JPH08264184A - Electrode substance preparation for lithium secondary battery - Google Patents

Electrode substance preparation for lithium secondary battery

Info

Publication number
JPH08264184A
JPH08264184A JP7315695A JP31569595A JPH08264184A JP H08264184 A JPH08264184 A JP H08264184A JP 7315695 A JP7315695 A JP 7315695A JP 31569595 A JP31569595 A JP 31569595A JP H08264184 A JPH08264184 A JP H08264184A
Authority
JP
Japan
Prior art keywords
compound
secondary battery
lithium secondary
producing
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7315695A
Other languages
Japanese (ja)
Inventor
Son Gu Kan
ソン グ カン
Sun Ho Chan
スン ホ チャン
Gi Ho Chan
ギ ホ チャン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electronics and Telecommunications Research Institute ETRI
Original Assignee
Electronics and Telecommunications Research Institute ETRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electronics and Telecommunications Research Institute ETRI filed Critical Electronics and Telecommunications Research Institute ETRI
Publication of JPH08264184A publication Critical patent/JPH08264184A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing process of both electrode materials of a lithium secondary battery which can improve a characteristic of charge and discharge. SOLUTION: After 1/2 Li2 CO3 , yCo(NO3 )2 .6H2 O, (1-y) Ni (NO3 )2 .6H2 O, C6 H8 O7 are dissolved in distilled water and brought into solution, NH4 OH is added to this solution, adjusted to pH = 3 to 4, and a citricsol is made, then a citratesol is heat-treated. Thus, things about manufacturing method of electrode materials for a lithium secondary battery and electrode materials of LiCo O2 and LiCoyNi1-y O2 (0<y<1) are formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム(Li)二
次(secondary)電池用両電極物質に関し、特に充放電
電極が高いリチウム二次電池の両極物質製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode material for a lithium (Li) secondary battery, and more particularly to a method for producing an electrode material for a lithium secondary battery having a high charge / discharge electrode.

【0002】[0002]

【従来の技術】リチウム二次電池の両電極物質である。
LiCoO2,LiNiO2とLiCoyNi1-yO2化合物は岩塩超格子(ro
ck-salt superlattice)構造の一つのα−NaFeO2構造を
有する。
2. Description of the Related Art It is a material for both electrodes of a lithium secondary battery.
LiCoO 2 , LiNiO 2 and LiCo y Ni 1-y O 2 compounds are
ck-salt superlattice) one α-NaFeO 2 structure.

【0003】これら化合物の理想的な構造は立方・稠密
・パッキング(cubic close packing)をしている酸素
の八面体の位置(octahedral site)にLiイオンとCo
(またはNiイオンが位置し、これらMO2層(M-Co(また
はNi)とLi層が繰り返される層状構造を有する。
The ideal structures of these compounds are Li ions and Co at the octahedral sites of oxygen which are cubic, dense and packed (cubic close packing).
(Or Ni ion is located, and it has a layered structure in which these M O 2 layers (M-Co (or Ni) and Li layers are repeated.

【0004】高温固相法によって電池用電極物質でLiCo
O2とLiCoyNi1-yO2を製造する方法は次のようになる。
LiCo as a battery electrode material by the high temperature solid-state method
Method for producing O2 and LiC o yN i1- y O 2 is as follows.

【0005】先ず、1) Li2CO3はLi2CO3とCo3O4やCoCO3
を定量的に混合して酸素雰囲気で、900℃の温度を加
え、20時間の間熱処理して製造する。
First, 1) L i 2C O 3 is L i 2C O 3 and Co 3 O 4 or CoC O 3
Is quantitatively mixed, a temperature of 900 ° C. is added in an oxygen atmosphere, and heat treatment is performed for 20 hours to manufacture.

【0006】そして、2) LiCoyNi1-yO2は、Li2CO3,Ni
OとCo3O4をモル比に混合して酸素雰囲気で熱処理して製
造する。
2) LiC o yN i1- y O 2 is L i 2C O 3, Ni
It is manufactured by mixing O and Co 3 O 4 in a molar ratio and heat-treating in an oxygen atmosphere.

【0007】この時、熱処理は500℃で10時間、600℃
で10時間そして800℃で48時間の間熱処理した後1
℃/minの速度で温度を減少させて、結果物のなかでコ
バルト(Co)の量が多い場合900℃でもう一度熱処理す
る。
At this time, the heat treatment is performed at 500 ° C. for 10 hours and 600 ° C.
After heat treatment for 10 hours at 800 ° C and 48 hours at 800 ° C
The temperature is reduced at a rate of ℃ / min, and if the amount of cobalt (Co) in the resulting product is large, heat treatment is performed again at 900 ℃.

