JPH0826416B2 - Steelmaking raw material with excellent clustering resistance for direct ironmaking or smelting reduction ironmaking - Google Patents

Steelmaking raw material with excellent clustering resistance for direct ironmaking or smelting reduction ironmaking

Info

Publication number
JPH0826416B2
JPH0826416B2 JP62099084A JP9908487A JPH0826416B2 JP H0826416 B2 JPH0826416 B2 JP H0826416B2 JP 62099084 A JP62099084 A JP 62099084A JP 9908487 A JP9908487 A JP 9908487A JP H0826416 B2 JPH0826416 B2 JP H0826416B2
Authority
JP
Japan
Prior art keywords
iron
cement
clustering
raw material
ironmaking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62099084A
Other languages
Japanese (ja)
Other versions
JPS63262426A (en
Inventor
武彦 足永
守 小野田
信之 今西
脩 土屋
克文 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62099084A priority Critical patent/JPH0826416B2/en
Publication of JPS63262426A publication Critical patent/JPS63262426A/en
Publication of JPH0826416B2 publication Critical patent/JPH0826416B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、シャフト炉に代表される竪型炉(以下、単
に竪型炉で代表させる場合があります)を用いる予備還
元、即ち直接製鉄法あるいは溶融還元製鉄法における予
備還元を実施するに当たり、操業温度を高めても竪型炉
内でクラスタリングを起こすことがない様な耐クラスタ
リング性に優れた製鉄原料に関するものであり、これに
よって熱ロスの低減並びに操業効率の向上を達成したも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is a preliminary reduction using a vertical furnace typified by a shaft furnace (hereinafter sometimes simply referred to as a vertical furnace), that is, a direct iron-making method. Alternatively, when performing preliminary reduction in the smelting reduction ironmaking method, it relates to an ironmaking raw material excellent in clustering resistance that does not cause clustering in the vertical furnace even if the operating temperature is raised, and thereby heat loss It has achieved a reduction and an improvement in operational efficiency.

[従来の技術] 直接製鉄法あるいは溶融還元製鉄法は、小規模生産に
適しており且つ還元剤として石炭や天然ガス等を使用し
得るといった多様性を有しているところから、実操業例
は最近徐々に増大しつつある。
[Prior Art] The direct iron-making method or the smelting reduction iron-making method is suitable for small-scale production and has the versatility to use coal or natural gas as a reducing agent. It has been gradually increasing recently.

直接製鉄法あるいは溶融還元製鉄法として現在主流に
なっているのは、シャフト炉に代表される竪型炉を還元
炉として使用するMidrex方式及びHyL方式である。シャ
フト炉装入原料としては塊状の鉄鉱石(塊鉱石)やペレ
ット(粉鉱を球状に固めたもの)を使用するが、これら
はシャフト炉内における高温の還元雰囲気でしばしばク
ラスタリングと呼ばれる現象を起こし操業性を著しく阻
害することが知られている。即ちクラスタリングとは、
塊鉱石やペレットがシャフト炉内における高温の還元雰
囲気で相互に融着して大塊状となる現象を言い、こうし
た現象が起こるとシャフト炉下部からの還元鉄の排出が
困難になったり、或はシャフト炉内で棚づりと呼ばれる
装入鉱石類(以下単に荷ということがある)のブリッジ
現象が起こって荷の順調な降下が阻害され、操業性が著
しく低下してくる。この様なところから通常のシャフト
炉操業においては、最高還元温度を低めに抑えてクラス
タリングの発生を防止しており、その為、還元速度を十
分に高めることができず生産性を満足のいく程度まで向
上させることができていない。また最高還元温度はシャ
フト炉へ吹込まれる還元ガスの温度によって決まってく
るが、一般の還元ガス発生装置から出る還元ガスの温度
は上記最高還元温度よりもかなり高いのが普通であるか
ら、この還元ガスをシャフト炉へ供給する為には前記最
高還元温度まで降温させなければならず、熱エネルギー
のロスを招く。殊に最近活発に研究されている溶融還元
法においては発生する還元ガスが非常に高温である為、
この還元ガスを前記最高還元温度まで降温させることに
よって生ずる熱エネルギーの損失は軽視できない。
The mainstream of the direct iron making method or the smelting reduction iron making method at present is the Midrex method and the HyL method which use a vertical furnace represented by a shaft furnace as a reducing furnace. Bulk iron ore (lump ore) or pellets (solidified ore solidified into spheres) are used as the raw material for charging the shaft furnace. These often cause a phenomenon called clustering in the high temperature reducing atmosphere in the shaft furnace. It is known to significantly impair operability. That is, clustering is
A phenomenon in which lump ore and pellets are fused together in a high-temperature reducing atmosphere in a shaft furnace to form a large lump, and when such a phenomenon occurs, it becomes difficult to discharge reduced iron from the lower part of the shaft furnace, or In the shaft furnace, a bridging phenomenon of charged ores (hereinafter sometimes simply referred to as a load) called a shelving occurs, which hinders the smooth descent of the load, resulting in a marked decrease in operability. From such a point, in normal shaft furnace operation, the maximum reduction temperature is kept low to prevent the occurrence of clustering. Therefore, the reduction rate cannot be sufficiently increased and the productivity is satisfactory. Has not been able to improve. The maximum reduction temperature is determined by the temperature of the reducing gas blown into the shaft furnace, but the temperature of the reducing gas emitted from a general reducing gas generator is usually much higher than the above maximum reducing temperature. In order to supply the reducing gas to the shaft furnace, the temperature must be lowered to the maximum reducing temperature, which causes a loss of heat energy. Especially in the smelting reduction method which has been actively studied recently, the reducing gas generated is extremely high in temperature,
The loss of thermal energy caused by lowering the reducing gas to the maximum reducing temperature cannot be understated.

