶしに対
する安全性が高いものとなる。
Therefore, when the battery of FIG. 1 having the center pin 3c is crushed in the stacking direction, when the center pin 3c is crushed in accordance with the crushing of the electrode plate laminate in the stacking direction, the center pin 3c is exposed to the outside. Since the edge of the open corrugated portion 35b becomes a saw-toothed protrusion, the electrode plate laminate 1 is more likely to be broken and the fractured portions are more easily dispersed than in the case of the battery having the center pin 3a. Therefore, the battery having the center pin 3c has higher safety against crushing in the stacking direction of the batteries than the battery having the center pin 3a.

【0049】図11は、本発明の非水系電池に使用可能
な第五のセンターピンを示す正面図である。この図から
分かるように、このセンターピン3dは、円筒体の周面
に、その軸方向L0 と斜めに交差する方向L1 (実際に
は螺旋となっている)に沿って延びて、長さ方向一端か
ら他端に至る螺旋状の欠部37が形成されており、この
方向L1 に平行な長さ方向両端部の平行部37a,37
bと、中央部の縁面が三角波状に形成された波形部37
cとで構成される。また、図12に示すように、この欠
部37の螺旋は、長さ方向一端37Aから他端37Bま
での間で90°回転するように形成されている。また、
このセンターピン3dにも、電極板積層体の捲回中心に
挿入されやすくするために、長さ方向両端部に端部に向
けて径が小さくなるテーパ部36が形成されている。
FIG. 11 is a front view showing a fifth center pin usable in the non-aqueous battery of the present invention. As can be seen from this figure, the center pin 3d extends on the circumferential surface of the cylindrical body along a direction L 1 (actually a spiral) diagonally intersecting the axial direction L 0 thereof, and has a long length. A spiral cutout 37 is formed from one end to the other in the vertical direction, and parallel parts 37a, 37 at both ends in the lengthwise direction parallel to this direction L 1 are formed.
b and a corrugated portion 37 in which the edge surface of the central portion is formed in a triangular wave shape.
It is composed of c and. Further, as shown in FIG. 12, the spiral of the cutout portion 37 is formed so as to rotate 90 ° between one end 37A in the length direction and the other end 37B. Also,
Also on the center pin 3d, tapered portions 36 having a diameter decreasing toward the end are formed at both ends in the length direction in order to facilitate insertion into the winding center of the electrode plate laminate.

【0050】したがって、このセンターピン3dを有す
る図1の電池が積層方向で押しつぶされた場合には、こ
の押しつぶしに伴って、このセンターピン3dが潰れる
と、押しつぶし方向が軸に交差するいずれの方向であっ
ても必ず欠部37の縁が外側に開くため、電極板積層体
が確実に破断される。これに加えて、外側に開いた波形
部37cの縁が鋸の歯状の突起となるため、電極板積層
体がより一層破断されやすいとともに、破断箇所が分散
されやすい。そのため、このセンターピン3dを有する
電池は、センターピン3cを有する電池よりも、電池の
積層方向での押しつぶしに対する安全性が高いものとな
る。
Therefore, when the battery of FIG. 1 having the center pin 3d is crushed in the stacking direction, when the center pin 3d is crushed along with the crushing, the crushing direction intersects any axis. However, since the edge of the cutout 37 is always opened outward, the electrode plate laminate is surely broken. In addition to this, since the edges of the corrugated portion 37c opened to the outside become saw-tooth-shaped projections, the electrode plate laminate is more likely to be broken, and the broken portions are easily dispersed. Therefore, the battery having the center pin 3d has higher safety against crushing in the stacking direction of the batteries than the battery having the center pin 3c.

【0051】また、軸方向に延びる欠部を周方向に複数
個設ける場合と比較して、周面の開口面積を小さくしな
がら、軸に交差するいずれの方向での押しつぶしに対応
することができるため、厚さを薄くしても通常時におけ
るセンターピンの強度が確保されやすい。図13は、本
発明の非水系電池に使用可能な第六のセンターピンを示
す正面図である。
Further, as compared with the case where a plurality of notches extending in the axial direction are provided in the circumferential direction, it is possible to cope with crushing in any direction intersecting the axis while reducing the opening area of the circumferential surface. Therefore, the strength of the center pin under normal conditions is easily secured even if the thickness is reduced. FIG. 13 is a front view showing a sixth center pin usable in the non-aqueous battery of the present invention.

