JPH08263153A - Electric motor device - Google Patents

Electric motor device

Info

Publication number
JPH08263153A
JPH08263153A JP7064149A JP6414995A JPH08263153A JP H08263153 A JPH08263153 A JP H08263153A JP 7064149 A JP7064149 A JP 7064149A JP 6414995 A JP6414995 A JP 6414995A JP H08263153 A JPH08263153 A JP H08263153A
Authority
JP
Japan
Prior art keywords
reactive power
motor
induction motor
power
filter function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7064149A
Other languages
Japanese (ja)
Inventor
Toshio Yoshida
利夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP7064149A priority Critical patent/JPH08263153A/en
Publication of JPH08263153A publication Critical patent/JPH08263153A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE: To prevent a voltage drop and a power factor decrease by eliminating total reactive power and to prevent higher harmonic trouble by supplying compensated reactive power which is as large as motor input reactive power and is in lead condition by means of a quick response type active filter function part. CONSTITUTION: The reactive power detection part 11 of the active filter function part 10 detects reactive power QM inputted to an induction motor 1M with response of about 1ms (1/10 as long as a half cycle). A reactive power compensating circuit consisting of a self-excited inverter 13 can output compensated reactive power QC through a transformer T10 and also controls the self-excited inverter 13 (PWM control) to adjust the magnitude and lead or lag of the compensated reactive power QC. The compensated reactive power QC is supplied to the line connecting the induction motor IM and a system L. A control part 12 controls the self-excited inverter 13 so that the compensated reactive power QC is as large as the motor input reactive power (delay reactive power) QM detected by the reactive power detection part 11 and leads it.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、誘導電動機とアクティ
ブフィルタ機能部とを組み合わせてなる電動機装置に関
し、始動時における電圧降下を防ぎ、始動時及び定常時
における力率悪化や高調波障害を防いで、効率の良い運
転ができ、電源品質を向上させることができるように工
夫したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric motor device which is a combination of an induction motor and an active filter function section, and prevents a voltage drop at the time of starting and prevents power factor deterioration and harmonic interference at the time of starting and in a steady state. In this way, it is devised so that efficient operation can be performed and the power supply quality can be improved.

【0002】[0002]

【従来の技術】誘導電動機(IM)ではモータ始動時に
おいて、モータ電流が大きく力率が悪い。つまり、IM
には固定子と回転子の間にギャップがあるため、特に始
動時における力率低下が顕著にあらわれる。図2はIM
におけるモータ電流I1 及び力率pfと時間tとの関係
を示し、図3はIMにおけるモータ電流I1 及び力率p
fとすべりSとの関係を示す。両図に示すように、始動
時において力率pfが大きく低下することがわかる。
2. Description of the Related Art In an induction motor (IM), the motor current is large and the power factor is poor when the motor is started. That is, IM
Since there is a gap between the stator and the rotor, the reduction in power factor is particularly noticeable at the start. Figure 2 is IM
Shows the relationship between the motor current I 1 and power factor pf and time t in the motor current in FIG. 3 IM I 1 and power factor p
The relationship between f and slip S is shown. As shown in both figures, it can be seen that the power factor pf drops significantly at the time of starting.

【0003】IMによりポンプやコンベア等を駆動する
場合には、モータを高頻度で運転・停止するため、始動
に起因する力率低下が頻繁に発生する。力率が低下する
と無効電力が増え電圧が低下するため、頻繁に電圧が変
動する。かかる恒常的な電圧変動は、電源の品質向上に
とって大きな障害となっていた。
When the pump or the conveyor is driven by the IM, the motor is frequently operated and stopped, so that the power factor is frequently decreased due to the start. When the power factor decreases, the reactive power increases and the voltage decreases, so the voltage changes frequently. Such constant voltage fluctuation has been a major obstacle to improving the quality of the power supply.