ちなみに現在稼働しているシャフト炉の最高還元温度
はMidrex方式の場合で約830℃であり、他の方式でも殆
んどはこれ以下の温度で操業が行なわれている。これに
対し還元ガス製造装置であるリフォーマの運転温度は約
1100℃であって、この装置で製造される還元ガスは約97
0℃であるから、シャフト炉への吹き込みに当たっては
これを850〜900℃まで冷却しなければならず、この間に
約100℃の熱ロスが生じてくる。
By the way, the maximum reduction temperature of the shaft furnace currently in operation is about 830 ° C in the case of the Midrex method, and almost all other methods operate at temperatures below this. On the other hand, the operating temperature of the reformer, which is a reducing gas production device, is approximately
At 1100 ℃, the reducing gas produced by this device is about 97
Since the temperature is 0 ° C, when it is blown into the shaft furnace, it must be cooled to 850 to 900 ° C, and a heat loss of about 100 ° C occurs during this.

また溶融還元法では、金属鉄の溶融温度以上で還元ガ
スの製造が行なわれる為、発生する還元ガスの温度は約
1500℃にも達することがあるが、その予備還元炉として
シャフト炉を採用する場合、還元ガスを約1500℃から85
0〜900℃程度まで降温させなければならず、この間の熱
ロスは甚大となる。
In the smelting reduction method, the reducing gas is produced at a temperature above the melting temperature of metallic iron, so the temperature of the reducing gas generated is about
Although it may reach up to 1500 ℃, if a shaft furnace is adopted as the preliminary reduction furnace, the reducing gas should be reduced from about 1500 ℃ to 85 ℃.
The temperature must be lowered to about 0 to 900 ° C, and the heat loss during this period becomes enormous.

更に原料鉱石の還元反応速度から見た場合、理論的に
は操業温度を100℃高めることによって還元反応速度は
約1.3倍になることが確認されており、こうした昇温効
果がそのまま生産性に生かされるとしたら、約30%の生
産性向上が可能となる。
Furthermore, from the viewpoint of the reduction reaction rate of the raw material ore, theoretically, it has been confirmed that increasing the operating temperature by 100 ° C will increase the reduction reaction rate by a factor of about 1.3. If so, productivity can be improved by about 30%.

しかしながら、最高還元温度を高めようとすると前述
の如くクラスタリングが発生して操業安定性が著しく阻
害される為、やむを得ず還元温度を低めに抑えて操業を
行なっているのが実情である。
However, if an attempt is made to raise the maximum reduction temperature, clustering occurs as described above and operation stability is significantly impaired. Therefore, it is unavoidable that the reduction temperature is suppressed to a low level during the operation.

この様なところから、クラスタリングを防止しつつ還
元反応温度を高めようとする研究も進められている。例
えば特公昭59-10411号公報に開示された方法は、原料鉄
鉱石にCa(OH)2やMg(OH)2を含む水溶液を付着させた後熱
処理し、下記の反応によりCaO又はMgOよりなる皮膜を形
成させることによりクラスタリングを防止しようとする
ものである。
From this point of view, research is being conducted to increase the reduction reaction temperature while preventing clustering. For example, the method disclosed in Japanese Examined Patent Publication No. 59-10411 is composed of CaO or MgO by the following reaction after heat treatment after depositing an aqueous solution containing Ca (OH) 2 or Mg (OH) 2 on a raw iron ore. It is intended to prevent clustering by forming a film.

Ca(OH)2→CaO+H2O Mg(OH)2→MgO+H2O しかしながらこの方法では、後記実施例でも明らかにす
る通り満足のいくクラスタリング防止効果を得ることが
できない。
Ca (OH) 2 → CaO + H 2 O Mg (OH) 2 → MgO + H 2 O However, this method cannot obtain a satisfactory clustering prevention effect, as will be apparent from the examples described later.

[発明が解決しようとする問題点] そこで本願出願人は、クラスタリング防止手段につい
て検討を重ね、先に特願昭60-145641号(特開昭62-7806
号)を提案した。即ち該提案は、竪型炉内で予備還元を
実施するに当たり、表面をセメントで被覆した原料鉄鉱
石を製鉄原料として使用するものであって1000℃までの
還元温度ではクラスタリングの防止に成功している。し
かしながらこの程度のクラスタリング防止効果では、操
業温度が1500℃にも達する溶融還元炉から排出される還
元ガスの顕熱を未だ十分に利用しているとは言うことが
できず(1000℃まで降温させなければならず)、依然と
して熱ロスが大きい。
[Problems to be Solved by the Invention] Therefore, the applicant of the present application has repeatedly studied clustering prevention means, and previously disclosed Japanese Patent Application No. 60-145641 (Japanese Patent Laid-Open No. 62-7806).
No.). That is, the proposal uses a raw material iron ore whose surface is coated with cement as an iron-making raw material in performing preliminary reduction in a vertical furnace, and succeeds in preventing clustering at reduction temperatures up to 1000 ° C. There is. However, with this level of clustering prevention effect, it cannot be said that the sensible heat of the reducing gas discharged from the smelting reduction furnace, which has an operating temperature of 1500 ° C, is still fully utilized (the temperature is reduced to 1000 ° C). Heat loss is still large.

