JPH08264036A - Dc power cable - Google Patents

Dc power cable

Info

Publication number
JPH08264036A
JPH08264036A JP7066314A JP6631495A JPH08264036A JP H08264036 A JPH08264036 A JP H08264036A JP 7066314 A JP7066314 A JP 7066314A JP 6631495 A JP6631495 A JP 6631495A JP H08264036 A JPH08264036 A JP H08264036A
Authority
JP
Japan
Prior art keywords
cross
insulator
polyethylene
power cable
linked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7066314A
Other languages
Japanese (ja)
Inventor
Ayako Yokoyama
綾子 横山
Hiroyuki Miyata
裕之 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP7066314A priority Critical patent/JPH08264036A/en
Publication of JPH08264036A publication Critical patent/JPH08264036A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To improve the space charge characteristic when a DC voltage is applied to an insulator and practically use a DC power cable as a tidal current power cable by providing the insulator made of cross-linked polyethylene having the prescribed cross-linking degree on the DC power cable. CONSTITUTION: The insulator of this DC power cable is made of cross-linked polyethylene, and the cross-linking degree is set within the range of 30-70% in the gel fraction display. For forming the insulator, a cross-linking agent made of an organic peroxide such as dicumyl peroxide is added and kneaded to low-density polyethylene having the density of 0.93g/cm<3> or below, it is pressed and covered on a conductor to form a semiconductor layer and a sheath, and low-density ethylene is cross--linked. When the type, added quantity, and cross-linking temperature of the cross-linking agent are changed, the cross- linking degree can be freely adjusted within the range of 30-70%. As another method, low-density polyethylene is extruded and covered on the conductor to form an insulator, then an electron beam is irradiated, low-density polyethylene is cross-linked, and the insulator of cross-linked polyethylene can be obtained. When the radiation quantity of the electron beam is changed, the cross-linking degree is set to 30-70%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、直流送電に用いられ
る直流電力ケーブルに関し、その絶縁体を架橋ポリエチ
レンで構成したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC power cable used for DC power transmission, in which the insulator is made of crosslinked polyethylene.

【0002】[0002]

【従来の技術】直流送電用電力ケーブルとして実用され
ているものは、油浸絶縁ケーブル(OFケーブル)に限
られている。油浸絶縁ケーブルは、導体上に絶縁紙を多
層にわたって巻回し、この絶縁紙および絶縁紙間の微小
な空隙に絶縁油を常時加圧状態で含浸、充填せしめて絶
縁体としたものであり、電離現象が起こらず、絶縁体が
劣化しない、電流容量を大きくとれる絶縁体の厚さを薄
くすることができるなどの特長があり、高圧から超高圧
に至るまでの交流送電および直流送電に広く使用され、
特に超高圧ケーブル分野での地中送電線の主流となって
いる。
2. Description of the Related Art Practically used power cables for DC power transmission are limited to oil-immersed insulation cables (OF cables). The oil-immersed insulated cable is a conductor in which insulating paper is wound in multiple layers on a conductor, and the insulating paper and the minute gaps between the insulating paper are constantly impregnated and filled with insulating oil under pressure to form an insulator. Widely used for AC and DC power transmission from high voltage to ultra-high voltage, because it has features such as no ionization phenomenon, no deterioration of the insulator, and reduction in the thickness of the insulator that can achieve a large current capacity. Is
In particular, it has become the mainstream of underground power transmission lines in the field of ultra high voltage cables.

【0003】ところが、この油浸絶縁ケーブルにあって
は、常時油圧を加える必要があること、油分析が必要で
あること、油漏れによる環境汚染がありうること、火災
時に安全性が保証されないことなどの欠点がある。この
ため、このようなメンテナンス上の欠点のない直流電力
ケーブルとして、交流送電用に既に実用化されている架
橋ポリエチレンからなる絶縁体を有する架橋ポリエチレ
ンからなる絶縁体を有する架橋ポリエチレン絶縁ケーブ
ル(CVケーブル)を用いることが考えられる。
However, in this oil-immersed insulated cable, it is necessary to constantly apply hydraulic pressure, it is necessary to analyze oil, there is the possibility of environmental pollution due to oil leakage, and safety is not guaranteed during a fire. There are drawbacks such as. Therefore, as a DC power cable without such a defect in maintenance, a crosslinked polyethylene insulated cable (CV cable) having an insulator made of crosslinked polyethylene having an insulator made of crosslinked polyethylene that has already been put into practical use for AC power transmission is used. ) Can be used.

【0004】しかし、この架橋ポリエチレン絶縁ケーブ
ルを直流送電に使用した場合には、架橋ポリエチレンか
らなる絶縁体中に蓄積される空間電荷量が多くなって、
空間電荷特性が未架橋の低密度ポリエチレン、高密度ポ
リエチレンなどの他の絶縁材料よりも劣り、実用に供し
得ない欠点がある。
However, when this crosslinked polyethylene insulated cable is used for DC power transmission, the amount of space charge accumulated in the insulator made of crosslinked polyethylene increases,
Space charge characteristics are inferior to other insulating materials such as uncrosslinked low-density polyethylene and high-density polyethylene and have a drawback that they cannot be put to practical use.

【0005】[0005]

【発明が解決しようとする課題】よって、この発明にお
ける課題は、架橋ポリエチレン絶縁ケーブルの架橋ポリ
エチレンからなる絶縁体の直流印加時の空間電荷特性を
改善し、直流送電用ケーブルとして使用できるようにす
ることにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to improve the space charge characteristics of an insulator made of crosslinked polyethylene of a crosslinked polyethylene insulated cable when a direct current is applied, so that the cable can be used as a DC power transmission cable. Especially.

【0006】[0006]

【課題を解決するための手段】かかる課題は、絶縁体を
なす架橋ポリエチレンのゲル分率による架橋度を30〜
70%の範囲とすることで解決される。
The object of the present invention is to increase the degree of cross-linking by the gel fraction of cross-linked polyethylene forming an insulator to 30 to 30.
It is solved by setting the range to 70%.

【0007】以下、本発明を詳しく説明する。本発明の
直流電力ケーブルは、その絶縁体が架橋ポリエチレンか
らなり、その架橋度がゲル分率による表示で30〜70
%の範囲にあるものである。架橋ポリエチレンからなる
絶縁体の形成方法としては、密度0.93g/cm3
下の低密度ポリエチレンに、ジクミルパーオキサイドな
どの有機過酸化物からなる架橋剤を添加、混練し、これ
を導体上に押出被覆し、半導電層、シースなどを形成し
たのち、ついでこれを架橋塔などで加熱することで、低
密度ポリエチレンを架橋する方法がある。この場合に
は、架橋剤の種類、添加量、架橋温度などを変化させる
ことによって、架橋度を30〜70%の範囲で自由に調
整できる。
The present invention will be described in detail below. In the DC power cable of the present invention, the insulator is made of cross-linked polyethylene, and the degree of cross-linking is represented by gel fraction of 30 to 70.
It is in the range of%. As a method for forming an insulator made of cross-linked polyethylene, a low-density polyethylene having a density of 0.93 g / cm 3 or less is added with a cross-linking agent made of an organic peroxide such as dicumyl peroxide and kneaded, and the resulting mixture is placed on a conductor. There is a method in which the low-density polyethylene is cross-linked by extrusion coating on the above to form a semiconductive layer, a sheath, etc., and then heating this in a cross-linking tower or the like. In this case, the degree of crosslinking can be freely adjusted within the range of 30 to 70% by changing the type of crosslinking agent, the addition amount, the crosslinking temperature and the like.

【0008】また、別の方法として、導体上に低密度ポ
リエチレンを押出被覆して絶縁体としたのち、これに電
子線を照射して、低密度ポリエチレンを電子線架橋し、
架橋ポリエチレンの絶縁体とすることができる。この場
合には、電子線の照射線量を変化させることでその架橋
度を30〜70%の範囲に制御することができる。
As another method, low density polyethylene is extrusion-coated on a conductor to form an insulator, which is then irradiated with an electron beam to crosslink the low density polyethylene with an electron beam.
It can be an insulator of cross-linked polyethylene. In this case, the degree of crosslinking can be controlled within the range of 30 to 70% by changing the irradiation dose of the electron beam.

【0009】さらに、別の形成方法として、低密度ポリ
エチレンに有機シラン化合物、有機過酸化物などの触媒
を添加し、押出機中で溶融混練し、低密度ポリエチレン
に有機シラン化合物をグラフトし、このグラフト物を導
体上に押出被覆して絶縁体としたのち、この絶縁体を有
機錫化合物などの触媒の存在下、温水、水蒸気などの水
と接触させることにより低密度ポリエチレンを架橋(シ
ラン架橋)するものがある。この場合には、有機シラン
化合物のグラフト率、架橋条件等を変化することで、そ
の架橋度を30〜70%とすることができる。
Further, as another forming method, a catalyst such as an organic silane compound or an organic peroxide is added to low density polyethylene and melt-kneaded in an extruder to graft the low density polyethylene with the organic silane compound. After extruding the graft on the conductor to form an insulator, the insulator is brought into contact with water such as hot water or steam in the presence of a catalyst such as an organotin compound to crosslink low-density polyethylene (silane crosslink). There is something to do. In this case, the degree of crosslinking can be set to 30 to 70% by changing the grafting ratio of the organic silane compound, the crosslinking conditions and the like.

【0010】本発明では、絶縁体の架橋度は、架橋ポリ
エチレンを沸騰キシレンに溶解し、その不溶分の重量か
ら算出されるゲル分率をもって表示する。また、本発明
では、このような絶縁体の架橋度が30%未満となる
と、絶縁体としての耐熱性、耐薬品性、耐ストレスクラ
ッキング性などが未架橋の低密度ポリエチレンと同程度
にまで低下し、不都合となる。一方、架橋度が70%を
越えると空間電荷量軽減の効果が得られない。
In the present invention, the degree of crosslinking of the insulator is expressed by the gel fraction calculated from the weight of the insoluble matter obtained by dissolving the crosslinked polyethylene in boiling xylene. Further, in the present invention, when the degree of crosslinking of such an insulator is less than 30%, the heat resistance, chemical resistance, stress cracking resistance and the like of the insulator are reduced to the same level as that of uncrosslinked low density polyethylene. However, it becomes inconvenient. On the other hand, if the degree of crosslinking exceeds 70%, the effect of reducing the space charge amount cannot be obtained.

【0011】また、本発明にあっては、この架橋度が3
0〜70%の架橋ポリエチレンからなる絶縁体には、必
要に応じ少量のカーボンブラック、架橋助剤、無機充填
剤、電圧安定剤などが配合されていてもよい。
In the present invention, the degree of crosslinking is 3
If necessary, a small amount of carbon black, a cross-linking aid, an inorganic filler, a voltage stabilizer, etc. may be added to the insulator composed of 0 to 70% of cross-linked polyethylene.

【0012】このような構成の直流ケーブルにあって
は、後述の実験例の結果から明らかなように、直流電圧
印加時の空間電荷蓄積量が減少し、空間電荷特性が向上
し、直流ケーブルとして実用に供しえるものとなる。
In the DC cable having such a structure, as will be apparent from the results of experimental examples described later, the amount of space charge accumulated when a DC voltage is applied is improved and the space charge characteristics are improved. It can be put to practical use.

【0013】(実験例1〜6)密度0.92g/c
3 、メルトインデックス1.5の低密度ポリエチレン
にジクミルパーオキサイドを種々の添加量で添加し、混
練したのち、シート状試験片に押出成形し、種々の架橋
温度にて架橋して、架橋度85%(実験例1)、架橋度
70%(実験例2)、架橋度50%(実験例3)、架橋
度30%(実験例4)の試験片を得た。また、比較のた
め、上記低密度ポリエチレンのみからなる未架橋の試験
片(実験例5)および密度0.94g/cm3 、メルト
インデックス1.0の高密度ポリエチレンのみからなる
未架橋の試験片(実験例6)も用意した。
(Experimental Examples 1 to 6) Density 0.92 g / c
m 3, was added at various amount of dicumyl peroxide in a low density polyethylene melt index 1.5, it was kneaded and extruded into a sheet-shaped test piece, and cross-linked by various crosslinking temperature, the crosslinking Test pieces having a degree of crosslinking of 85% (Experimental Example 1), a degree of crosslinking of 70% (Experimental Example 2), a degree of crosslinking of 50% (Experimental Example 3) and a degree of crosslinking of 30% (Experimental Example 4) were obtained. Further, for comparison, an uncrosslinked test piece (Experimental Example 5) made of only the low density polyethylene and an uncrosslinked test piece made of only high density polyethylene having a density of 0.94 g / cm 3 and a melt index of 1.0 ( Experimental example 6) was also prepared.

【0014】これらの6種の試験片につき、パルス静電
応力法によって、その空間蓄積電荷量を測定した。印加
直流電圧は60kVとし、電極間間隙は2mmとし、電
圧印加時間を3時間とした。結果を図1ないし図6に示
す。図1は従来の架橋度85%の試験片(実験例1)に
ついての結果を、図2は架橋度70%の試験片(実験例
2)についての結果を、図3は架橋度50%の試験片
(実験例3)についての結果を、図4は架橋度30%の
試験片(実験例4)の結果を、図5は未架橋低密度ポリ
エチレンの試験片(実験例5)の結果を、図6は未架橋
高密度ポリエチレンの試験片の結果を示す。
With respect to these six kinds of test pieces, the space accumulated charge amount was measured by the pulse electrostatic stress method. The applied DC voltage was 60 kV, the gap between the electrodes was 2 mm, and the voltage application time was 3 hours. The results are shown in FIGS. 1 to 6. FIG. 1 shows the results for a conventional test piece having a degree of crosslinking of 85% (Experimental Example 1), FIG. 2 shows the result for a test piece having a degree of crosslinking of 70% (Experimental Example 2), and FIG. The results for the test piece (Experimental Example 3) are shown in FIG. 4, the results for the test piece with a crosslinking degree of 30% (Experimental Example 4), and the results for the uncrosslinked low-density polyethylene test piece (Experimental Example 5). FIG. 6 shows the results of uncrosslinked high-density polyethylene test pieces.

【0015】これらの結果から、架橋度を70〜30%
とすることで、空間蓄積電荷量が大きく減少することが
明らかである。
From these results, the degree of crosslinking is 70 to 30%.
Therefore, it is clear that the amount of spatially accumulated charges is greatly reduced.

【0016】(実施例,従来例)密度0.92g/cm
3 、メルトインデックス1.2の低密度ポリエチレンに
ジクミルパーオキサイドを種々の添加量で添加、混練
し、これを実効断面積60mm2 の導体上に内部半導電
層および外部半導電層との同時押出被覆により、厚み
2.5mmの絶縁体を形成しこれを架橋して、3種の電
力ケーブルとした。これらの電力ケーブルについて、直
流破壊電圧およびImp破壊電圧を試験温度90℃にて
測定した。結果を表1に示す。
(Example, Conventional example) Density 0.92 g / cm
3. Dicumyl peroxide was added to low density polyethylene with melt index 1.2 at various addition amounts and kneaded, and this was mixed with an inner semiconductive layer and an outer semiconductive layer on a conductor with an effective area of 60 mm 2. By extrusion coating, an insulator having a thickness of 2.5 mm was formed and cross-linked to obtain three types of power cables. The DC breakdown voltage and the Imp breakdown voltage of these power cables were measured at a test temperature of 90 ° C. The results are shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】表1の結果から、本発明の電力ケーブルで
は高温での絶縁破壊特性が未架橋ポリエチレン絶縁ケー
ブルよりも良好であることがわかる。
From the results in Table 1, it can be seen that the power cable of the present invention has better dielectric breakdown characteristics at high temperature than the uncrosslinked polyethylene insulated cable.

【0019】[0019]

【発明の効果】以上説明したように、この発明の直流電
力ケーブルは、絶縁体が架橋度30〜70%の架橋ポリ
エチレンからなるものであるので、直流電圧印加の際に
絶縁体中に蓄積される空間電荷量が大幅に減少する。ま
た高温時の絶縁破壊特性も未架橋ポリエチレンからなる
絶縁体を有するケーブルよりも良好となるなどの効果を
示す。
As described above, in the DC power cable of the present invention, the insulator is made of cross-linked polyethylene having a cross-linking degree of 30 to 70%, so that it is accumulated in the insulator when a DC voltage is applied. The amount of space charge is significantly reduced. Further, the dielectric breakdown characteristic at high temperature is also improved as compared with a cable having an insulator made of uncrosslinked polyethylene.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実験例の結果を示すグラフである。FIG. 1 is a graph showing the results of an experimental example.

【図2】 実験例の結果を示すグラフである。FIG. 2 is a graph showing the results of an experimental example.

【図3】 実験例の結果を示すグラフである。FIG. 3 is a graph showing the results of an experimental example.

【図4】 実験例の結果を示すグラフである。FIG. 4 is a graph showing the results of an experimental example.

【図5】 実験例の結果を示すグラフである。FIG. 5 is a graph showing the results of an experimental example.

【図6】 実験例の結果を示すグラフである。FIG. 6 is a graph showing the results of an experimental example.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ゲル分率で表した架橋度が30〜70%
の架橋ポリエチレンからなる絶縁体を有することを特徴
とする直流電力ケーブル。
1. The degree of crosslinking, expressed as a gel fraction, is 30 to 70%.
A DC power cable characterized by having an insulator made of the cross-linked polyethylene of.
JP7066314A 1995-03-24 1995-03-24 Dc power cable Pending JPH08264036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7066314A JPH08264036A (en) 1995-03-24 1995-03-24 Dc power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7066314A JPH08264036A (en) 1995-03-24 1995-03-24 Dc power cable

Publications (1)

Publication Number Publication Date
JPH08264036A true JPH08264036A (en) 1996-10-11

Family

ID=13312254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7066314A Pending JPH08264036A (en) 1995-03-24 1995-03-24 Dc power cable

Country Status (1)

Country Link
JP (1) JPH08264036A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073795A1 (en) * 2000-03-30 2001-10-04 Nkt Research Center A/S An insulated electric direct current cable
CN114792577A (en) * 2021-09-24 2022-07-26 特变电工山东鲁能泰山电缆有限公司 Insulation system and high voltage direct current cable

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073795A1 (en) * 2000-03-30 2001-10-04 Nkt Research Center A/S An insulated electric direct current cable
CN114792577A (en) * 2021-09-24 2022-07-26 特变电工山东鲁能泰山电缆有限公司 Insulation system and high voltage direct current cable
CN114792577B (en) * 2021-09-24 2023-05-30 特变电工山东鲁能泰山电缆有限公司 Insulation structure and high-voltage direct-current cable

Similar Documents

Publication Publication Date Title
AU2015400020B2 (en) Electric power cable and a process for the production of the power cable
JPH08264036A (en) Dc power cable
US20200126687A1 (en) Electric cable having a protecting layer
JPH05217423A (en) Tubular element for thermal recoating stress suppression use
JPH11224542A (en) Crosslinked polyethylene insulated power cable
JPH103823A (en) Direct current power cable insulated by cross-linked polyethylene
JPH0765633A (en) Dc cable
JP2014072133A (en) Dc power cable
JPH09231839A (en) Direct current cable
JPH0620530A (en) Water tree resistant cable
JPS6259842B2 (en)
JP3341593B2 (en) Electrical insulating composition and electric wires and cables
JPH07107806B2 (en) Power cable
JPH09129039A (en) Dc cable
GB2043078A (en) Irradiation cross-linked polymeric insulation for electric cable
JPH0425642B2 (en)
JPH0515007B2 (en)
JPH0465031A (en) Direct current cable
JPS6355721B2 (en)
JPH08199013A (en) Semiconductive resin composition and crosslinked polyethylene insulated power cable
JPS6086140A (en) Electrically insulating composition
JPS59101708A (en) High pressure cable
JPS5947404B2 (en) insulated wire
JPH10289619A (en) Dc power cable
JPH0689608A (en) Electric insulator composition and wire/cable