【0004】なお、電圧変動(降下)ΔVは次式(1)
により示される。 ΔV=p・r+q・x≒q・x(%) ……(1) 但し p:所定MVAに換算した有効電力(%) r:所定MVAに換算した抵抗分(%) q:所定MVAに換算した無効電力(%) x:所定MVAに換算したリアクタンス分(%)
The voltage fluctuation (drop) ΔV is expressed by the following equation (1)
Indicated by. ΔV = p · r + q · x≈q · x (%) (1) where p: active power (%) converted to a predetermined MVA r: resistance (%) converted to a predetermined MVA q: converted to a predetermined MVA Reactive power (%) x: Reactance amount (%) converted to the specified MVA

【0005】従来においては、定常時の力率低下に対し
ては図4に示すような対策を施こしていた。即ち同図に
示すように、各誘導電動機IMには、変圧器T及び遮断
器CBを介して系統Lから交流電力が供給される。そし
て各誘導電動機IMにコンデンサCを並列に接続して定
常時の力率低下を防いできた。
Conventionally, a measure as shown in FIG. 4 has been taken against the decrease in the power factor in a steady state. That is, as shown in the figure, AC power is supplied to each induction motor IM from the grid L via the transformer T and the circuit breaker CB. Then, a capacitor C was connected in parallel to each induction motor IM to prevent the power factor from being lowered in a steady state.

【0006】定常時の力率低下に対しては図4に示す対
策を施こすことにより力率改善が可能であったが、始動
時では定常時の5〜6倍のモータ電流I1 が流れ力率p
fも0.2〜0.3程度まで大きく下がってしまう。こ
のように始動時には力率pfが大きく下がり、電源に対
して大きな障害ではあったが、始動時間はポンプでは5
〜10秒、ファンでは15〜40秒と短いため、従来で
は始動時の力率低下に対しては特別な工夫をしていなか
った。
Although it was possible to improve the power factor by taking the measures shown in FIG. 4 against the decrease in the power factor in the steady state, a motor current I 1 which is 5 to 6 times that in the steady state flows at the time of starting. Power factor p
f also drops significantly to about 0.2 to 0.3. In this way, the power factor pf dropped significantly at the time of starting, which was a great obstacle to the power supply, but the starting time was 5 for the pump.
Since it is as short as -10 seconds and 15-40 seconds for a fan, conventionally, no special measures have been taken to reduce the power factor at the time of starting.

【0007】なお始動時の電圧降下を補償しようとし
て、仮にコンデンサCの容量を大きくしておくと、定常
運転に入ったときに、無効電力は過補償となり進み無効
電力により過電圧となってしまう。したがって単にコン
デンサCの容量を大きくするわけにはいかない。
If the capacity of the capacitor C is increased in order to compensate for the voltage drop at the time of starting, the reactive power will be overcompensated and the overvoltage will be generated by the reactive power when the steady operation is started. Therefore, the capacity of the capacitor C cannot be simply increased.

【0008】[0008]

【発明が解決しようとする課題】ところで最近では、系
統Lに接続される負荷として、高調波を発生する負荷
(コンピュータ,OA機器,FA機器,インバータ等)
が多くなってきている。このような高調波発生負荷から
発生した高調波が、図4に示すモータ回路系統に侵入す
ると、誘導電動機IM等の回路内リアクタンス分と力率
改善用のコンデンサCとの共振周波数において、拡大共
振を起こすことがある。拡大共振が生じると、図4に示
すモータ回路系統で部分過電流に起因する部分的過熱が
生じ機器焼損が生じるおそれがある。また拡大共振した
高調波電流が系統に流入することにより、系統に接続さ
れているOA機器,FA機器,計測器等が正常に機能し
なくなる現象が生じるおそれもある。更にOA機器等の
外部機器に部分的過熱が生じるおそれもあった。
By the way, recently, as loads connected to the system L, loads generating harmonics (computers, OA equipment, FA equipment, inverters, etc.).
Is increasing. When a harmonic generated from such a harmonic generation load enters the motor circuit system shown in FIG. 4, the expanded resonance occurs at the resonance frequency of the in-circuit reactance of the induction motor IM and the power factor improving capacitor C. May occur. If the expanded resonance occurs, there is a possibility that partial overheating may occur in the motor circuit system shown in FIG. Further, the harmonic current that has undergone the expanded resonance may flow into the system, which may cause a phenomenon in which the OA device, the FA device, the measuring instrument, and the like connected to the system do not function normally. Furthermore, there is a possibility that external equipment such as office automation equipment may be partially overheated.