本発明はこうした事情に着目して為されたものであっ
て、クラスタリング防止性能に優れた直接製鉄用または
溶融還元製鉄用の製鉄原料を提供することにより炉内の
操業効率を上昇させ、且つ該製鉄プロセスにおける熱ロ
スを低減しようとするものである。
The present invention was made in view of these circumstances, by increasing the operating efficiency in the furnace by providing an ironmaking raw material for direct ironmaking or smelting reduction ironmaking excellent in clustering prevention performance, and It is intended to reduce heat loss in the iron making process.

[問題点を解決するための手段] しかして上記目的を達成した本発明の製鉄原料は、直
接製鉄法または溶融還元製鉄法に用いられる製鉄原料で
あって、塊状若しくは球状製鉄原料の表面にセメント配
合鉄鉱石を被覆したものである点に要旨が存在する。
[Means for Solving Problems] However, the iron-making raw material of the present invention which has achieved the above-mentioned object is an iron-making raw material used in a direct iron-making method or a smelting reduction iron-making method, and a cement is formed on the surface of the massive or spherical iron-making raw material. The gist is that it is a coating of compound iron ore.

[作用] 竪型炉を用いた直接還元における還元温度がクラスタ
リング発生温度によって左右されることは先に説明した
通りであるが、このクラスタリング発生温度は、原料鉄
鉱石にあってはその鉄品位や脈石成分、ペレットにあっ
ては添加されるカルシウム化合物やマグネシウム化合物
[CaO,Ca(OH)2,CaCo3,CaCO3・MgCO3]等の塩基性成分な
どによって夫々影響を受ける。特にペレットの場合は、
添加物の種類や量、更には焼成温度等によってもクラス
タリング温度が変わってくることが知られており、例え
ばライム(CaO)系の鉱物を加えて鉄鉱石中の(CaO/SiO
2)比、即ち塩基度を大きくすることによってクラスタ
リングの発生温度を高め得ることが確認されているが、
この方法ではライム鉱物の添加によって鉄品位が低下す
るという欠点が伴う。しかるに直接製鉄(還元後電気炉
で溶融する方法)用の鉄鉱石原料としては、電気炉操業
コスト低減の為元々高品位の鉄鉱石が選択されるという
事情があり、添加材の種類や量等でクラスタリング発生
温度を調整するという余地は少ない。即ち直接製鉄用原
料として最低限必要な鉄品位は65〜70重量%であるとさ
れており、こうした制約のもとでは、ライム系鉱物を添
加するにしてもその添加量には自ずと制限があり、クラ
スタリングを有効に防止することができない。
[Operation] As described above, the reduction temperature in the direct reduction using the vertical furnace depends on the clustering generation temperature. The gangue component and the pellet are affected by the basic components such as calcium compounds and magnesium compounds [CaO, Ca (OH) 2 , CaCo 3 , CaCO 3 · MgCO 3 ] added to the pellets. Especially for pellets,
It is known that the clustering temperature changes depending on the type and amount of additives, as well as the firing temperature. For example, adding lime (CaO) -based minerals to (CaO / SiO
2 ) It has been confirmed that the temperature at which clustering occurs can be increased by increasing the ratio, that is, the basicity.
This method has a drawback that the iron quality is lowered by the addition of the lime mineral. However, as the iron ore raw material for direct iron making (method of melting in an electric furnace after reduction), there is a circumstance that originally high-grade iron ore is selected to reduce the operating cost of the electric furnace. There is little room to adjust the clustering temperature. That is, it is said that the minimum iron grade required as a raw material for direct ironmaking is 65 to 70% by weight, and under these restrictions, even if lime-based minerals are added, the amount added is naturally limited. , Clustering cannot be effectively prevented.

また還元鉄を竪型炉内で溶融する溶融還元製鉄法にお
いて溶融炉から発生する高温還元ガスを予備還元炉であ
る竪型炉へ供給して利用するに際しては前にも述べた様
に還元ガス温度と操業温度(還元温度)との差が大きい
為熱ロスが著しい。従って熱ロスの低減を実現しようと
するならば1000℃を上回る還元温度でもクラスタリング
を防止し得る手段の開発が必要となる。
In addition, in the smelting reduction iron manufacturing method in which reduced iron is melted in the vertical furnace, the high-temperature reducing gas generated from the melting furnace is supplied to the vertical furnace, which is the preliminary reducing furnace, when it is used, as described above. Since the difference between the temperature and the operating temperature (reduction temperature) is large, heat loss is significant. Therefore, in order to reduce heat loss, it is necessary to develop a method that can prevent clustering even at a reduction temperature of over 1000 ° C.