【0008】LiNiO2は合成条件によって(Li1-zNi2 +z)
(Ni3+Ni2 +z)O2 (0<z≦0.2)の不定比化合物(non
stoichiometric compound)を形成させるので、これはL
i+イオンが化合物に含んでいるので、Liが挟まれる(in
tercalation)の為の場所が小さくなってLi拡散が難し
い。
LiNi O 2 is (L i1- zN i2 + z) depending on the synthesis conditions.
(N i3 + N i2 + z) O 2 (0 <z ≦ 0.2) Nonstoichiometric compound (non
This is L because it forms a stoichiometric compound).
Since i + ions are included in the compound, Li is sandwiched (in
The space for tercalation) becomes smaller, and Li diffusion is difficult.

【0009】したがって、このような構造の無秩序(di
sorder)は作動電圧、充放電容量等の電極特性にのぞま
しくない影響を及ぼす。
Therefore, the disorder (di
(sorder) has an undesired effect on electrode characteristics such as operating voltage and charge / discharge capacity.

【0010】それから、Liの添加量が0.5以下に減少さ
れれば構造の再配列が行なって非可逆的電気化学反応を
誘発させる。
Then, if the amount of addition of Li is reduced to 0.5 or less, rearrangement of the structure is performed to induce an irreversible electrochemical reaction.

【0011】反面LiCoO2はLiイオンとCoイオンが完璧な
秩序化(ordering)配列をしているため、LiNiO2でのよ
うにCoO2層の間にCoイオンが置換されて三次元的構造を
成す心配がないし、LiNiO2に比べて可逆性(reversibil
ity)もよい。しかし、LiNiCO2より電池電圧(cell vol
tage)が高いから応用的な側面からみれば、大部分の電
解質から電気化学的範囲(electrochemical window)を
越える問題点があるし、価格もCoがNiに比べて高い。
[0011] In contrast LiCo O 2 is Li ions and Co ions are perfect ordering because of the a (ordering) sequence, is substituted Co ions between Co O 2 layer as in LiNi O 2 dimensional it is no fear that forming a structure, reversibility in comparison with LiNi O 2 (reversibil
ity) is also good. However, the battery voltage from LiNiC O 2 (cell vol
From a practical point of view, there is a problem that most electrolytes exceed the electrochemical window, and the cost is higher than Co as compared with Ni.

【0012】従来の技術によって金属酸化物を製造する
方法として液状法は共沈法とゾル−ゲル(Sol-Ger)法
がある。
The liquid method includes a coprecipitation method and a sol-gel method as a conventional method for producing a metal oxide.

【0013】共沈法の場合、合成しようとする化合物が
共沈されるpH領域があるだけで可能であるが、ゾル−ゲ
ル法は出発物質が全て溶解される溶媒とこれをゲル化さ
せてくれることができる添加剤(たとえばcitric acid
のような有機酸)だけあれば可能であり微細な粉末を得
ることができることから超微細粉末材料の合成によく利
用されてある。
In the case of the coprecipitation method, it is possible only if there is a pH range in which the compound to be synthesized is coprecipitated. However, the sol-gel method is a solvent in which all the starting materials are dissolved and is gelled. Additives that can give (eg citric acid
It is possible to obtain a fine powder, and it is often used for the synthesis of ultrafine powder materials.

【0014】このようなゾル−ゲル法を利用してリチウ
ム二次電池の両極活性物質のLiCo2とLiC
i1−2化合物を合成すれば既存の高温固相法に
よって合成したものにより二次限的な構造がよく発達
し、粒子の大きさも小さい化合物を合成することができ
るので電極の特性が改善になる。
[0014] Such a sol - using the gel method of bipolar active material for lithium secondary battery LiCo O 2 and LiC o y
N i1 y O 2 compounds well developed secondary limit structure is by one synthesized by the existing high temperature solid phase method By synthesizing, the characteristics of the electrodes it is possible to synthesize the magnitude is small compound particles It will be improved.

【0015】公知されたゾル−ゲル法によって前記化合
物を製造する方法はつぎのようになる。
The method for producing the compound by the known sol-gel method is as follows.

【0016】Co(NO3)2,LiOHとクエン酸(琥珀酸(succin
ic acid),蓚酸(oxalic acid),リンゴ酸(malic acid),酒
石酸(tartaric acid))を同じモル比(mol rate)で混
ぜて、これにNH4OHでpHを4〜8で調整した溶液をつく
る。
Co (N O 3 ) 2, LiOH and citric acid (succin
ics acid), oxalic acid (oxalic acid), malic acid (malic acid), mixed with tartaric acid (tartaric acid)) the same molar ratio (mol rate), adjusted with 4-8 pH with N H 4OH to a solution To make.

【0017】この溶液を真空、60〜150℃程度の温度で
乾燥し、粉末をつくり400℃で有機物を除去する。
This solution is dried in vacuum at a temperature of about 60 to 150 ° C. to form a powder, and organic substances are removed at 400 ° C.