【0052】このセンターピン3eは、直径が約4mm
でピッチが0.7mmの中実のネジ軸であり、周面に螺
旋状の凹部31を有している。この凹部31の深さ
((「山径」−「谷径」)/2)は約0.5mmであ
る。したがって、このセンターピン3eを有する図1の
電池が積層方向で押しつぶされた場合には、電極板積層
体1の内周側部分が、センターピン3dの凹部に食い込
んで広範囲に破断される。そのため、このセンターピン
3eを有する電池は、前記第一および第二実施形態の電
池よりも、電池の積層方向での押しつぶしに対する安全
性が高いものとなる。
The center pin 3e has a diameter of about 4 mm.
Is a solid screw shaft having a pitch of 0.7 mm, and has a spiral concave portion 31 on the peripheral surface. The depth of the recess 31 ((“peak diameter” − “valley diameter”) / 2) is about 0.5 mm. Therefore, when the battery of FIG. 1 having the center pin 3e is crushed in the stacking direction, the inner peripheral side portion of the electrode plate stack 1 bites into the recess of the center pin 3d and is extensively broken. Therefore, the battery having the center pin 3e has higher safety against crushing in the stacking direction of the batteries than the batteries of the first and second embodiments.

【0053】図14は、本発明の非水系電池に使用可能
な第七のセンターピンを示す斜視図である。このセンタ
ーピン3fは、断面が円形の線材からなるステンレス製
のコイルバネであり、線材の直径が0.6mmで、ピッ
チが1.6mmである。そのため、無負荷時に隣合う線
材間に1.0mmの隙間がある。
FIG. 14 is a perspective view showing a seventh center pin usable in the non-aqueous battery of the present invention. The center pin 3f is a stainless steel coil spring made of a wire having a circular cross section, and the wire has a diameter of 0.6 mm and a pitch of 1.6 mm. Therefore, there is a gap of 1.0 mm between the adjacent wire rods when there is no load.

【0054】したがって、このセンターピン3fを有す
る図1の電池が積層方向で押しつぶされた場合には、コ
イルバネ3fの周面に電極板積層体1の内周側部分が押
し当たり、コイルバネ3fは、この部分が隣合う線材間
の隙間に食い込んだ状態で潰されながら軸方向に延び、
電極板積層体1内で傾く(コイルバネ3fの中心軸が捲
回中心からずれる)ため、電極板積層体1を内側から広
範囲に破断する。そのため、このセンターピン3fを有
する電池は、前記第一および第二実施形態の電池より
も、電池の積層方向での押しつぶしに対する安全性が高
いものとなる。
Therefore, when the battery of FIG. 1 having the center pin 3f is crushed in the stacking direction, the inner peripheral side portion of the electrode plate laminate 1 is pressed against the peripheral surface of the coil spring 3f, and the coil spring 3f becomes This part extends in the axial direction while being crushed in the state that it bites into the gap between the adjacent wire rods,
Since the electrode plate laminated body 1 is inclined (the central axis of the coil spring 3f is displaced from the winding center) in the electrode plate laminated body 1, the electrode plate laminated body 1 is widely broken from the inside. Therefore, the battery having the center pin 3f has higher safety against crushing in the stacking direction of the batteries than the batteries of the first and second embodiments.

【0055】なお、前記各実施形態における電極板積層
体1は、負極板12、セパレータ13、および正極板1
1からなる単位電池層4と絶縁膜14とを、前述のよう
に重ね合わせて捲回機により渦巻き状等に捲いた捲回型
であるが、本発明の電池における電極板積層体は、図1
5に示すように、単位電池層4を絶縁膜14を挟んで平
行に重ね合わせた単純積層型、図16に示すように、単
位電池層4と絶縁膜14とを重ね合わせたものを所定幅
で折り返しながら平行に配置したつづら折り型等、いず
れの構造であってもよい。
The electrode plate laminated body 1 in each of the above-described embodiments includes the negative electrode plate 12, the separator 13, and the positive electrode plate 1.
Although the unit battery layer 4 and the insulating film 14 each composed of 1 are wound as described above and wound into a spiral shape by a winding machine, the electrode plate laminate in the battery of the present invention is 1
5, the unit battery layer 4 is laminated in parallel with the insulating film 14 sandwiched therebetween, as shown in FIG. 16, and the unit battery layer 4 and the insulating film 14 are laminated in a predetermined width as shown in FIG. Any structure, such as a zigzag folding type arranged in parallel while being folded back, may be used.