【0009】図5は、力率改善用のコンデンサCを並列
接続したときの低圧母線に流れる電流を示し、図6は、
力率改善用のコンデンサCを接続していないときに低圧
母線に流れる電流を示す。両図を比べると理解されるよ
うに、コンデンサCを接続すると拡大共振により電流が
激しく振動しているが、コンデンサCを接続していない
ときには電流はほとんど基本波成分のみとなっている。
FIG. 5 shows a current flowing through a low voltage bus when a power factor improving capacitor C is connected in parallel, and FIG. 6 shows
The current flowing through the low-voltage bus when the power factor improving capacitor C is not connected is shown. As can be understood by comparing both figures, when the capacitor C is connected, the current vibrates violently due to the expanded resonance, but when the capacitor C is not connected, the current is almost only the fundamental wave component.

【0010】更に従来では、始動時において電圧降下が
生じているにもかかわらず何の対策も施こされておら
ず、頻繁に運転・停止する誘導電動機があると、電圧変
動が恒常的に発生し、電源品質が悪化していた。
Further, in the prior art, even if a voltage drop occurs at the time of starting, no measures have been taken, and if there is an induction motor that is frequently operated / stopped, a voltage fluctuation occurs constantly. However, the power quality had deteriorated.

【0011】また始動時において系統の力率が悪くなり
電源の皮相電力が増える結果、運用効率が悪かった。
Further, at the time of start-up, the power factor of the system deteriorates and the apparent power of the power source increases, resulting in poor operating efficiency.

【0012】本発明は、上記従来技術に鑑み、誘導電動
機を始動させたときに電圧を降下させることなく、且
つ、始動時及び定常時において高調波障害を発生するこ
となく、高効率運転のできる電動機装置を提供すること
を目的とする。
In view of the above-mentioned prior art, the present invention enables highly efficient operation without lowering the voltage when the induction motor is started, and without causing harmonic interference at the time of starting and in the steady state. An object is to provide an electric motor device.

【0013】[0013]

【課題を解決するための手段】上記課題を解決する本発
明は、系統から電力を受けて駆動する誘導電動機と、前
記系統に補償無効電力を供給する自励インバータでなる
無効電力補償回路と、前記誘導電動機に入力されるモー
タ入力無効電力を検出する無効電力検出部と、補償無効
電力の大きさが前記モータ入力無効電力の大きさと等し
く且つ補償無効電力の位相を進みとするように前記無効
電力補償回路のインバータを位相制御する位相制御部と
でなるアクティブフィルタ機能部と、により構成したこ
とを特徴とする。
SUMMARY OF THE INVENTION The present invention for solving the above-mentioned problems includes an induction motor driven by receiving electric power from a grid, and a reactive power compensating circuit including a self-excited inverter for supplying compensating reactive power to the grid. A reactive power detection unit that detects a motor input reactive power input to the induction motor; and a reactive power detection unit that makes the magnitude of the compensating reactive power equal to the magnitude of the motor input reactive power and advances the phase of the compensating reactive power. And an active filter function unit including a phase control unit that controls the phase of the inverter of the power compensation circuit.

【0014】[0014]

【作用】本発明ではモータ入力無効電力と同じ大きさで
進みとなっている補償無効電力を速応型のアクティブフ
ィルタ機能部により供給することにより、総合した無効
電力を零にして電圧降下,力率悪化,高調波障害を防
ぐ。
According to the present invention, the reactive power which is the same as the motor input reactive power and is advanced by the same amount is supplied by the active filter function section of the quick response type, so that the total reactive power becomes zero and the voltage drop and the power factor are reduced. Prevents deterioration and harmonic interference.