この様な状況の中で,「原料鉄鉱石の表面をセメント
で被覆した製鉄原料を竪型炉に投入して予備還元を行な
う」先願方法は、クラスタリングの防止にある程度の成
功を収めているが、上記要請に十分答えるには至ってい
ない。その理由は、鉄品位を一定レベル以上に保つ必要
上からセメント使用量が制限される為であり、その結果
セメント被覆厚さを十分に大きくすることができず、ク
ラスタリングの防止に限界があったものと考えられる。
即ち製鉄原料の還元後期に発生する製鉄原料同士の融着
は、金属鉄同士の相互拡散やひげ状突出物の絡み合い、
或は低融点スラグの生成による溶融付着等によって生ず
るものと考えられるので、原料表面をセメントで被覆す
ることによる作用効果は製鉄原料粒子素地面同士の直接
的な接触を避け、接触面における上記拡散等を防止する
ことにあるものと推論でき、上述の如くセメント使用量
の制限に基づくセメント被覆厚さの制約から操業温度が
1000℃を超えると素地面同士の直接的接触を完全に防止
することができなくなり、その結果クラスタリングが発
生するに至ったものと思われる。
Under such circumstances, the prior application method of "putting the iron-making raw material in which the surface of the raw iron ore is coated with cement into the vertical furnace and performing preliminary reduction" has achieved some success in preventing clustering. However, they have not fully answered the above request. The reason is that the amount of cement used is limited because it is necessary to maintain the iron quality above a certain level, and as a result, the cement coating thickness cannot be increased sufficiently and there is a limit to the prevention of clustering. It is considered to be a thing.
That is, fusion of the iron-making raw materials that occur in the latter stage of reduction of the iron-making raw material, interdiffusion of metal iron and entanglement of whiskers,
Or, it is considered that it is caused by melt adhesion due to the formation of low melting point slag.Therefore, the effect of coating the raw material surface with cement is to avoid direct contact between the iron-making raw material particle ground surfaces and to spread the above on the contact surface. It can be inferred that this is to prevent such problems as described above.
If the temperature exceeds 1000 ° C, it is impossible to completely prevent direct contact between the bare surfaces, and as a result, clustering may occur.

これに対し、本発明では前記構成に示される様に製鉄
原料表面をセメント単成分ではなくセメント配合鉄鉱石
で被覆することによって十分な被覆厚さを実現し、結果
として1000℃を超える操業温度下でもクラスタリングを
防止できる様になったのである。即ちクラスタリングは
製鉄原料中の鉄分含有量が高くなるほど発生し易くなる
ことを別の実験で確認しているが、逆に言えば、当該実
験の結果はクラスタリング発生の原因である鉄分の相互
拡散は鉄分含有量が少なくなればなるほど少なくなるこ
とを意味するから、クラスタリングの防止を目的にする
からといって鉄分含有量を必ずしも零にしなければなら
ないという訳ではないことを意味する。つまりセメント
被覆層中に若干の鉄鉱石が含まれる様なものであって
も、その量が所定限度以下であれば鉄分の相互拡散を実
質上十分に防止することが可能なのであり、セメント被
覆の形成による鉄品位の低下を抑制することが可能とな
るのである。そこでセメント単成分に変えてセメント配
合鉄鉱石を被覆するという手段を採用することとし、種
々検討を行なったところ、被覆厚さを高めても全体とし
ての鉄品位の低下が抑制され、その結果製鉄原料素地同
士の接触を確実に防止し、1000℃以上の操業温度でもク
ラスタリングを防止することができ、熱ロスを更に抑制
しつつ効率の良い予備還元が行なわれることとなったの
である。
On the other hand, in the present invention, as shown in the above configuration, the iron-making raw material surface is provided with a cement-containing iron ore instead of the cement single component to achieve a sufficient coating thickness, and as a result, at an operating temperature exceeding 1000 ° C. But now it is possible to prevent clustering. That is, clustering has been confirmed in another experiment that the higher the iron content in the ironmaking raw material, the more likely it is to occur, but conversely, the result of the experiment is that the mutual diffusion of iron, which is the cause of clustering, is This means that the smaller the iron content is, the smaller the iron content is. Therefore, the purpose of preventing clustering does not necessarily mean that the iron content does not have to be zero. In other words, even if a small amount of iron ore is contained in the cement coating layer, it is possible to substantially prevent interdiffusion of iron if the amount is below a predetermined limit, and It is possible to suppress the deterioration of iron quality due to the formation. Therefore, we decided to adopt a means of coating cement-containing iron ore instead of cement single component, and conducted various studies. As a result, even if the coating thickness was increased, the overall deterioration of iron quality was suppressed, and as a result It is possible to reliably prevent contact between the raw materials and to prevent clustering even at an operating temperature of 1000 ° C or higher, and to perform efficient preliminary reduction while further suppressing heat loss.