【0056】また、前記各実施形態においては、リチウ
ムイオン二次電池について説明したが、これ以外の非水
系二次電池または非水系一次電池についても、活物質の
抵抗値が比較的高いものの場合には、前記と同様の作用
によって、電池の安全性を確保することができる。
Further, in each of the above-mentioned embodiments, the lithium ion secondary battery has been described, but other non-aqueous secondary batteries or non-aqueous primary batteries are also used when the resistance value of the active material is relatively high. Can ensure the safety of the battery by the same operation as described above.

【0057】[0057]

【発明の効果】以上説明したように、本発明の非水系電
池によれば、過充電状態において、外部からの異常加
熱、電池の積層方向の押しつぶし、または釘刺し等によ
って、正極活物質と負極との短絡が生じても、内部での
急激な温度上昇が抑えられるため、電池の安全性が確保
される。
As described above, according to the non-aqueous battery of the present invention, in the overcharged state, the positive electrode active material and the negative electrode are activated by abnormal heating from the outside, crushing in the stacking direction of the battery, nail piercing, or the like. Even if a short circuit occurs with, the rapid temperature rise inside is suppressed, so the safety of the battery is ensured.

【0058】特に、請求項2の非水系電池は、釘刺し事
故で、釘等の先端が少しだけ刺し入れられたような場合
の安全性が高い。特に、請求項3の非水系電池は、絶縁
膜の膜厚を極端に薄くしても必要な強度を保持できるた
め、膜厚の薄い絶縁膜を使用することが可能になり、そ
の結果、電池の安全性を確保しながら電気容量を大きく
することができる。
In particular, the non-aqueous battery according to the second aspect has high safety in the case where the tip of a nail or the like is slightly pierced in a nail puncture accident. Particularly, in the non-aqueous battery according to claim 3, the required strength can be maintained even if the thickness of the insulating film is extremely thin, so that it becomes possible to use an insulating film having a small film thickness. The electric capacity can be increased while ensuring the safety of.

【0059】特に、請求項4の非水系電池は、同じ大き
さの電池缶用の電極板積層体として積層できる単位電池
層の長さを長くすることが可能になるため、これにより
電池の安全性を確保しながら電気容量を大きくすること
ができる。特に、請求項5の非水系電池は、電池が外部
から異常加熱された場合の安全性が高い。
In particular, in the non-aqueous battery according to claim 4, the length of the unit battery layer that can be stacked as an electrode plate laminate for battery cans of the same size can be increased. It is possible to increase the electric capacity while ensuring the property. Particularly, the non-aqueous battery according to claim 5 has high safety when the battery is abnormally heated from the outside.

【0060】特に、請求項6の非水系電池は、正極板お
よび負極板が容易に製造されるため、コストが低減され
る。特に、請求項10〜15の非水系電池は、センター
ピンの形状の工夫によって、電池の積層方向の押しつぶ
しに対する安全性が高いものとなる。
Particularly, in the non-aqueous battery according to the sixth aspect, the positive electrode plate and the negative electrode plate are easily manufactured, so that the cost is reduced. In particular, the non-aqueous battery according to claims 10 to 15 has a high safety against crushing in the stacking direction of the batteries by devising the shape of the center pin.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施形態に相当する非水系電池を
示す横断面図である。
FIG. 1 is a cross-sectional view showing a non-aqueous battery corresponding to a first embodiment of the present invention.

【図2】図1の電池の押しつぶしに対する作用について
説明するための概略横断面図である。
FIG. 2 is a schematic cross-sectional view for explaining the action of the battery of FIG. 1 against crushing.