【0018】そのつぎ、粉末を400kg/cm2の圧力でサ
ンプルを作り、約650℃から6時間ぐらい熱処理した後9
00℃から20時間焼結してLiCoO2を製造する。このよう
に製造した化合物の中、琥珀酸(succinic acid)を利
用して製造した化合物が最もいい、電極特性を持つこと
と知られてあった。
Then, the powder was sampled at a pressure of 400 kg / cm 2 and heat-treated at about 650 ° C. for about 6 hours, then 9
00 ° C. 20 h sintered to from producing LiCo O 2. It was known that the compound prepared by using succinic acid was the best among the compounds thus prepared, and had the electrode property.

【0019】[0019]

【発明が解決しようとする課題】しかし、上述した従来
の技術によって製造されるリチウム二次電池用両極物質
は電池の容量を長時間維持するのに限界があるし、高い
電流密度で不安定して電池の充放電特性がわるい。
However, the bipolar material for a lithium secondary battery manufactured by the above-mentioned conventional technique has a limit in maintaining the capacity of the battery for a long time and is unstable at a high current density. The battery has poor charge / discharge characteristics.

【0020】上述した従来の技術の問題点を解決するた
めの、本発明の目的は充放電の特性を改善させることが
できるリチウム二次電池の両極物質の製造方法を提供す
ることにある。
An object of the present invention, in order to solve the above-mentioned problems of the prior art, is to provide a method for producing a bipolar material for a lithium secondary battery, which can improve charge / discharge characteristics.

【0021】[0021]

【課題を解決するための手段】前記目的を達成するため
の本発明は1/2Li2COyyCO(NO3)2・6H2O,(1-y)Ni(NO3)2・6
H2O,C6H8O7を蒸留水に溶解して溶液状態につくった後、
この溶液にNH4OHを添加してpH=3〜4で調節してcitric s
olをつくる段階と、前記citrate solを熱処理する段階
を含むことを特徴とする。
The present invention SUMMARY OF THE INVENTION To achieve the above object 1 / 2L i 2C O yyCO ( N O 3) 2 · 6 H 2O, (1-y) Ni (N O 3) 2 · 6
After dissolving H 2 O and C 6 H 8 O 7 in distilled water to make a solution,
Add NH 4 OH to this solution and adjust to pH = 3-4 to adjust citric s
It is characterized by including a step of producing ol and a step of heat-treating the citrate sol.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態で図面
を参照して詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will now be described in detail with reference to the drawings.

【0023】本発明では、従来の技術で有機酸を利用し
た方法の中で最もよい電極の特性を有する琥珀酸(succ
inic acid)を利用した方法の代わりに琥珀酸よりかさ
が大きいクエン酸を利用してリチウム二次電池の両電極
物質としてLiCoO2とLiCoyNi1-yO2化合物を製造する方法
を提案する。
In the present invention, succinic acid (succ) having the best electrode characteristics among the conventional methods using an organic acid is used.
proposed a method of manufacturing the LiCo O 2 and LiC o yN i1- y O 2 compounds by using citric acid umbrella is larger than succinic acid as both an electrode material of a lithium secondary battery instead of INIC acid) method using To do.

【0024】図1はクエン酸を利用して両極物質を製造
する方法を示すフローチャートで、それを参照して本発
明の実施の形態を説明すれば次のようになる。
FIG. 1 is a flow chart showing a method for producing a bipolar material using citric acid, and an embodiment of the present invention will be described with reference to the flow chart as follows.

【0025】先ず、1/2Li2CO3,yCo(NO3)2・6H2O,(1-y)
Ni(NO3)2・6H2O,C6H8O7を蒸留水を注いで溶液をつくった
後、その溶液を適切なNH4OHを利用してpH=3〜4ニ調節し
てクエン酸ゾル(citric sol)を作る段階(s1)と熱処
理段階として前記クエン酸ゾルを真空条件(10〜20mmH
g)の中で80〜95℃の温度で18〜20時間加熱してク
エン酸ゾルに含まれている溶媒を蒸発させてゲル化を経
て固体状の有機金属着物を形成する第1熱処理段階(s
2)と、その有機金属着物を300〜350℃で3〜4時間加
熱して有機物を分解させてLiCoO2とLiCoyNi1-yO2(0<
y<1)化合物の先駆物質(precursor)を得る第2熱
処理段階(s3)と、その、先駆物質(precursor)を600
〜650℃で6時間カ焼(calcitation)する第3熱処理段
階(s4)と、前記化合物を800〜850℃で、20時間の間
アニール処理してリチウム二次電池用の電極物質として
利用されるLiCoO2とLiCoyNi1-yO2化合物を得る第4熱処
理段階(s5)を経て製造される。
[0025] First, 1 / 2L i 2C O 3 , yCo (N O 3) 2 · 6 H 2O, (1-y)
Ni (N O 3) 2 · 6 H 2O, after forming a solution by pouring distilled water C 6 H 8 O 7, the solution pH = 3 to 4 and two adjusted by using the appropriate N H 4OH A citric acid sol (s1) and a heat treatment step using the citric acid sol under vacuum conditions (10 to 20 mmH
The first heat treatment step of forming a solid organometallic deposit through gelation by evaporating the solvent contained in the citric acid sol by heating at 80-95 ° C. for 18-20 hours in (g). s
And 2), the organometallic clothes was heated for 3-4 hours at 300 to 350 ° C. by decomposing organic substance LiCo O 2 and LiC o yN i1- y O 2 ( 0 <
y <1) The second heat treatment step (s3) to obtain the precursor of the compound, and the precursor (precursor) of 600
A third heat treatment step (s4) of calcitation at ~ 650 ° C for 6 hours and annealing of the compound at 800 ~ 850 ° C for 20 hours to be used as an electrode material for a lithium secondary battery. It is manufactured fourth through heat treatment stage (s5) to obtain LiCo O 2 and LiC o yN i1- y O 2 compounds.