【0015】[0015]

【実施例】以下に本発明の実施例を図面に基づき詳細に
説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0016】図1は本発明の実施例を示す。同図に示す
ように、複数の誘導電動機IMには、変圧器T及び遮断
器CBを介して系統Lから電力が供給される。これら誘
導電動機IMには、アクティブフィルタ機能部10が付
設されている。
FIG. 1 shows an embodiment of the present invention. As shown in the figure, electric power is supplied from the grid L to the plurality of induction motors IM via the transformer T and the circuit breaker CB. An active filter function unit 10 is attached to these induction motors IM.

【0017】このアクティブフィルタ機能部10は、無
効電力検出部11と位相制御部12と自励インバータ1
3とトランスT10とで構成されている。このうち自励イ
ンバータ13により無効電力補償回路が形成されてい
る。
The active filter function section 10 includes a reactive power detection section 11, a phase control section 12 and a self-excited inverter 1.
3 and a transformer T 10 . Of these, the self-excited inverter 13 forms a reactive power compensation circuit.

【0018】アクティブフィルタ機能部10の無効電力
検出部11では、誘導電動機IMに入力される無効電力
M を1ms程度(半サイクルの1/10)の応答性で検
出する。自励インバータ13でなる無効電力補償回路
は、変圧器T10を介して補償無効電力QC を出力するこ
とができ、しかも自励インバータ13を位相制御(PW
M制御)して補償無効電力QC の大きさ及び進み・遅れ
を調整することができる。補償無効電力QC は誘導電動
機IMと系統Lを結ぶラインに供給される。位相制御部
12は、無効電力検出部11で検出したモータ入力無効
電力(遅れ無効電力)QM に対して、補償無効電力QC
が同じ大きさで進み無効電力となるように、自励インバ
ータ13の位相制御をする。
The reactive power detection unit 11 of the active filter function unit 10 detects the reactive power Q M input to the induction motor IM with a response of about 1 ms (1/10 of half cycle). Var compensator circuit comprising a self-excited inverter 13 can output the compensation reactive power Q C through the transformer T 10, moreover phase control self-excited inverter 13 (PW
M Control) to be able to adjust the size and lead-lag compensation reactive power Q C. Compensating reactive power Q C is supplied to the line connecting the induction motor IM and the system L. The phase control unit 12 compares the motor input reactive power (delay reactive power) Q M detected by the reactive power detection unit 11 with the compensation reactive power Q C.
The phase control of the self-excited inverter 13 is performed so that the electric power advances with the same magnitude and becomes reactive power.

【0019】このようにアクティブフィルタ機能部10
が作動するため、電源側である系統Lでは、モータ入力
無効電力(遅れ)QM と補償無効電力(進み)QC とが
相殺され、無効電力はほぼ零となる。しかもアクティブ
フィルタ機能部10の応答がきわめて速いので、この状
態は始動時であっても定常時であっても保持される。
In this way, the active filter function unit 10
Order but to operate, the system L is a power supply side, (lead) motor input reactive power (delay) Q M and the compensation reactive power and Q C are canceled, the reactive power is substantially zero. Moreover, since the response of the active filter function unit 10 is extremely fast, this state is maintained both at the time of starting and at the time of steady state.

【0020】図1に示す実施例では無効電力q(=QC
−QM )がほぼ零であるため電圧変動ΔVは次式(2)
で示される。 ΔV=p・r+q・x≒p・r(%) ……(2) 有効電力Pは始動時であっても定常時であってもあまり
変わらず、抵抗分rはリアクタンス分xの5〜10%で
あるので、式(2)からもわかるように、本実施例の電
圧変動ΔVはきわめて小さい。かくて本実施例では定常
時は言うまでもなく始動時においても電圧降下が生じる
ことなく電源品質が向上する。
In the embodiment shown in FIG. 1, the reactive power q (= Q C
Since −Q M ) is almost zero, the voltage fluctuation ΔV is calculated by the following equation (2).
Indicated by. ΔV = p · r + q · x≈p · r (%) (2) The active power P does not change much at the start or in the steady state, and the resistance r is 5 to 10 of the reactance x. %, The voltage variation ΔV of this embodiment is extremely small, as can be seen from the equation (2). Thus, in this embodiment, the power supply quality is improved without causing a voltage drop not only during steady operation but also during starting.