【図3】図1の電池の導電体の刺し入れに対する作用に
ついて説明するための概略横断面図である。
3 is a schematic cross-sectional view for explaining the action of the conductor of the battery of FIG. 1 with respect to puncturing.

【図4】本発明の第二実施形態に相当する非水系電池を
示す横断面図である。
FIG. 4 is a cross-sectional view showing a non-aqueous battery corresponding to a second embodiment of the present invention.

【図5】本発明の第三実施形態に相当する非水系電池を
示す横断面図である。
FIG. 5 is a cross-sectional view showing a non-aqueous battery corresponding to a third embodiment of the present invention.

【図6】第二のセンターピンの作用を説明するための図
である。
FIG. 6 is a view for explaining the action of the second center pin.

【図7】本発明の非水系電池に使用可能な第三のセンタ
ーピンを示す正面図である。
FIG. 7 is a front view showing a third center pin usable in the non-aqueous battery of the present invention.

【図8】図7のA−A線断面である。8 is a cross section taken along the line AA of FIG.

【図9】第三のセンターピンの作用を説明するための図
である。
FIG. 9 is a view for explaining the action of the third center pin.

【図10】本発明の非水系電池に使用可能な第四のセン
ターピンを示す正面図である。
FIG. 10 is a front view showing a fourth center pin usable in the non-aqueous battery of the present invention.

【図11】本発明の非水系電池に使用可能な第五のセン
ターピンを示す正面図である。
FIG. 11 is a front view showing a fifth center pin usable in the non-aqueous battery of the present invention.

【図12】図11のセンターピンの欠部を説明するため
の図である。
FIG. 12 is a diagram for explaining a cutout portion of the center pin of FIG. 11.

【図13】本発明の非水系電池に使用可能な第六のセン
ターピンを示す正面図である。
FIG. 13 is a front view showing a sixth center pin usable in the non-aqueous battery of the present invention.

【図14】本発明の非水系電池に使用可能な第七のセン
ターピンを示す正面図である。
FIG. 14 is a front view showing a seventh center pin usable in the non-aqueous battery of the present invention.

【図15】本発明の非水系電池において電極板積層体が
単純積層型である実施形態を示す横断面図である。
FIG. 15 is a cross-sectional view showing an embodiment in which the electrode plate laminate is a simple laminate type in the non-aqueous battery of the present invention.

【図16】本発明の非水系電池において電極板積層体が
つづら折り型である実施形態を示す横断面図である。
FIG. 16 is a cross-sectional view showing an embodiment in which the electrode plate laminate is a zigzag type in the non-aqueous battery of the present invention.

【符号の説明】[Explanation of symbols]

1 電極板積層体 2 電池缶 3 センターピン 3a〜3f センターピン 4 単位電池層 5 導電体 11 正極板 11a 正極側の集電体箔 11b 正極活物質 12 負極板 12a 負極側の集電体箔 12b 負極活物質 13 セパレータ 14 絶縁膜 15 正極側のタブ 16 負極側のタブ 31 欠部 32 割口(欠部) 33a〜33c スリット(欠部) 34a〜34c スリット(欠部) 35 欠部 35a 平行部(欠部) 35b 波形部(欠部) 36 テーパ部 37 欠部 37a 平行部(欠部) 37b 平行部(欠部) 37c 波形部(欠部) 38 凹部 DESCRIPTION OF SYMBOLS 1 Electrode plate laminated body 2 Battery can 3 Center pin 3a-3f Center pin 4 Unit battery layer 5 Conductor 11 Positive electrode plate 11a Positive electrode side current collector foil 11b Positive electrode active material 12 Negative electrode plate 12a Negative electrode side current collector foil 12b Negative electrode active material 13 Separator 14 Insulating film 15 Positive electrode side tab 16 Negative electrode side tab 31 Missing part 32 Split opening (missing part) 33a to 33c Slit (missing part) 34a to 34c Slit (missing part) 35 Missing part 35a Parallel part (Notch) 35b Corrugated part (notch) 36 Tapered part 37 Notch 37a Parallel part (notch) 37b Parallel part (notch) 37c Waveform part (notch) 38 Recess