本発明の基本構成は上記の通りであるが、この様なク
ラスタリング防止効果をより確実に発揮させるために
は、塊状又は球状製鉄原料(コア)の鉄分含有量を66〜
70重量%とした上でセメント配合鉄鉱石被覆層のセメン
ト含有量は6〜80重量%未満、又は被覆層の厚さは0.05
〜4.5mm、好ましくは0.10〜4.5mmの範囲とすることが望
まれる。即ちセメント含有量が6重量%未満あるいは被
覆層厚さが0.05mm未満ではクラスタリング防止効果は有
効に発揮され難くなり、又製鉄原料の鉄分含有量が66重
量%未満あるいは被覆層厚さが4.5mmを上回ると、スラ
グ量の増大や鉄分の低下を伴い、生産性,金属化率,還
元率等の低下が起こり望ましくない事態を招く。又セメ
ント配合鉄鉱石被覆層のセメント含有量が80重量%を超
えるとセメント単成分層に近くなり、被覆厚さの向上が
望めない。尚製鉄原料の鉄分含有量の上限を70重量%と
したのは通常の高品位原料の上限に合わせたからであ
り、さらに高品位の製鉄原料の使用を制限するものでは
なく、又この場合には被覆厚さ及び被覆層中のセメント
配合量の上限をさらに高めることができる。
Although the basic configuration of the present invention is as described above, in order to more reliably exert such a clustering prevention effect, the iron content of the massive or spherical iron-making raw material (core) is 66 to
The cement content of the cement-containing iron ore coating layer is 70% by weight, and the cement content is 6 to less than 80% by weight, or the coating layer has a thickness of 0.05.
It is desired to be in the range of ~ 4.5 mm, preferably 0.10-4.5 mm. That is, if the cement content is less than 6% by weight or the coating layer thickness is less than 0.05 mm, the clustering prevention effect cannot be effectively exhibited, and the iron content of the ironmaking raw material is less than 66% by weight or the coating layer thickness is 4.5 mm. If it exceeds the above range, the slag amount increases and the iron content decreases, and the productivity, the metallization rate, the reduction rate, etc. decrease, resulting in an undesirable situation. Further, when the cement content of the cement-containing iron ore coating layer exceeds 80% by weight, it becomes close to the cement single-component layer, and improvement in coating thickness cannot be expected. The upper limit of the iron content of the iron-making raw material is set to 70% by weight because it is adjusted to the upper limit of the usual high-grade raw material, and does not limit the use of the higher-grade iron-making raw material. The upper limit of the coating thickness and the amount of cement compounded in the coating layer can be further increased.

鉄鉱石と配合されるセメントの種類については特に制
約がなく、自硬性セメント(ボルトランドセメント)や
潜在水硬性セメント(例えば高炉セメント)あるいは高
炉滓,高炉水滓,鉄鋼スラグの各微粉末等のすべてを使
用することができるが、最も好ましいのは鉄鉱石への付
着力と言う点から考えると水硬特性が高く、強い水和反
応を示す化合物(3CaO・SiO2)を多量に含み、かつ安価
で手軽に入手可能な普通ポルトランドセメント,早強ポ
ルトランドセメント,高強ポルトランドセメント等であ
る。またセメントを原料鉱石表面に付着させる方法も一
切制限されないが、最も一般的な方法としては、転動
法,噴霧法,浸漬法等が挙げられる。
There are no particular restrictions on the type of cement that is mixed with iron ore, including self-hardening cement (boltland cement), latent hydraulic cement (such as blast furnace cement), blast furnace slag, blast furnace slag, and fine powder of steel slag. All of them can be used, but the most preferable is that they have high hydraulic properties in terms of adhesion to iron ore, contain a large amount of a compound (3CaO · SiO 2 ) that exhibits a strong hydration reaction, and It is an inexpensive and easily available ordinary Portland cement, early strength Portland cement, high strength Portland cement, etc. The method for adhering cement to the surface of the raw material ore is not limited at all, but the most common methods include rolling method, spraying method, dipping method and the like.

[実施例] d50(50%通過粒子系)=30μm(ブレーン値:2000cm
2/g)に粉砕した粉状鉄鉱石(鉄分67.98重量%)をタイ
ヤ型ペレタイザーにより12.7mmφの粒径に造粒し、該造
粒物の表面に、上記鉄鉱石と同じ純度の粉状鉄鉱石に12
重量%のセメントを配合した、セメント配合鉄鉱石を0.
15mmの厚さに被覆し、第1表に示す条件でセメント配合
鉄鉱石を被覆した鉄塊成鉱を製造した。その構造を第1
図に示し、又セメント配合量を変化させた時のセメント
配合鉄鉱石被覆鉄塊成鉱の各部の化学分析値を第2表に
示す。又鉄分67重量%以上を有する鉄鉱石単味で製造し
た未処理鉄塊成鉱とセメント配合鉄鉱石によって被覆処
理して製造した被覆処理鉄塊成鉱の化学分析結果を第3
表に示す。
[Example] d50 (50% passing particle system) = 30 μm (Blaine value: 2000 cm)
2 / g) powdered iron ore (iron content 67.98% by weight) was granulated with a tire type pelletizer to a particle size of 12.7 mm φ , and the surface of the granulated product had the same purity as the above iron ore. 12 for iron ore
Cement-blended iron ore blended with wt% cement.
An iron agglomerated ore coated with a cement-containing iron ore under the conditions shown in Table 1 was produced by coating to a thickness of 15 mm. The structure is first
Table 2 shows the chemical analysis values of each part of the cement-containing iron ore-coated iron agglomerate when the amount of cement is changed. In addition, the chemical analysis results of the untreated iron agglomerate produced by plain iron ore having an iron content of 67 wt% or more and the coated iron agglomerated ore produced by coating with cement-containing iron ore
Shown in the table.

第3表からも明らかな様にセメント配合鉄鉱石の被覆
処理によって鉄塊成鉱中のT・Feは67.98重量%から67.
45重量%へ0.53重量%低下している。しかしこの程度の
T・Feの低下は直接製鉄,溶融還元製鉄用原料鉄鉱石と
して品位の実質的な障害をもたらす恐れはない。
As is clear from Table 3, T.Fe in iron agglomerated ores from 67.98% by weight to 67.% by coating treatment of cement-containing iron ore.
It decreased by 0.53% by weight from 45% by weight. However, such a decrease in T / Fe is unlikely to cause a substantial hindrance to the quality of raw iron ore for direct ironmaking and smelting reduction ironmaking.

次にこれら2種の鉄鉱石ペレットを使用し、下記の方
法でクラスタリング評価試験を行なった。
Next, using these two types of iron ore pellets, a clustering evaluation test was performed by the following method.

即ち還元ガスとして、天然ガスを変性させたものを用
いると想定して第4表に示す組成の還元ガスを準備し、
上記各ペレット500gを75φ×165l(mm)の反応管に装入
し(試料層高は約50mm)、上部から2kg/cm2に荷量を作
用させながら3時間還元反応を行なう。従って試料ペレ
ットは上記からの加圧によって収縮しながら相互に融着
することになる。又この時の還元温度は通常910℃で行
なうが、セメント配合鉄鉱石被覆鉄塊成鉱については10
50〜1100℃で行なった。還元終了後冷却して試料を取出
し、120φ×700l(mm)の円筒に入れて30rpmで5分間回
転させた後円筒から取出し、2個以上のペレットが融着
している塊状物の全ペレットに対する重量比率をクラス
ター指数として求めた。結果を第5表に示す。
That is, assuming that a modified natural gas is used as the reducing gas, a reducing gas having the composition shown in Table 4 is prepared,
500 g of each of the above pellets is charged into a 75 φ × 165 l (mm) reaction tube (sample layer height is about 50 mm), and a reduction reaction is carried out for 3 hours while applying a load of 2 kg / cm 2 from above. Therefore, the sample pellets are fused with each other while contracting due to the pressure applied from the above. The reduction temperature at this time is usually 910 ° C, but 10% for cement-containing iron ore-coated iron agglomerates.
It was carried out at 50 to 1100 ° C. After completion of the reduction, the sample was cooled and taken out, put into a cylinder of 120 φ x 700 l (mm), rotated at 30 rpm for 5 minutes, taken out from the cylinder, and then the whole mass of two or more pellets fused together. The weight ratio to the pellet was calculated as a cluster index. The results are shown in Table 5.

第5表から明らかな様に鉄塊成鉱製造段階の造粒工程
においてセメント配合鉄鉱石による被覆処理を施したも
のでは還元温度を1050℃に高めた場合でも未処理ペレッ
トの910℃あるいはセメント被覆ペレット1050℃の各還
元温度における収縮率(前者は33.75%,後者は57.65
%)よりも低い値を示しておりクラスタリングも全く生
じていない。また圧力損失においても5.0mmAqと低くな
っており通気性においてもまったく問題はないことも示
している。
As is clear from Table 5, when the coating treatment with cement-containing iron ore was performed in the granulation process of the iron agglomerate manufacturing stage, even when the reduction temperature was raised to 1050 ° C, the untreated pellets were heated to 910 ° C or the cement was coated. Shrinkage rate of pellets at each reduction temperature of 1050 ℃ (33.75% for the former and 57.65 for the latter)
%), And clustering does not occur at all. It also shows that the pressure loss is as low as 5.0 mmAq, and there is no problem with breathability.

次に前述の特公昭59-10411号公報にも開示されている
CaO表面付着処理ペレットと石灰石添加ペレット,セメ
ント被覆ペレットおよび本発明に係るセメント配合鉄鉱
石による被覆鉄塊成鉱の各クラスタリング防止効果を対
比する為、各処理実験試料の還元温度とクラスター指数
の関係を調べ第2図に示す結果を得た。
Next, it is also disclosed in the aforementioned Japanese Patent Publication No. 59-10411.
In order to compare the clustering prevention effect of CaO surface-adhered pellets, limestone-added pellets, cement-coated pellets, and coated iron agglomerates of the cement-containing iron ore according to the present invention, the relationship between the reduction temperature and cluster index of each treated experimental sample And the results shown in FIG. 2 were obtained.

第2図からも明らかな様に、石灰石添加ペレットやCa
O表面付着ペレットは還元温度910℃,セメント被覆ペレ
ットは1000℃の場合のクラスター指数は0%であるもの
の、1000〜1050℃に高めるとクラスター指数は急増して
いる。これに対してセメント配合鉄鉱石による被覆鉄塊
成鉱では還元温度1050℃に高めた場合でもクラスター指
数は0%であり本発明の優位性を確認することができ
る。また第3図は鉄分67.98重量%を有する鉄鉱石を使
用し前記方法に準じて1050℃還元における被覆部のセメ
ント配合量とクラスター指数の関係を示し、第4図は同
じ鉄鉱石を使用して被覆部の厚みとクラスター指数の関
係を調べた結果を示したものであり、この還元温度にお
いてはセメント被覆部を6重量%以上のセメント配合
量,厚さ0.05mm以上で被覆することによってクラスタリ
ングを十分防止しうることが分かる。
As is clear from Fig. 2, limestone-added pellets and Ca
The cluster index is 0% when the reduction temperature is 910 ° C and the cement-coated pellet is 1000 ° C for O surface-attached pellets, but the cluster index increases sharply when the temperature is raised to 1000-1050 ° C. On the other hand, in the case of a coated iron agglomerated ore containing cement-containing iron ore, the cluster index is 0% even when the reduction temperature is raised to 1050 ° C., and the superiority of the present invention can be confirmed. Further, Fig. 3 shows the relationship between the cement content of the coating and the cluster index in the reduction at 1050 ° C according to the above method using iron ore having an iron content of 67.98% by weight, and Fig. 4 shows the same iron ore. The results of investigating the relationship between the thickness of the coating and the cluster index are shown. At this reducing temperature, clustering is performed by coating the cement coating with a cement content of 6 wt% or more and a thickness of 0.05 mm or more. It turns out that it can be sufficiently prevented.

次に直接製鉄用として実績のある原料鉄鉱石の含有鉄
分量から直接製鉄用原料として許容し得る含有鉄分量の
下限値を65重量%と定め、使用鉄鉱石の鉄分量、被覆部
のセメント配合量を第6,7表に示す様に変化させてセメ
ント配合鉄鉱石被覆鉄塊成鉱を製造したときの被覆厚さ
の許容値を調べたところ第5,6図に示す結果が得られ
た。
Next, based on the iron content of raw iron ore, which has a proven track record for direct iron making, the lower limit of the iron content that can be allowed as a raw material for direct iron making was set to 65% by weight, the iron content of the iron ore used, and the cement content of the coating The allowable values of the coating thickness when the cement-containing iron ore-coated iron agglomerates were produced by changing the amount as shown in Tables 6 and 7 were obtained, and the results shown in Figures 5 and 6 were obtained. .

第5図に示す様に、A1及びA3では被覆層の鉄分含有量
が高いので被覆厚さを大きくしても被覆鉄塊成鉱の含有
鉄分が65重量%を下回ることはないが、クラスタリング
を防止する上で必要以上に被覆厚さを高めることは無駄
であると共に余りに被覆厚さが高くなると被覆強度が低
下して被覆層が剥離する恐れがある。一方A2,A4〜A6
は夫々被覆厚さが3.5mm,4.5mm,3.0mm,0.6mmを超えると
被覆鉄塊成鉱の含有鉄分量は下限値(65重量%)より小
さくなる。これらのデータから必要以上の厚膜化を避け
つつ直接製鉄用原料として許容し得る含有鉄分量(下限
値)を下回らない様にする為には、セメント配合鉄鉱石
の被覆厚さは4.5mm以下とすることが望まれる。
As shown in FIG. 5, in A 1 and A 3 , the iron content in the coating layer is high, so even if the coating thickness is increased, the iron content in the coated iron agglomerate does not fall below 65% by weight. To prevent clustering, it is useless to increase the coating thickness more than necessary, and if the coating thickness is too high, the coating strength may decrease and the coating layer may peel off. On the other hand, for A 2 and A 4 to A 6 , when the coating thickness exceeds 3.5 mm, 4.5 mm, 3.0 mm and 0.6 mm, the iron content in the coated iron agglomerate becomes smaller than the lower limit value (65% by weight). From these data, the coating thickness of cement-containing iron ore should be 4.5 mm or less in order to prevent the content of iron content (lower limit value) allowable as a raw material for iron manufacturing directly from being exceeded while avoiding excessive thickening. Is desired.

又第6図に示す様に、使用鉄鉱石の鉄分含有が低い場
合には被覆層のセメント配合量が80重量%を超えると被
覆鉄塊成鉱の含有鉄分量の下限値以上を確保する関係で
被覆層厚さが0.05mmより薄くなる。その結果鉄鉱石中の
鉄分の相互拡散を防止できずクラスタリングが発生す
る。従って被覆層のセメント配合量は80重量%以下とす
ることが望まれる。
Further, as shown in FIG. 6, when the iron content of the iron ore used is low, if the cement content of the coating layer exceeds 80% by weight, the relationship of ensuring the iron content of the coated iron agglomerate or more to be lower than the lower limit value is secured. The coating layer thickness is less than 0.05 mm. As a result, mutual diffusion of iron in iron ore cannot be prevented and clustering occurs. Therefore, it is desirable that the content of cement in the coating layer be 80% by weight or less.

[発明の効果] 本発明は以上の様に構成されており、その効果を要約
すれば下記の通りである。
[Effects of the Invention] The present invention is configured as described above, and the effects thereof are summarized as follows.

(1)極く少量のセメント配合鉄鉱石を被覆するだけで
クラスタリングを可及的に防止することができ、竪型炉
の操業安定性を高めることができる。
(1) Clustering can be prevented as much as possible by coating a very small amount of cement-containing iron ore, and the operational stability of the vertical furnace can be improved.

(2)クラスタリングの防止に伴って還元温度をかなり
高めることができ、還元速度の向上及びそれに伴う生産
性の向上、更には還元ガス発生装置からの還元ガスの熱
ロス低減(即ち高温量の減少)が可能となる。
(2) The reduction temperature can be considerably increased along with the prevention of clustering, the reduction rate can be improved and the productivity can be improved accordingly, and the heat loss of the reducing gas from the reducing gas generator can be reduced (that is, the amount of high temperature can be reduced). ) Is possible.

(3)極く少量のセメント配合鉄鉱石の被覆で十分な効
果が得られるので製鉄原料の鉄品位を殆んど低下させる
ことがない。
(3) Since a sufficient effect can be obtained by coating a very small amount of cement-containing iron ore, the iron quality of the iron-making raw material is hardly deteriorated.

【図面の簡単な説明】[Brief description of drawings]

第1図はセメント配合鉄鉱石被覆造粒ペレットの断面
図、第2図は各種鉄鉱石ペレットを使用した時の還元温
度とクラスター指数の関係を示すグラフ、第3図はセメ
ント配合鉄鉱石被覆造粒ペレットの被覆部の鉄鉱石に対
するセメント配合量とクラスター指数の関係を示すグラ
フ、第4図はセメント被覆造粒ペレットのセメント配合
鉄鉱石による被覆層の厚さとクラスター指数の関係を示
したグラフ、第5図は被覆厚さと被覆鉄塊成鉱の含有鉄
分の関係を示すグラフ、第6図は被覆層セメント配合量
毎にみた被覆層厚さと被覆鉄塊成鉱の含有鉄分の関係を
示すグラフである。
Fig. 1 is a cross-sectional view of cement-mixed iron ore-coated granulated pellets, Fig. 2 is a graph showing the relationship between reduction temperature and cluster index when various iron ore pellets are used, and Fig. 3 is cement-mixed iron ore-coated granules. The graph which shows the relationship between the amount of cement and the cluster index for the iron ore in the coating part of the granular pellets, and FIG. 4 is the graph which shows the relationship between the thickness of the coating layer of the cement-mixed iron ore of the cement-coated granulated pellets and the cluster index, FIG. 5 is a graph showing the relationship between the coating thickness and the iron content contained in the coated iron agglomerated ore, and FIG. 6 is a graph showing the relationship between the coating layer thickness and the iron content contained in the coated iron agglomerated ore according to the cement content of the coating layer cement. Is.

フロントページの続き (56)参考文献 特開 昭49−89606(JP,A)Continuation of front page (56) References JP-A-49-89606 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】直接製鉄法または溶融還元製鉄法に用いら
れる製鉄原料であって、 塊状若しくは球状製鉄原料の表面にセメント配合鉄鉱石
を被覆したものであることを特徴とする耐クラスタリン
グ性に優れた直接製鉄用または溶融還元製鉄用製鉄原
料。
1. An iron-making raw material used in a direct iron-making method or a smelting reduction iron-making method, which is obtained by coating a cemented iron ore on the surface of a massive or spherical iron-making raw material, which is excellent in clustering resistance. Ironmaking raw materials for direct ironmaking or smelting reduction ironmaking.
JP62099084A 1987-04-21 1987-04-21 Steelmaking raw material with excellent clustering resistance for direct ironmaking or smelting reduction ironmaking Expired - Lifetime JPH0826416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62099084A JPH0826416B2 (en) 1987-04-21 1987-04-21 Steelmaking raw material with excellent clustering resistance for direct ironmaking or smelting reduction ironmaking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62099084A JPH0826416B2 (en) 1987-04-21 1987-04-21 Steelmaking raw material with excellent clustering resistance for direct ironmaking or smelting reduction ironmaking

Publications (2)

Publication Number Publication Date
JPS63262426A JPS63262426A (en) 1988-10-28
JPH0826416B2 true JPH0826416B2 (en) 1996-03-13

Family

ID=14238042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62099084A Expired - Lifetime JPH0826416B2 (en) 1987-04-21 1987-04-21 Steelmaking raw material with excellent clustering resistance for direct ironmaking or smelting reduction ironmaking

Country Status (1)

Country Link
JP (1) JPH0826416B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181954A (en) * 1991-01-14 1993-01-26 Hylsa S.A. De C.V. Method for coating iron-bearing particles to be processed in a direct reduction process
US20160153061A1 (en) * 2013-07-29 2016-06-02 Nippon Steel & Sumitomo Metal Corporation Raw material for direct reduction, method of producing raw material for direct reduction, and method of producing reduced iron

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4989606A (en) * 1972-12-27 1974-08-27

Also Published As

Publication number Publication date
JPS63262426A (en) 1988-10-28

Similar Documents

Publication Publication Date Title
KR100470089B1 (en) Method for producing metallic iron
TWI237061B (en) Process for producing particulate iron metal
TW533237B (en) Method for producing granular metal
JP5762403B2 (en) Method for producing aggregate for raw materials charged in blast furnace from metal oxide-containing fine material
WO2011138954A1 (en) Process for production of metal iron
EP0207779B1 (en) Direct reduction process using shaft furnace
US3751241A (en) Method for producing weather-resistant superfluxed metallized pellets from iron-bearing fines and a superfluxed metallized pellet produced thereby
JPH0826416B2 (en) Steelmaking raw material with excellent clustering resistance for direct ironmaking or smelting reduction ironmaking
JP2009041107A (en) Method for manufacturing granular metal
CN104419824A (en) Material distribution method for producing pre-reduced sinter
JPH0645829B2 (en) Sintering raw material and method for producing sintered ore
JPS6280230A (en) Unfired high-titanium pellet
CA1204943A (en) Process of producing sponge iron by a direct reduction of iron oxide-containing material
JPS62127413A (en) Raw material charging method for blast furnace
JP3510408B2 (en) Method for producing coke for iron-containing metallurgy and iron-containing granulated product
JPH02225627A (en) Production of sintered ore
JPH0583620B2 (en)
JP5671426B2 (en) Manufacturing method of granular metallic iron
JPH0587571B2 (en)
JPH06220549A (en) Pretreatment of raw material to be sintered
JP3678034B2 (en) Method for producing partially reduced iron
JPH0364571B2 (en)
JP2001133158A (en) Method for operating rotary kiln
JPS60248827A (en) Preliminary treatment of sintered raw material
JP2003328045A (en) PROCESS FOR TREATING Ca-CONTAINING DUST