【0021】このように始動時においても電圧降下が生
じないので、運転・停止を頻繁に行う誘導電動機IMを
用いる場合であっても電源品質を良好に保つことができ
る。
As described above, since no voltage drop occurs even at the time of starting, it is possible to maintain good power supply quality even when using the induction motor IM that is frequently operated and stopped.

【0022】また本実施例では無効電力がほぼ零となり
電源側から無効電力をとらないので、始動時及び定常時
において力率がほぼ1になり効率の良い運転状態を実現
できる。
Further, in this embodiment, since the reactive power is almost zero and the reactive power is not taken from the power source side, the power factor becomes almost 1 at the time of starting and in the steady state, and an efficient operating state can be realized.

【0023】更に電源側から高調波が入ってきても、モ
ータに並列のコンデンサがないため、拡大共振が生じる
ことはない。よって拡大共振に起因する回路共振や部分
過熱による機器焼損やOA機器等への高調波障害が生じ
ることはない。
Further, even if harmonics come in from the power source side, there is no parallel capacitor in the motor, so expanded resonance does not occur. Therefore, the circuit resonance caused by the expanded resonance and the device burnout due to partial overheating and the harmonic interference to the OA device and the like will not occur.

【0024】なお図1に示す実施例では、複数台の誘導
電動機IMに1台のアクティブフィルタ機能部10を備
えたが、1台の誘導電動機に1台のアクティブフィルタ
機能部10を備えるようにしてもよい。
In the embodiment shown in FIG. 1, a plurality of induction motors IM are provided with one active filter function section 10. However, one induction motor is provided with one active filter function section 10. May be.

【0025】また誘導電動機IMにアクティブフィルタ
機能部10を一体的にマウントするようにしてもよい。
このように一体的にマウントしておけばこの配線は、I
M単体を配線するのと同じ工事だけで済む。
The active filter function section 10 may be integrally mounted on the induction motor IM.
If it is mounted integrally like this, this wiring will be I
Only the same construction as wiring M alone is required.

【0026】更に本発明は、誘導電動機が三相誘導電動
機であっても単相誘導電動機であっても適用することが
できる。
Further, the present invention can be applied regardless of whether the induction motor is a three-phase induction motor or a single-phase induction motor.

【0027】[0027]

【発明の効果】以上実施例と共に具体的に説明したよう
に本発明によれば、モータ無効電力を相殺する補償無効
電力を、インバータを用いたアクティブフィルタ機能部
により速応的に供給するようにした。このため定常時の
みならず始動時であっても無効電力をほぼ零とすること
ができる。したがって次のような効果が得られる。 始動時における電圧降下を防止でき、電源品質を良
好に保つことができる。 運転力率が始動時及び定常時において良好であり、
効率の良い運転ができる。 高調波障害を発生しない。
According to the present invention as described in detail with reference to the embodiments, the reactive power for compensating the motor reactive power is supplied promptly by the active filter function section using the inverter. did. Therefore, the reactive power can be made almost zero not only at the steady state but also at the starting time. Therefore, the following effects can be obtained. It is possible to prevent a voltage drop at the time of start-up and maintain good power quality. The operating power factor is good at start-up and steady state,
You can drive efficiently. Does not cause harmonic interference.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す回路図。FIG. 1 is a circuit diagram showing an embodiment of the present invention.

【図2】モータ電流及び力率と時間との関係を示す特性
図。
FIG. 2 is a characteristic diagram showing a relationship between motor current and power factor and time.

【図3】モータ電流及び力率とすべりとの関係を示す特
性図。
FIG. 3 is a characteristic diagram showing the relationship between motor current and power factor and slip.

【図4】従来技術を示す回路図。FIG. 4 is a circuit diagram showing a conventional technique.

【図5】高調波を含む電流を示す波形図。FIG. 5 is a waveform diagram showing a current including harmonics.

【図6】高調波を含まない電流を示す波形図。FIG. 6 is a waveform diagram showing a current that does not include harmonics.

【符号の説明】[Explanation of symbols]

10 アクティブフィルタ機能部 11 無効電力検出部 12 位相制御部 13 自励インバータ T10 変圧器 IM 誘導電動機 QM モータ入力無効電力 QC 補償無効電力10 Active filter function unit 11 reactive power detector 12 phase control unit 13 self-excited inverter T 10 transformer IM induction motor Q M motor input reactive power Q C compensated reactive power

【手続補正書】[Procedure amendment]

【提出日】平成7年5月22日[Submission date] May 22, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Name of item to be corrected] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】従来においては、定常時の力率低下に対し
ては図4に示すような対策を施こしていた。即ち同図に
示すように、各誘導電動機IMには、変圧器T及び遮断
器CB及び熱動継電器THRを介して系統Lから交流電
力が供給される。そして各誘導電動機IMにコンデンサ
Cを並列に接続して定常時の力率低下を防いできた。
Conventionally, a measure as shown in FIG. 4 has been taken against the decrease in the power factor in a steady state. That is, as shown in the figure, AC power is supplied to each induction motor IM from the grid L via the transformer T, the circuit breaker CB, and the thermal relay THR . Then, a capacitor C was connected in parallel to each induction motor IM to prevent the power factor from being lowered in a steady state.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】[0008]

【発明が解決しようとする課題】ところで最近では、系
統Lに接続される負荷として、高調波を発生する負荷
(コンピュータ,OA機器,FA機器,インバータ等)
が多くなってきている。このような高調波発生負荷から
発生した高調波が、図4に示すモータ回路系統に侵入す
ると、系統や誘導電動機等のリアクタンス分と力率改善
用のコンデンサCのリアクタンス分との共振周波数にお
いて、拡大共振を起こすことがある。拡大共振が生じる
と、図4に示すモータ回路系統で部分過電流に起因する
部分的過熱が生じ機器焼損が生じるおそれがある。また
拡大共振した高調波電流が系統に流入することにより、
系統に接続されているOA機器,FA機器,計測器等が
正常に機能しなくなる現象が生じるおそれもある。更に
OA機器等の外部機器に部分的過熱が生じるおそれもあ
った。
By the way, recently, as loads connected to the system L, loads generating harmonics (computers, OA equipment, FA equipment, inverters, etc.).
Is increasing. When a harmonic generated from such a harmonic generating load enters the motor circuit system shown in FIG. 4, at the resonance frequency between the reactance component of the system and the induction motor and the reactance component of the power factor improving capacitor C, May cause extended resonance. If the expanded resonance occurs, there is a possibility that partial overheating may occur in the motor circuit system shown in FIG. In addition, the harmonic current that has expanded resonance flows into the system,
There is a possibility that OA equipment, FA equipment, measuring instruments, etc. connected to the system may not function normally. Furthermore, there is a possibility that external equipment such as office automation equipment may be partially overheated.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】[0013]

【課題を解決するための手段】上記課題を解決する本発
明は、系統から電力を受けて駆動する誘導電動機と、前
記系統に補償無効電力を供給する自励インバータでなる
無効電力補償回路と、前記誘導電動機に入力されるモー
タ入力遅れ無効電力を検出する無効電力検出部と、補償
無効電力の大きさが前記モータ入力遅れ無効電力の大き
さと等しく且つ補償無効電力の位相を進みとするように
前記無効電力補償回路のインバータを制御する制御部
でなるアクティブフィルタ機能部と、により構成したこ
とを特徴とする。
SUMMARY OF THE INVENTION The present invention for solving the above-mentioned problems includes an induction motor driven by receiving electric power from a grid, and a reactive power compensating circuit including a self-excited inverter for supplying compensating reactive power to the grid. A reactive power detection unit that detects a motor input delay reactive power input to the induction motor, and a magnitude of the compensation reactive power is equal to the magnitude of the motor input delay reactive power and the phase of the compensation reactive power is advanced. And an active filter function unit including a control unit for controlling the inverter of the reactive power compensation circuit.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】[0014]

【作用】本発明ではモータ入力無効電力と同じ大きさで
進みとなっている補償無効電力を速応型のアクティブフ
ィルタ機能部により供給することにより、総合した無効
電力を零にして電圧降下,力率悪化を防ぐとともに、
調波障害を防ぐ。
According to the present invention, the reactive power which is the same as the motor input reactive power and is advanced by the same amount is supplied by the active filter function section of the quick response type, so that the total reactive power becomes zero and the voltage drop and the power factor are reduced. Prevents deterioration and harmonic interference.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】このアクティブフィルタ機能部10は、無
効電力検出部11と制御部12と自励インバータ13と
トランスT10とで構成されている。このうち自励インバ
ータ13により無効電力補償回路が形成されている。
The active filter function section 10 is composed of a reactive power detection section 11, a control section 12, a self-excited inverter 13 and a transformer T 10 . Of these, the self-excited inverter 13 forms a reactive power compensation circuit.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】アクティブフィルタ機能部10の無効電力
検出部11では、誘導電動機IMに入力される無効電力
M を1ms程度(半サイクルの1/10)の応答性で検
出する。自励インバータ13でなる無効電力補償回路
は、変圧器T10を介して補償無効電力QC を出力するこ
とができ、しかも自励インバータ13を制御(PWM制
御)して補償無効電力QC の大きさ及び進み・遅れを調
整することができる。補償無効電力QC は誘導電動機I
Mと系統Lを結ぶラインに供給される。制御部12は、
無効電力検出部11で検出したモータ入力無効電力(遅
れ無効電力)QM に対して、補償無効電力QC が同じ大
きさで進み無効電力となるように、自励インバータ13
を制御する。
The reactive power detection unit 11 of the active filter function unit 10 detects the reactive power Q M input to the induction motor IM with a response of about 1 ms (1/10 of half cycle). Var compensator circuit comprising a self-excited inverter 13, a transformer via the T 10 can output the compensation reactive power Q C, yet the compensation reactive power Q C the self-excited inverter 13 control (PWM control) to The size and lead / lag can be adjusted. Compensation reactive power Q C an induction motor I
It is supplied to the line connecting M and system L. The control unit 12
Against reactive power detector 11 detects the motor input reactive power (lagging reactive power) Q M, as compensation reactive power Q C is leading reactive power at the same size, self-excited inverter 13
To control .

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】符号の説明[Correction target item name] Explanation of code

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【符号の説明】 10 アクティブフィルタ機能部 11 無効電力検出部 12 制御部 13 自励インバータ T10 変圧器 IM 誘導電動機 QM モータ入力無効電力 QC 補償無効電力[Description of reference numerals] 10 active filter function unit 11 reactive power detector 12 control unit 13 self-excited inverter T 10 transformer IM induction motor Q M motor input reactive power Q C compensated reactive power

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 FIG.

【手続補正10】[Procedure Amendment 10]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図4[Name of item to be corrected] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図4】 [Figure 4]

【手続補正11】[Procedure Amendment 11]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図6[Name of item to be corrected] Figure 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図6】 [Figure 6]

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 系統から電力を受けて駆動する誘導電動
機と、 前記系統に補償無効電力を供給する自励インバータでな
る無効電力補償回路と、前記誘導電動機に入力されるモ
ータ入力無効電力を検出する無効電力検出部と、補償無
効電力の大きさが前記モータ入力無効電力の大きさと等
しく且つ補償無効電力の位相を進みとするように前記無
効電力補償回路のインバータを位相制御する位相制御部
とでなるアクティブフィルタ機能部と、 により構成したことを特徴とする電動機装置。
1. An induction motor that receives electric power from a grid to drive it, a reactive power compensation circuit that is a self-excited inverter that supplies compensation reactive power to the grid, and a motor input reactive power that is input to the induction motor is detected. And a phase control unit that controls the phase of the inverter of the reactive power compensation circuit so that the magnitude of the compensation reactive power is equal to the magnitude of the motor input reactive power and the phase of the compensation reactive power is advanced. An electric motor device comprising:
【請求項2】 前記誘導電動機は1台で前記アクティブ
フィルタ機能部は1台であることを特徴とする請求項1
の電動機装置。
2. The induction motor is one unit, and the active filter function unit is one unit.
Electric motor equipment.
【請求項3】 前記誘導電動機は複数台で前記アクティ
ブフィルタ機能部は1台であることを特徴とする請求項
1の電動機装置。
3. The electric motor device according to claim 1, wherein the induction motor has a plurality of units, and the active filter function unit has a single unit.
【請求項4】 前記アクティブフィルタ機能部は、前記
誘導電動機に一体的にマウントされていることを特徴と
する請求項1または請求項2の電動機装置。
4. The electric motor device according to claim 1, wherein the active filter function section is integrally mounted on the induction motor.
【請求項5】 前記誘導電動機は三相誘導電動機である
ことを特徴とする請求項1または請求項2または請求項
3または請求項4の電動機装置。
5. The electric motor apparatus according to claim 1, 2, 3 or 4, wherein the induction motor is a three-phase induction motor.
【請求項6】 前記誘導電動機は単相誘導電動機である
ことを特徴とする請求項1または請求項2または請求項
3または請求項4の電動機装置。
6. The electric motor apparatus according to claim 1, 2, 3 or 4, wherein the induction motor is a single-phase induction motor.
JP7064149A 1995-03-23 1995-03-23 Electric motor device Pending JPH08263153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7064149A JPH08263153A (en) 1995-03-23 1995-03-23 Electric motor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7064149A JPH08263153A (en) 1995-03-23 1995-03-23 Electric motor device

Publications (1)

Publication Number Publication Date
JPH08263153A true JPH08263153A (en) 1996-10-11

Family

ID=13249742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7064149A Pending JPH08263153A (en) 1995-03-23 1995-03-23 Electric motor device

Country Status (1)

Country Link
JP (1) JPH08263153A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT500258A1 (en) * 2002-07-31 2005-11-15 Va Tech Elin Ebg Elektronik Gm METHOD AND DEVICE FOR ACCESSING ELECTRICAL MACHINES
WO2020003619A1 (en) * 2018-06-27 2020-01-02 株式会社日立製作所 Power conversion system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT500258A1 (en) * 2002-07-31 2005-11-15 Va Tech Elin Ebg Elektronik Gm METHOD AND DEVICE FOR ACCESSING ELECTRICAL MACHINES
WO2020003619A1 (en) * 2018-06-27 2020-01-02 株式会社日立製作所 Power conversion system
JP2020005395A (en) * 2018-06-27 2020-01-09 株式会社日立製作所 Power conversion system

Similar Documents

Publication Publication Date Title
US7746024B2 (en) Electric engine start system with active rectifier
US8988024B2 (en) Method and control system for driving a brushless electric motor
US10658948B2 (en) DC/AC electrical power converter device for a variable-speed motor and a high-speed motor
US4721861A (en) Turbine helper drive apparatus
JPH05308799A (en) Constant frequency power supply equipment
EP1641098A1 (en) Motor drive system
JPH08263153A (en) Electric motor device
EP3872979A1 (en) Control of an induction generator of a wind turbine
JP3793788B2 (en) Constant voltage control method for induction generator
JP3187257B2 (en) Operation control device for AC excitation synchronous machine
JPS6038960B2 (en) Inverter voltage control device
JPH10105261A (en) Power converting device
JPH06245388A (en) Reverse charge protecting device for system linkage inverter
JP3242814B2 (en) Power system compensation controller
JP2747804B2 (en) Power supply for playback type device
US11165378B2 (en) Method for controlling a system for generating electric power for a power distribution network of an aircraft
JP2003102177A (en) Method of controlling power converter
JP3217564B2 (en) Output voltage control device for power converter
JP3302854B2 (en) Induction motor control device
JPH06261584A (en) Control device of ac motor
Barrado et al. Analysis of voltage control for a self-excited induction generator using a three-phase four-wire electronic converter
JPH06284798A (en) Secondary exciter for ac excited synchronous machine
JPH11143561A (en) Voltage variation suppressing device
JPH1042469A (en) Power supply system
KR20230139057A (en) Proportional resonant control apparatus based on stationary reference frame of 3 phase 4 wire inverter

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030506