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 集電体箔の片面のみに正極活物質を有す
る正極板と、集電体箔の片面のみに負極活物質を有する
負極板と、セパレータと、絶縁膜と、からなる電極板積
層体を電池缶内に有し、前記電極板積層体は、正極板の
正極活物質を有する面と負極板の負極活物質を有する面
とがセパレータを介して対向配置された単位電池層同士
が、絶縁膜を介して積層されているものである非水系電
池。
1. An electrode plate including a positive electrode plate having a positive electrode active material on only one surface of a current collector foil, a negative electrode plate having a negative electrode active material on only one surface of a current collector foil, a separator, and an insulating film. Having a laminate in a battery can, the electrode plate laminate is a unit battery layer in which the surface of the positive electrode plate having the positive electrode active material and the surface of the negative electrode plate having the negative electrode active material face each other with a separator interposed therebetween. Is a non-aqueous battery that is laminated through an insulating film.
【請求項2】 正極板の活物質を有しない面が、負極と
なる電池缶と絶縁膜を介して対向している請求項1記載
の非水系電池。
2. The non-aqueous battery according to claim 1, wherein a surface of the positive electrode plate having no active material faces a battery can which serves as a negative electrode via an insulating film.
【請求項3】 絶縁膜は電子伝導機能もイオン伝導機能
も有しないものである請求項1又は2記載の非水系電
池。
3. The non-aqueous battery according to claim 1, wherein the insulating film has neither electron conduction function nor ion conduction function.
【請求項4】 絶縁膜の膜厚はセパレータの膜厚より薄
い請求項1〜3のいずれか一つに記載の非水系電池。
4. The non-aqueous battery according to claim 1, wherein the insulating film is thinner than the separator.
【請求項5】 絶縁膜の融点はセパレータの融点より低
い請求項1〜4のいずれか一つに記載の非水系電池。
5. The non-aqueous battery according to claim 1, wherein a melting point of the insulating film is lower than a melting point of the separator.
【請求項6】 正極板は集電体箔の片面全体に正極活物
質を有し、負極板は集電体箔の片面全体に負極活物質を
有することを特徴とする請求項1〜5のいずれか一つに
記載の非水系電池。
6. The positive electrode plate has a positive electrode active material on one side of the current collector foil, and the negative electrode plate has a negative electrode active material on one side of the current collector foil. The non-aqueous battery according to any one of the above.
【請求項7】 電極板積層体は、単位電池層同士が絶縁
膜を介して捲回により積層されたものである請求項1〜
6のいずれか一つに記載の非水系電池。
7. The electrode plate laminate is one in which unit battery layers are laminated by winding with an insulating film interposed therebetween.
6. The non-aqueous battery according to any one of 6.
【請求項8】 電池構成を二次電池とした請求項7記載
の非水系電池。
8. The non-aqueous battery according to claim 7, wherein the battery structure is a secondary battery.
【請求項9】 電極板積層体の捲回中心にセンターピン
を有する請求項7又は8記載の非水系電池。
9. The non-aqueous battery according to claim 7, which has a center pin at the winding center of the electrode plate laminate.
【請求項10】 センターピンは周面に欠部を有する筒
体である請求項9記載の非水系電池。
10. The non-aqueous battery according to claim 9, wherein the center pin is a cylindrical body having a cutout portion on its peripheral surface.
【請求項11】 センターピンの欠部は、筒体の軸方向
と平行に延びるように形成してあり、且つ筒体の周方向
に少なくとも2個設けてある請求項10記載の非水系電
池。
11. The non-aqueous battery according to claim 10, wherein the notch portion of the center pin is formed so as to extend parallel to the axial direction of the tubular body, and at least two notch portions are provided in the circumferential direction of the tubular body.
【請求項12】 センターピンの欠部は、筒体の軸方向
と交差する方向に延びるように形成してある請求項10
記載の非水系電池。
12. The center pin notch is formed so as to extend in a direction intersecting with the axial direction of the cylindrical body.
The non-aqueous battery described.
【請求項13】 センターピンの欠部の縁面は波状に形
成してある請求項10〜12のいずれか一つに記載の非
水系電池。
13. The non-aqueous battery according to claim 10, wherein the edge surface of the cutout portion of the center pin is formed in a wavy shape.
【請求項14】 センターピンは、棒材の周面に、その
周方向に連続する凹部を形成したものである請求項9記
載の非水系電池。
14. The non-aqueous battery according to claim 9, wherein the center pin is formed by forming a recess that is continuous in the circumferential direction on the peripheral surface of the rod material.
【請求項15】 センターピンはコイルバネである請求
項9記載の非水系電池。
15. The non-aqueous battery according to claim 9, wherein the center pin is a coil spring.
JP01325596A 1995-01-27 1996-01-29 Non-aqueous battery Expired - Fee Related JP3178586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01325596A JP3178586B2 (en) 1995-01-27 1996-01-29 Non-aqueous battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-11292 1995-01-27
JP1129295 1995-01-27
JP01325596A JP3178586B2 (en) 1995-01-27 1996-01-29 Non-aqueous battery