【0026】前記のような製造工程によって製造された
LiCoO2はLi2CO3,Co(NO3)2・6H2O,C6H8O7はそれぞれ1:
1:2のモル比を持ち、LiCoyNi1-yO2はLi2CO3,Co(NO3
)2・6H2O,Ni(NO3)2・6H2O,C6H8O7を1:y:(1−y):
3のモル比を持つ。
Manufactured by the above manufacturing process
LiCo O 2 is L i 2C O 3, Co ( N O 3) 2 · 6 H 2O, C 6 H 8 O 7 , respectively 1:
1: has a 2 molar ratio, LiC o yN i1- y O 2 is L i 2C O 3, Co ( N O 3
) 2.6 H 2 O , Ni (N O 3 ) 2.6 H 2 O , C 6 H 8 O 7 1: y: (1-y):
It has a molar ratio of 3.

【0027】その時、前記製造工程でLiCoO2化合物の製
造時には、先ず、1/2Li2Co3,yCo(NO3)2・6H2O,(1-y)Ni(N
O3)2・6H2O,C6H8O7の出発物質で各化合物の造成比を決定
するyが(0<y<1)の範囲を持つことにする。
[0027] At that time, during the production of LiCo O 2 compound in Preparation process, first, 1 / 2L i 2C o 3 , yCo (N O 3) 2 · 6 H 2O, (1-y) Ni (N
O 3) 2 · 6 H 2O , y to determine the reclamation ratio of each compound in the starting material of C 6 H 8 O 7 is to have a range of (0 <y <1).

【0028】図2及び図3は、高温固相法によって製造
したLiCoyNi1-yO2(y=0.3)化合物のX−線回析分析パタ
ーンと本発明のゾル−ゲル法によってクエン酸を利用し
て製造したLiCoyNi1-yO2(y=0.3)化合物のX−線回析分
析パターンを示した。
[0028] Figures 2 and 3, sol LiC o yN i1- y O 2 ( y = 0 3.) The compounds of X- ray diffraction analysis pattern and the present invention produced by the hot solid phase method - gel process LiC were prepared using citric acid o yN i1- y O 2 (y = 0. 3) showed X- ray diffraction analysis patterns of the compound.

【0029】クエン酸を利用して合成したLiCoyN1-yO2
(y=0.3)化合物のX−線回析分析結果を表1に示す。
LiC o Y N1- y O 2 synthesized using citric acid
Table 1 shows the X-ray diffraction analysis results of the (y = 0.3) compound.

【0030】[0030]

【表1】 [Table 1]

【0031】図2と図3によると、全部六方晶系(hexa
gonal symmetry)の結晶構造を有して、図3に示すよう
に、クエン酸(citric acid)を使用して製造した電極
物質用化合物は(006)ピークと(012)ピークが分離さ
れているが、図2に示すように、高温固相法に製造した
化合物はこれらの二ピークが分離されていないことを知
ることができるし、(018),(110)2ピークの分離も
明確ではない。
According to FIGS. 2 and 3, all hexagonal systems
As shown in FIG. 3, the compound for an electrode material having a crystal structure of gonal symmetry and produced using citric acid has a (006) peak and a (012) peak separated from each other. As shown in FIG. 2, it can be seen that the compound produced by the high temperature solid phase method does not separate these two peaks, and the separation of the (018) and (110) 2 peaks is not clear.

【0032】従って、クエン酸を利用して製造したLiCo
yNi1-yO2(y=0.3)化合物が、高温固相法に製造したLiCoy
Ni1-yO2(y=0.3)化合物より結晶性がいいことがわかる。
[0032] Thus, LiC o produced using citric acid
yN i1- y O 2 (y = 0. 3) compound, LiC o y produced in a high temperature solid phase method
It can be seen that the crystallinity is better than that of the N i1- y O 2 (y = 0.3 ) compound.

【0033】表1はクエン酸を利用して製造したLiCoyN
i1-yO2(y=0.3)化合物と高温固相法を利用して製造したL
iCoyNi1-yO2(y=0.3)化合物に対するX−線回析分析結果
を表わしている。
[0033] LiC o yN Table 1, which was prepared using citric acid
i1- y O 2 (y = 0.3 ) L produced by high temperature solid phase method
2 shows the X-ray diffraction analysis results for the iC o yN i1- y O 2 (y = 0.3 ) compound.

【0034】一般的にLiMO2(M:V,Cr,Co,Fe,Ni)で各々の
層(layer)に位置したリチウムイオンとMイオンは酸
素陰イオン(oxygen anion)が立方・稠密・パッキング
(cudic close packing)がされた8面体位置に置かれ
る。
Generally, in LiM O 2 (M: V, Cr, Co, Fe, Ni), lithium ions and M ions located in each layer are oxygen anions which are cubic, dense, and dense. It is placed in a cudic close packing octahedral position.

【0035】もし、Li層の8面体位置にMイオンが位置
するとX−線回線分析パターン(003)のピークの相対
強度が減らす。即ち、強い強度の(003)ピークはLiMO2
の二次元的構造が発達されているを意味する。
If M ions are located at the octahedral position of the Li layer, the relative intensity of the peak of the X-ray line analysis pattern (003) decreases. That is, the strong (003) peak is LiM O 2
Means that the two-dimensional structure of has been developed.

【0036】即ち、表1に表われているようにクエン酸
を利用して合成した化合物の(003)ピークの相対強度
が高温固相法に合成した化合物の(003)のピークの相
対強度より大きさを知ることができるが、これはクエン
酸を利用して合成した化合物が高温固相法に合成した化
合物より二次元構造が発達されていることを意味する。
That is, as shown in Table 1, the relative intensity of the (003) peak of the compound synthesized by using citric acid is more than the relative intensity of the (003) peak of the compound synthesized by the high temperature solid phase method. Although the size can be known, this means that the compound synthesized by using citric acid has a more developed two-dimensional structure than the compound synthesized by the high temperature solid phase method.

【0037】従って、LiCoO2とLiCoyNi1-yO2を製造する
ことにおいて、従来の高温固相法よりクエン酸を使用し
た方法が結晶性がいい化合物を得ることができることを
知らせることが出来る。LiCoO2及びLiCo0.3Ni0.7O2各々
を60mgとアセチレンブラック(acetylene black)(10%)
をまぜて陽極をつくって、陰極はLi金属を電解質はポリ
ピレン炭酸塩(propylene carbonate)にLiClO4を1mol
を溶かす溶液を使用して電池を構成して200μA/cm3の
電流密度で測定された1次充放電曲線を図4と図5に各
々表われている。
Therefore, in producing LiCo O 2 and LiC o yN i1- y O 2, it should be noted that the method using citric acid can obtain a compound having better crystallinity than the conventional high temperature solid phase method. Can be done. LiCo O 2 and LiC o0. 3N i0. 7 O 2 respectively 60mg and acetylene black (acetylene black) (10%)
To form an anode, the cathode is Li metal, and the electrolyte is propylene carbonate and 1 mol of LiCl O 4.
4 and 5 show the primary charge / discharge curves measured at a current density of 200 μA / cm 3 when a battery was constructed using a solution that dissolves the above.

【0038】図4と図5で知ることが出来るように、こ
れらの化合物は3.5V以上の高電圧を維持しており、イ
ンターカレーション比(intercalation rate)の差が-
0.05e-以下に、従来の他の方法等に製造された場合-0.0
9e-程度であることに比べて小さくて、LiyCoO2とLixC
o0.3Ni0.7 O2の放電容量(discharge capacity)も各々
〜130mAh/gと〜160mAh/gに従来の方法等によ
り製造されたこれらの化合物の放電容量〜120mAh/
gと〜140mAh/gより大きい。
As can be seen from FIGS. 4 and 5, these compounds maintain a high voltage of 3.5 V or more, and the difference in intercalation rate is −.
0.05 e- If manufactured by other methods such as the following-0.0
9 e- smaller than L e y CoO2 and Li xC
o0. 3N i0. discharge capacity of 7 O 2 discharge capacity (Discharge capacity) also each ~130mAh / g and ~160mAh / g These compounds prepared by conventional methods such as ~120MAh /
g and ~ 140 mAh / g.

【0039】又は、充電(図4、図5で(a))と放電
(図4、図5で(b))過程での電圧の分極(polariza
tion)も減っている。これは、これらの化合物の粒子大
きさがとても小さくて分極(polarization)がとても小
さくてLiの拡散がなりやすい証拠である。
Alternatively, the polarization of the voltage during the process of charging ((a) in FIGS. 4 and 5) and discharging ((b) in FIGS. 4 and 5).
tion) is also decreasing. This is evidence that the particle size of these compounds is so small and the polarization is so small that Li tends to diffuse.

【0040】即ち、前に言及したことのようにクエン酸
を利用して合成した化合物の粒子大きさが高温固相法に
より合成した化合物より小さくてインターカレーション
(intercalation)反応時、Liイオン拡散が生じて反応
速度面でより有利することを意味する。
That is, as described above, the particle size of the compound synthesized using citric acid is smaller than that of the compound synthesized by the high temperature solid phase method, and the Li ion diffusion occurs during the intercalation reaction. Occurs, which is more advantageous in terms of reaction rate.

【0041】従って、クエン酸を利用して上記物質等を
製造することが従来の異なる方法等により製造する場合
より得られる粒子が小さくて電気容量をもっと長時間維
持することが出来るし、高い電流密度でも安定するので
実際電池に応用する場合、充放電特性が改善される。
Therefore, when the above substances and the like are produced by using citric acid, the particles obtained are smaller than those obtained by the conventional different methods, and the electric capacity can be maintained for a longer time, and the high current can be maintained. Since the density is stable, the charging / discharging characteristics are improved when it is actually applied to a battery.

【0042】クエン酸を利用して上記化合物を製造する
とクエン酸が、琥珀酸より体積が大きいので高温熱処理
時反応性がもっとよくなって結晶性が向上されて、粒子
大きさも小さい化合物を合成することが出来るので従来
の異なる方法等に合成した化合物より電極特性が改善さ
れる。
When citric acid is used to produce the above compound, the volume of citric acid is larger than that of succinic acid, so that the reactivity at the time of high temperature heat treatment is improved and the crystallinity is improved. Therefore, the electrode characteristics are improved as compared with conventional compounds synthesized by different methods.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態であるクエン酸を利用し
て両極物質を製造する方法を示した順序図である。
FIG. 1 is a flow chart showing a method for producing a bipolar substance using citric acid according to an embodiment of the present invention.

【図2】 従来の高温固相法で製造したLiCoyN1-yO2
(y-0.3)のX線回析分析結果を示すグラフである。
FIG. 2 LiCoy N1- y O 2 produced by a conventional high temperature solid phase method
It is a graph which shows the X-ray-diffraction analysis result of (y-0. 3).

【図3】 本発明の実施の形態であるクエン酸を利用し
てゾル−ゲル法で製造したLiCoyN1-yO2(y=0.3)のX線回
析分析を示すグラフである。
[3] using citric acid in the form of embodiment of the present invention the sol - is a graph showing the X-ray diffraction analysis of LiCoy prepared gel method N1- y O 2 (y = 0 3.).

【図4】 本発明の実施の形態であるクエン酸を利用し
て製造したLixCoO2化合物の1次充放電曲線を示すグラ
フである。
4 is a graph showing the 1 TsugiTakashi discharge curve of L i xCo O 2 compound prepared utilizing citric acid in the form of embodiment of the present invention.

【図5】 本発明の実施の形態であるクエン酸を利用し
て製造したLixCo0.3Ni0.2O2化合物の1次充放電曲線を
示すグラフである。
5 is a graph showing the 1 TsugiTakashi discharge curve of L i xC o0. 3N i0. 2 O 2 compound prepared utilizing citric acid in the form of embodiment of the present invention.

フロントページの続き (72)発明者 チャン ギ ホ 大韓民国 デージョン ユーソンク オウ ンドン ハンビトアパート105−703Front Page Continuation (72) Inventor Chang Ki-ho Republic of Korea Daejeon Yousung Ou-dong Dong Han-bit Apartment 105-703

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 1/2Li2CO3,yCo(NO3)2・6H2O,(1-y)Ni(NO
3)2・6H2O,C6H8O7を蒸留水に溶かして溶液状態に作った
後、この溶液にNH4OHを添加してpH=3〜4に調節してクエ
ン酸ゾル(citric sol)を作る段階と、上記クエン酸ゾ
ルを熱処理する段階とを包含することを特徴とするリチ
ウム二次電池用電極物質製造方法。
1. 1 / 2Li 2 CO 3 ,, yCo (NO 3 ) 2 .6H 2 O, (1-y) Ni (NO
3) 2 · 6H 2 O, after making the solution state by dissolving C 6 H 8 O 7 in distilled water, citric acid sol was adjusted NH 4 OH was added to this solution to pH = 3 to 4 ( citric sol) and a step of heat treating the citric acid sol.
【請求項2】 上記熱処理する段階によりLiCoO2又はLi
CoyNi1-yO2化合物が形成されたことを特徴とする請求項
1記載のリチウム二次電池用電極物質製造方法。
2. LiCoO 2 or Li according to the heat treatment step
The method for producing an electrode material for a lithium secondary battery according to claim 1, wherein a Co y Ni 1-y O 2 compound is formed.
【請求項3】 LiCoO2はyが1になる時形成されてLiCo
yNi1-yO2はyが(0<y<1)の範囲の時に形成される
ことを特徴とする請求項1あるいは請求項2記載のリチ
ウム二次電池用電極物質製造方法。
3. LiCoO 2 is formed when y becomes 1 and LiCoO 2 is formed.
The method for producing an electrode material for a lithium secondary battery according to claim 1 or 2, wherein y Ni 1-y O 2 is formed when y is in the range of (0 <y <1).
【請求項4】 上記LiCoO2はLi2CO3,Co(NO3)2・6H2O,C6
H8O7をそれぞれ1:1:2のmol比で混合した化合物を
含むことを特徴とする請求項2記載のリチウム二次電池
用電極物質製造方法。
4. The LiCoO 2 is Li 2 CO 3 , Co (NO 3 ) 2 .6H 2 O, C 6
The method for producing an electrode material for a lithium secondary battery according to claim 2, further comprising a compound in which H 8 O 7 is mixed at a molar ratio of 1: 1: 2.
【請求項5】 上記LiCoyNi1-yO2はLi2CO3,Co(NO3)2・6
H2O,Ni(NO3)2・6H2O,C6H8O7を1:y:(1−y):3の
mol比で混合した化合物を含むことを特徴とする請求項
1記載のリチウム二次電池用電極物質製造方法。
Wherein said LiCo y Ni 1-y O 2 is Li 2 CO 3, Co (NO 3) 2 · 6
H 2 O, Ni (NO 3 ) 2 · 6H 2 O, a C 6 H 8 O 7 1: y: (1-y): 3
The method for producing an electrode material for a lithium secondary battery according to claim 1, which comprises a compound mixed in a mol ratio.
【請求項6】 上記LiCoyNi1-yO2はyが0.3であること
を特徴とする請求項1記載のリチウム二次電池用電極物
質製造方法。
6. The method for producing an electrode material for a lithium secondary battery according to claim 1, wherein y of said LiCo y Ni 1-y O 2 is 0.3.
【請求項7】 上記熱処理段階は真空条件(10〜20mmH
g)下で80〜95℃の温度に18〜20時間加熱する第1熱処
理段階、300〜350℃で3〜4時間加熱して有機物を分解
させてLiCoO2とLiCoyNi1-yO2(0<y<1)化合物を製
造する第2熱処理段階と、この化合物を600〜650℃で6
時間カ焼(calcination)する第3熱処理段階と、800〜
850℃で20時間アニーリングしてLiCoO2とLiCoyNi1-yO
2(0<y<1)化合物に電極物質を製造する第4熱処
理段階とを包含することを特徴とする請求項1記載のリ
チウム二次電池用電極物質製造方法。
7. The heat treatment step is performed under vacuum condition (10 to 20 mmH).
g) first heat treatment step of heating 18-20 hours to a temperature of 80 to 95 ° C. under, 300 to 350 and heated for 3-4 hours to decompose the organic matter ° C. with LiCoO 2 and LiCo y Ni 1-y O 2 A second heat treatment step to produce a (0 <y <1) compound, and the compound at 600-650 ° C for 6
The third heat treatment stage of time calcination, 800 ~
LiCoO 2 and LiCo y Ni 1-y O after annealing at 850 ℃ for 20 hours
The method for producing an electrode material for a lithium secondary battery according to claim 1, further comprising a fourth heat treatment step of producing an electrode material with a 2 (0 <y <1) compound.
JP7315695A 1994-12-03 1995-12-04 Electrode substance preparation for lithium secondary battery Withdrawn JPH08264184A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR94-32656 1994-12-03
KR1019940032656A KR0119287B1 (en) 1994-12-03 1994-12-03 Synthetic method of positive electrode material in lithium secondary batteries

Publications (1)

Publication Number Publication Date
JPH08264184A true JPH08264184A (en) 1996-10-11

Family

ID=19400217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7315695A Withdrawn JPH08264184A (en) 1994-12-03 1995-12-04 Electrode substance preparation for lithium secondary battery

Country Status (2)

Country Link
JP (1) JPH08264184A (en)
KR (1) KR0119287B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09175825A (en) * 1995-12-19 1997-07-08 Samsung Display Devices Co Ltd Production of compound oxide using sol-gel method
WO1998029915A1 (en) * 1996-12-25 1998-07-09 Mitsubishi Denki Kabushiki Kaisha Anode active material, its producing process, and lithium ion secondary cell using the anode active material
US6383235B1 (en) 1997-09-26 2002-05-07 Mitsubishi Denki Kabushiki Kaisha Cathode materials, process for the preparation thereof and secondary lithium ion battery using the cathode materials
JP2006016257A (en) * 2004-07-01 2006-01-19 Ministry Of National Defense Chung Shan Inst Of Science & Technology Method of producing lithium cobaltate powder
JP2007119340A (en) * 2005-09-29 2007-05-17 Seimi Chem Co Ltd Method for producing lithium-containing multiple oxide
JP2016110982A (en) * 2014-11-27 2016-06-20 日立金属株式会社 Method for manufacturing positive electrode active material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100393194B1 (en) * 1996-12-05 2003-11-01 삼성에스디아이 주식회사 A process for preparing LixMn2O4 Powder used for cathode of lithium secondary battery
KR100388633B1 (en) * 2000-09-04 2003-06-25 윤원섭 Cathode Active Material Using Sol-gel Method, Preparing Method Thereof and The Composite Cathode Using the Same
KR100448272B1 (en) * 2002-02-25 2004-09-10 한국지질자원연구원 Method for recycling of spent lithium ion battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09175825A (en) * 1995-12-19 1997-07-08 Samsung Display Devices Co Ltd Production of compound oxide using sol-gel method
WO1998029915A1 (en) * 1996-12-25 1998-07-09 Mitsubishi Denki Kabushiki Kaisha Anode active material, its producing process, and lithium ion secondary cell using the anode active material
US6383235B1 (en) 1997-09-26 2002-05-07 Mitsubishi Denki Kabushiki Kaisha Cathode materials, process for the preparation thereof and secondary lithium ion battery using the cathode materials
JP2006016257A (en) * 2004-07-01 2006-01-19 Ministry Of National Defense Chung Shan Inst Of Science & Technology Method of producing lithium cobaltate powder
JP2007119340A (en) * 2005-09-29 2007-05-17 Seimi Chem Co Ltd Method for producing lithium-containing multiple oxide
JP2016110982A (en) * 2014-11-27 2016-06-20 日立金属株式会社 Method for manufacturing positive electrode active material

Also Published As

Publication number Publication date
KR960027035A (en) 1996-07-22
KR0119287B1 (en) 1997-10-04

Similar Documents

Publication Publication Date Title
CN108123114B (en) Lithium cobaltate cathode material and preparation method thereof and lithium ion secondary battery
JP3221352B2 (en) Method for producing spinel-type lithium manganese composite oxide
US6071489A (en) Methods of preparing cathode active materials for lithium secondary battery
Lin et al. Crystallographic facet-and size-controllable synthesis of spinel LiNi 0.5 Mn 1.5 O 4 with excellent cyclic stability as cathode of high voltage lithium ion battery
KR102402147B1 (en) Manganese spinel doped with magnesium, cathode material comprising said manganese spinel, method for preparing the same, and lithium ion battery comprising said spinel
EP3164363B1 (en) Production of a layered lithium-manganese-nickel-cobalt oxide material
CA2247350C (en) Anode active material, its producing process, and lithium ion secondary cell using the anode active material
JP3606289B2 (en) Cathode active material for lithium battery and method for producing the same
US6383235B1 (en) Cathode materials, process for the preparation thereof and secondary lithium ion battery using the cathode materials
US6306787B1 (en) Nickel hydroxide particles and production and use thereof
JPH06342658A (en) Chemical-cell precursor, chemical cell, electrode for chemical cell and their manufacture
JPWO2002086993A1 (en) Positive electrode active material and method for producing the same, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP3036694B2 (en) Method for producing Li composite oxide for Li-ion battery electrode material
CN114556635B (en) Positive electrode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
JP2000260432A (en) Positive electrode active material, manufacture thereof, and lithium ion secondary battery using it
JP2000515672A (en) Positive electrode for lithium battery
CN118099391A (en) Positive electrode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
CN114715957B (en) Niobium-coated nickel-cobalt-manganese ternary precursor, and preparation method and application thereof
EP0653797A1 (en) Lithium secondary cell containing organic electrolyte, active material for positive electrode of lithium secondary cell, and method for manufacturing the active material
JPH1072219A (en) Multiple oxide of lithium, its production and active material of positive electrode for lithium secondary battery
JPH08264184A (en) Electrode substance preparation for lithium secondary battery
JP3575313B2 (en) Positive electrode active material, method for producing the same, and lithium ion secondary battery using the above positive electrode active material
KR100872370B1 (en) Spinel type Cathode Active Material for Lithium Secondary Batteries and Manufacturing Method for the Same
Abdel-Ghany et al. Effects of chelators on the structure and electrochemical properties of Li-rich Li 1.2 Ni 0.13 Co 0.13 Mn 0.54 O 2 cathode materials
JPH08319120A (en) Lithium double oxide, its production and lithium secondary battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030204