Publications (2)

Publication Number Publication Date
JPH08264206A true JPH08264206A (en) 1996-10-11
JP3178586B2 JP3178586B2 (en) 2001-06-18

Family

ID=26346700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01325596A Expired - Fee Related JP3178586B2 (en) 1995-01-27 1996-01-29 Non-aqueous battery

Country Status (1)

Country Link
JP (1) JP3178586B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189050A (en) * 1996-12-26 1998-07-21 Japan Storage Battery Co Ltd Lithium ion battery
US6054233A (en) * 1998-05-08 2000-04-25 Eveready Battery Company, Inc. Destruction controlling mechanism for an electrochemical cell
JP2002231312A (en) * 2001-01-29 2002-08-16 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2006128104A (en) * 2004-10-28 2006-05-18 Samsung Sdi Co Ltd Cylindrical lithium ion battery and its manufacturing method
JP2006128120A (en) * 2004-10-28 2006-05-18 Samsung Sdi Co Ltd Lithium secondary battery
WO2006080687A1 (en) * 2004-10-08 2006-08-03 Lg Chem, Ltd. Secondary battery having an improved safety
WO2008050981A1 (en) * 2006-10-23 2008-05-02 Lg Chem, Ltd. Electrochemical device ensuring a good safety
JP2008277207A (en) * 2007-05-07 2008-11-13 Sony Corp Wound nonaqueous electrolyte secondary battery
US7655349B2 (en) 2005-04-27 2010-02-02 Samsung Sdi Co., Ltd. Cylindrical lithium secondary battery
US7794873B2 (en) 2005-04-26 2010-09-14 Panasonic Corporation Battery including strip-shaped electrode group folded in a zigzag pattern
US7972717B2 (en) 2006-01-13 2011-07-05 Sony Corporation Battery
JP2012204227A (en) * 2011-03-28 2012-10-22 Panasonic Corp Lithium primary battery
US8974937B2 (en) 2006-10-23 2015-03-10 Lg Chem, Ltd. Center pin for electrochemical device
US9871238B2 (en) 2013-09-20 2018-01-16 Nec Energy Devices, Ltd. Secondary battery
CN113328133A (en) * 2021-05-31 2021-08-31 珠海冠宇电池股份有限公司 Battery with a battery cell

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4539658B2 (en) 2007-01-23 2010-09-08 ソニー株式会社 battery
US9548482B2 (en) * 2014-01-10 2017-01-17 Lg Chem, Ltd. Electrode assembly having safety separator and secondary battery including the same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189050A (en) * 1996-12-26 1998-07-21 Japan Storage Battery Co Ltd Lithium ion battery
US6054233A (en) * 1998-05-08 2000-04-25 Eveready Battery Company, Inc. Destruction controlling mechanism for an electrochemical cell
JP2002231312A (en) * 2001-01-29 2002-08-16 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
WO2006080687A1 (en) * 2004-10-08 2006-08-03 Lg Chem, Ltd. Secondary battery having an improved safety
US7785734B2 (en) 2004-10-08 2010-08-31 Lg Chem, Ltd. Secondary battery having an improved safety
JP2006128104A (en) * 2004-10-28 2006-05-18 Samsung Sdi Co Ltd Cylindrical lithium ion battery and its manufacturing method
JP2006128120A (en) * 2004-10-28 2006-05-18 Samsung Sdi Co Ltd Lithium secondary battery
JP4701071B2 (en) * 2004-10-28 2011-06-15 三星エスディアイ株式会社 Lithium secondary battery
JP4515371B2 (en) * 2004-10-28 2010-07-28 三星エスディアイ株式会社 Cylindrical lithium ion battery and manufacturing method thereof
US7794873B2 (en) 2005-04-26 2010-09-14 Panasonic Corporation Battery including strip-shaped electrode group folded in a zigzag pattern
US7655349B2 (en) 2005-04-27 2010-02-02 Samsung Sdi Co., Ltd. Cylindrical lithium secondary battery
US7972717B2 (en) 2006-01-13 2011-07-05 Sony Corporation Battery
WO2008050981A1 (en) * 2006-10-23 2008-05-02 Lg Chem, Ltd. Electrochemical device ensuring a good safety
US8974937B2 (en) 2006-10-23 2015-03-10 Lg Chem, Ltd. Center pin for electrochemical device
JP2010507898A (en) * 2006-10-23 2010-03-11 エルジー・ケム・リミテッド Electrochemical element with excellent safety
US8039135B2 (en) 2006-10-23 2011-10-18 Lg Chem, Ltd. Electrochemical cell exhibiting enhanced safety features
JP2008277207A (en) * 2007-05-07 2008-11-13 Sony Corp Wound nonaqueous electrolyte secondary battery
US8137832B2 (en) 2007-05-07 2012-03-20 Sony Corporation Spirally wound non-aqueous electrolyte secondary battery having insulating members
JP4586820B2 (en) * 2007-05-07 2010-11-24 ソニー株式会社 Winding type non-aqueous electrolyte secondary battery
KR20150028790A (en) * 2007-05-07 2015-03-16 소니 주식회사 Spirally wound non-aqueous electrolyte secondary battery
KR101532779B1 (en) * 2007-05-07 2015-06-30 소니 주식회사 Spirally wound non-aqueous electrolyte secondary battery
US10116006B2 (en) 2007-05-07 2018-10-30 Murata Manufacturing Co., Ltd. Spirally would non-aqueous electrolyte secondary battery having insulating members
JP2012204227A (en) * 2011-03-28 2012-10-22 Panasonic Corp Lithium primary battery
US9871238B2 (en) 2013-09-20 2018-01-16 Nec Energy Devices, Ltd. Secondary battery
CN113328133A (en) * 2021-05-31 2021-08-31 珠海冠宇电池股份有限公司 Battery with a battery cell
CN113328133B (en) * 2021-05-31 2023-05-26 珠海冠宇电池股份有限公司 Battery cell

Also Published As

Publication number Publication date
JP3178586B2 (en) 2001-06-18

Similar Documents

Publication Publication Date Title
EP0872909B1 (en) Nonaqueous battery
JP3200340B2 (en) Non-aqueous battery
JP3178586B2 (en) Non-aqueous battery
JP3807528B2 (en) Cylindrical secondary battery
JP4495994B2 (en) Nonaqueous electrolyte secondary battery
US7981541B2 (en) Nonaqueous electrolyte secondary battery
JP4404300B2 (en) Sealed prismatic battery
US5989743A (en) Non-aqueous battery
US11121439B2 (en) Secondary battery
JPH11345630A (en) Lithium secondary battery
JP2002208442A (en) Electrochemical device
US6348282B1 (en) Non-Aqueous electrolyte secondary batteries
US6727021B1 (en) Lithium ion secondary battery
JPH08255631A (en) Winding type battery
WO1996010273A1 (en) Non-aqueous type cell
JP3613407B2 (en) Winding battery
JPH0574443A (en) Nonaqueous electrolytic battery
KR19990072664A (en) Nonaqueous Electrolyte Battery
US7166387B2 (en) Thin battery with an electrode having a higher strength base portion than a tip portion
JP2009252611A (en) Sealed battery
JP2017091677A (en) Nonaqueous electrolyte battery
JP7320165B2 (en) secondary battery
KR20180036858A (en) Electrode Assembly and Secondary Battery Using the Same, and Method for Manufacturing the Electrode
JP2012074230A (en) Collector and electrode for battery, and battery
JP2006185710A (en) Secondary battery and battery pack

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010321

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080413

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees