JPH08262144A - Radiation detecting element and radiation detector - Google Patents

Radiation detecting element and radiation detector

Info

Publication number
JPH08262144A
JPH08262144A JP7084599A JP8459995A JPH08262144A JP H08262144 A JPH08262144 A JP H08262144A JP 7084599 A JP7084599 A JP 7084599A JP 8459995 A JP8459995 A JP 8459995A JP H08262144 A JPH08262144 A JP H08262144A
Authority
JP
Japan
Prior art keywords
series
junction
radiation
superconducting tunnel
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7084599A
Other languages
Japanese (ja)
Other versions
JP3561788B2 (en
Inventor
Masahiko Kurakado
雅彦 倉門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP08459995A priority Critical patent/JP3561788B2/en
Publication of JPH08262144A publication Critical patent/JPH08262144A/en
Application granted granted Critical
Publication of JP3561788B2 publication Critical patent/JP3561788B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To measure the deviation of the incident position of radiation from a central junction by measuring the time difference between the signals generated from a series junction surrounding a dead zone by phonons generated by the radiation absorbed to a substrate and the central junction or the ratio of the magnitude of the signals and to improve the energy resolution by correcting the incident position dependency of the magnitude of the signals from the series junction around the dead zone by using the deviation. CONSTITUTION: A central junction 5 is provided by connecting in series a plurality of superconducting tunnel junctions on a substrate 1. A dead zone 2 having an area which is ten or more times larger than that of the central junction 5 and no superconducting tunnel junction is provided around the junction 5 and one or a plurality of series junctions 3 are provided around the zone 2 so as to surround the zone 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は放射線検出素子に関する
ものである。詳しく述べると、本発明はX線、γ線、荷
電粒子などの放射線や、赤外線などの光の検出素子に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation detecting element. More specifically, the present invention relates to a detection element for detecting radiation such as X-rays, γ-rays and charged particles, and infrared rays.

【0002】[0002]

【従来の技術】多数の超伝導トンネル接合を基板の上に
直列に接続し、放射線の基板への入射によって基板中で
発生したフォノンを超伝導トンネル接合で吸収させ、そ
れによって直列の超伝導トンネル接合から信号電荷を取
り出し、その電荷の大きさから放射線のエネルギーの大
きさを測定する直列超伝導トンネル接合を用いた放射線
検出素子(図1)(特願平2−73430)では、多数
の超伝導トンネル接合を基板の上のある部分に一様に配
置した場合には信号の大きさが放射線の入射位置に大き
く依存してしまうために、エネルギー分解能が大きく損
なわれてしまうという欠点があった。
2. Description of the Related Art A large number of superconducting tunnel junctions are connected in series on a substrate so that phonons generated in the substrate due to the incidence of radiation on the substrate are absorbed by the superconducting tunnel junction, whereby a series of superconducting tunnel junctions are obtained. In a radiation detection element using a series superconducting tunnel junction (Fig. 1) (Japanese Patent Application No. 2-73430), in which a signal charge is extracted from the junction and the magnitude of the radiation energy is measured from the magnitude of the charge, If the conduction tunnel junction is evenly arranged on a certain part of the substrate, the signal strength greatly depends on the incident position of the radiation, and the energy resolution is greatly impaired. .

【0003】これは一つには、放射線の入射位置によっ
て信号に寄与するフォノンの割合が異なってしまう、例
えばその部分の端のほうに入射した放射線によるフォノ
ンは接合に吸収されずにその部分から散逸してしまう割
合が高くなるためである。もう一つの理由としては、放
射線の入射位置によってフォノンが主に吸収される接合
が異なってくるが、接合の感度の一様性が充分ではない
ことが考えられる。
One of the reasons for this is that the proportion of phonons contributing to the signal varies depending on the incident position of the radiation. For example, the phonon due to the radiation incident on the end of that portion is not absorbed by the junction and is emitted from that portion. This is because the rate of dissipation is high. Another reason is that the phonons are mainly absorbed in different junctions depending on the incident position of the radiation, but the uniformity of the junction sensitivity is not sufficient.

【0004】基板上に超伝導トンネル接合のない不感領
域を設け、不感領域のさらに周りには不感領域を取り囲
むように1個の直列超伝導トンネル接合を設けた放射線
検出素子(図2)(特願平4−150981)では、不
感領域の中心の近くで発生したフォノンは不感領域内を
拡散し、殆ど全ての接合で同時に吸収されると考えられ
る。そのため、信号の大きさの放射線入射位置依存性は
不感領域のない素子に比べて大幅に低減される。しかし
ながら、エネルギー高分解能を実現する上ではまだ充分
ではなかった。
A radiation detecting element in which a dead region without a superconducting tunnel junction is provided on a substrate, and one series superconducting tunnel junction is provided further around the dead region so as to surround the dead region (FIG. 2) (special feature). In Japanese Patent Application No. 4-150981), it is considered that the phonons generated near the center of the dead region diffuse in the dead region and are absorbed by almost all the junctions at the same time. Therefore, the dependency of the signal intensity on the radiation incident position is significantly reduced as compared with the element having no dead region. However, it was not enough to realize high energy resolution.

【0005】また、図3に示すように、直列超伝導トン
ネル接合を2つ設けた場合には、横方向の1次元の位置
検出能が得られることは知られていたが、縦方向の位置
分解能がなく、縦方向の入射位置によって信号の大きさ
や波形が異なってくるために、横方向の位置分解能も限
られていたし、その位置分解能を利用してエネルギー分
解能を向上させることも困難であった。なお、ここでい
う直列超伝導トンネル接合とは、特願平2−73430
にあるように、1列の直列に接続された接合だけでな
く、複数の直列を並列に接続したものも含んでいる。
Further, as shown in FIG. 3, it has been known that when two series superconducting tunnel junctions are provided, one-dimensional position detecting ability in the lateral direction can be obtained. Since there is no resolution and the signal size and waveform differ depending on the incident position in the vertical direction, the horizontal position resolution was also limited, and it is difficult to improve the energy resolution by using that position resolution. It was In addition, the series superconducting tunnel junction referred to here is Japanese Patent Application No. 2-73430.
As described in (1), not only a single row of serially connected junctions but also a plurality of series connected in parallel are included.

【0006】[0006]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、直列超伝導トンネル接合を用いた放射線検
出器のエネルギー分解能を向上させることである。ま
た、本発明が解決しようとする他の課題は、上記の課題
に加えて、放射線検出器に放射線の基板面内における2
次元の入射位置を測定することができる機能を付与する
ことである。
The problem to be solved by the present invention is to improve the energy resolution of a radiation detector using a series superconducting tunnel junction. Further, another problem to be solved by the present invention is, in addition to the above problem, a radiation detector in which the radiation within the plane of the substrate is
It is to add a function capable of measuring the incident position of a dimension.

【0007】[0007]

【課題を解決するための手段】上記の課題は以下の手段
によって解決できる。多数の超伝導トンネル接合を基板
の上に直列に接続し、放射線の基板への入射によって基
板中で発生したフォノンを超伝導トンネル接合で吸収さ
せ、それによって直列の超伝導トンネル接合から信号電
荷を取り出し、その電荷の大きさから放射線のエネルギ
ーの大きさを測定する直列超伝導トンネル接合を用いた
放射線検出素子において、図4に示すように、基板上に
超伝導トンネル接合のない不感領域を設け、不感領域の
さらに周りには不感領域を取り囲むように独立に作動す
る4つ以上の直列超伝導トンネル接合を設けたことを特
徴とする放射線検出素子。
The above-mentioned problems can be solved by the following means. A large number of superconducting tunnel junctions are connected in series on the substrate, and the phonons generated in the substrate due to the incidence of radiation on the substrate are absorbed by the superconducting tunnel junctions, so that the signal charges from the series superconducting tunnel junctions are absorbed. In a radiation detecting element using a series superconducting tunnel junction in which the magnitude of the radiation energy is extracted from the magnitude of the electric charge, a dead region having no superconducting tunnel junction is provided on the substrate as shown in FIG. A radiation detecting element, further comprising four or more series superconducting tunnel junctions that operate independently so as to surround the dead region, further around the dead region.

【0008】上記の素子とそれぞれの直列超伝導トンネ
ル接合からの信号を独立に増幅する手段と、それらの信
号の時間差を測定する手段あるいは信号の大きさの比を
測定する手段とを備えていることを特徴とする放射線検
出器。
It is provided with means for independently amplifying the signals from the above-mentioned devices and respective series superconducting tunnel junctions, and means for measuring the time difference between these signals or means for measuring the ratio of the signal magnitudes. A radiation detector characterized by the above.

【0009】多数の超伝導トンネル接合を基板の上に直
列に接続し、放射線の基板への入射によって基板中で発
生したフォノンを超伝導トンネル接合で吸収させ、それ
によって直列の超伝導トンネル接合から信号電荷を取り
出し、その電荷の大きさから放射線のエネルギーの大き
さを測定する直列超伝導トンネル接合を用いた放射線検
出素子において、図5、図6あるいは図7に示すよう
に、基板上に1個あるいは複数個の超伝導トンネル接合
を直列に接続して構成した中心接合を設け、その周りに
は超伝導トンネル接合のない不感領域を設け、不感領域
のさらに周りには不感領域を取り囲むように1個の直列
超伝導トンネル接合あるいは独立に作動する複数の直列
超伝導トンネル接合を設けたことを特徴とする放射線検
出素子。
A large number of superconducting tunnel junctions are connected in series on a substrate, and the phonons generated in the substrate due to the incidence of radiation on the substrate are absorbed by the superconducting tunnel junctions, whereby the superconducting tunnel junctions are connected in series. In a radiation detecting element using a series superconducting tunnel junction for extracting a signal charge and measuring the magnitude of the radiation energy from the magnitude of the charge, as shown in FIG. 5, FIG. 6 or FIG. A central junction consisting of one or more superconducting tunnel junctions connected in series is provided, a dead region without a superconducting tunnel junction is provided around it, and a dead region is surrounded further around the dead region. A radiation detecting element comprising one series superconducting tunnel junction or a plurality of independently operating series superconducting tunnel junctions.

【0010】上記の不感領域の周りに複数の直列超伝導
トンネル接合を設けた素子と、中心接合およびそれぞれ
の直列超伝導トンネル接合からの信号を独立に増幅する
手段と、それらの信号の時間差を測定する手段あるいは
信号の大きさの比を測定する手段とを備えていることを
特徴とする放射線検出器。
An element in which a plurality of series superconducting tunnel junctions are provided around the dead zone, a means for independently amplifying signals from the central junction and each series superconducting tunnel junction, and a time difference between the signals are shown. A radiation detector comprising: a means for measuring or a means for measuring a ratio of signal magnitudes.

【0011】[0011]

【作用】不感領域の周りに不感領域を取り囲むように独
立に作動する4個以上の直列超伝導トンネル接合(直列
接合)を設け、それぞれの直列接合からの信号の時間差
を計ることにより、それぞれの不感領域に入射した放射
線の入射位置を2次元で測定できる。不感領域の周りの
直列接合全体あるいは一部の直列接合からの信号と中心
接合からの信号との時間差あるいはそれらの信号の大き
さの比を計った場合には、入射位置の素子中心からのず
れを測定できる。また、入射位置が測定できるので、信
号の大きさの入射位置依存性を入射位置に応じて補正す
ることができ、エネルギー分解能が向上する。
[Function] By providing four or more series superconducting tunnel junctions (series junctions), which operate independently so as to surround the dead area, by measuring the time difference between the signals from the respective series junctions, The incident position of the radiation incident on the dead region can be measured in two dimensions. Deviation of the incident position from the center of the element when measuring the time difference between the signal from the whole or a part of the series junction around the dead zone and the signal from the center junction or the ratio of the magnitudes of these signals Can be measured. Moreover, since the incident position can be measured, the incident position dependency of the signal magnitude can be corrected according to the incident position, and the energy resolution is improved.

【0012】より詳しく述べると、例えば図4の素子
で、上の直列接合からの信号と下の直列接合からの信号
の発生時間を比べれば、放射線が素子中心に入射した場
合には放射線によって発生したフォノンは両方の直列接
合にほぼ同時に到達するために信号の発生時間はほとん
ど同時となり、中心より上に入射した場合には上の直列
接合からの信号の方が早く発生する。このことを利用し
て図4の素子での放射線のY軸入射位置を測定できる
し、同様の時間差測定を左右の直列接合でも同時に行え
ばX軸方向の入射位置も測定でき、2次元での入射位置
測定ができる。この2次元位置分解能を利用してエネル
ギー分解能を向上させることができる。エネルギーが一
定の放射線を用いて、位置(X,Y)に入射した放射線
による全接合からの信号の大きさの和は中心に入射した
場合のそれのA(X,Y)倍であるという信号の大きさ
の和の放射線入射位置依存性を前もって測っておき、実
際の測定では入射位置(X,Y)に応じて信号の大きさ
の和をA(X,Y)で割ることによって、信号の大きさ
が入射位置に依存してしまうにもかかわらずエネルギー
を高精度で測定することができる。
More specifically, in the element of FIG. 4, for example, comparing the generation times of the signal from the upper series junction and the signal from the lower series junction, when the radiation enters the center of the element, it is generated by the radiation. Since the phonons arrive at both series junctions almost at the same time, the signals are generated almost at the same time, and when incident above the center, the signal from the upper series junction is generated earlier. Utilizing this fact, the Y-axis incident position of the radiation in the device of FIG. 4 can be measured, and the X-axis incident position can be measured by performing the same time difference measurement at the same time in the left and right series junctions. The incident position can be measured. The energy resolution can be improved by utilizing this two-dimensional position resolution. A signal that the sum of the magnitudes of the signals from all junctions due to the radiation incident on the position (X, Y) is A (X, Y) times that at the center when using the radiation having a constant energy. The radiation incident position dependence of the sum of the magnitudes of the signals is measured in advance, and in the actual measurement, the sum of the signal magnitudes is divided by A (X, Y) according to the incident position (X, Y) to obtain the signal. The energy can be measured with high accuracy even though the magnitude of γ depends on the incident position.

【0013】例えば図5の素子で、不感領域の周りの直
列接合からの信号と中心接合からの信号の時間差および
これらの信号の大きさの比も入射位置の素子中心からの
ずれに依存する。不感領域の中心に中心接合を設け、中
心接合と不感領域の周りの直列接合からの信号の時間差
あるいは大きさの比を計ることにより、対象性の高い素
子での放射線の入射位置の素子中心からのずれを精度良
く測定することができ、その結果、信号の大きさの入射
位置依存性を入射位置に応じてより高精度に補正するこ
とができる。
For example, in the element of FIG. 5, the time difference between the signal from the series junction and the signal from the central junction around the dead zone and the ratio of the magnitudes of these signals also depend on the deviation of the incident position from the element center. By providing a center junction at the center of the dead zone and measuring the time difference or magnitude ratio of the signals from the center junction and the series junction around the dead zone, the element center of the radiation incident position in the element with high symmetry can be measured. Can be accurately measured, and as a result, the incident position dependency of the signal magnitude can be corrected with higher accuracy according to the incident position.

【0014】[0014]

【実施例】以下、本発明の実施例を示すことにより、本
発明をより詳細に説明する。いずれの実施例において
も、接合は厚さが約400μm、面積が7mm×7mm
のサファイア基板上に下部電極としてNb膜の上にAl
膜を設け、そのAl膜の表面を酸化してトンネル障壁と
し、その上にNb膜を上部電極とする構造とした。放射
線としては、 210Poからの5.3MeVのα粒子を用
い、基板裏面の素子中心部に照射した。また、基板に平
行に磁場を印加し、直流ジョセフソン電流は抑制した。
The present invention will be described in more detail below by showing examples of the present invention. In each of the examples, the joint has a thickness of about 400 μm and an area of 7 mm × 7 mm.
On the sapphire substrate as a lower electrode on the Nb film as Al
A film was provided, the surface of the Al film was oxidized to form a tunnel barrier, and the Nb film was used as an upper electrode on the tunnel barrier. As the radiation, α-particles of 5.3 MeV from 210 Po were used, and the central portion of the device on the back surface of the substrate was irradiated. Moreover, the magnetic field was applied parallel to the substrate to suppress the direct current Josephson current.

【0015】(実施例1)図4に第1の実施例を示す。
3mm×3mmの不感領域の周りに、独立に動作する1
mm×4mmの直列接合を4つ作製した。α粒子は不感
領域の中心の1mm×1mm領域に裏から照射した。
(Embodiment 1) FIG. 4 shows a first embodiment.
Operates independently around a 3mm x 3mm dead zone 1
Four mm × 4 mm series junctions were produced. The α particles were irradiated from the back to a 1 mm × 1 mm area at the center of the dead area.

【0016】放射線のエネルギーは4つの直列接合から
の信号をそれぞれ増幅し、増幅後の信号の大きさを足し
合わせることにより測定した。その場合、エネルギー分
解能は図2の従来素子と同等であり、約70keVであ
った。
The energy of the radiation was measured by amplifying the signals from the four series junctions and adding up the magnitudes of the amplified signals. In that case, the energy resolution was equivalent to that of the conventional device of FIG. 2, and was about 70 keV.

【0017】図4で見て上と下、および左と右の直列接
合からの信号の時間差を測定することによって、約0.
2mmの精度で2次元の入射位置を測定することができ
た。上と下の直列接合からの信号の時間差は、それぞれ
の直列接合からの信号を増幅した後で、一方の信号には
遅延を掛けて時間差が負とならないようにしておく。遅
延を掛けていない方の信号をスタート信号とし遅延をか
けた信号をストップとして時間−波高変換器(TAC)
に入力することにより、時間差を変換器からの出力の大
きさに変換する。左右の直列接合からの信号も別の増幅
器と遅延器とTACとで同じように処理する。これらに
より面内での入射位置を測定し、同時に各増幅器からの
信号の大きさの和も各放射線毎に測定しておく。同様の
方法によって前もって測定しておいた信号の大きさの入
射位置依存性のデーターを使って各放射線毎の信号の大
きさを補正すると、エネルギー分解能は約55keVに
向上した。
By measuring the time difference of the signals from the top and bottom, and the left and right series junctions as seen in FIG.
It was possible to measure the two-dimensional incident position with an accuracy of 2 mm. Regarding the time difference between the signals from the upper and lower series junctions, one signal is delayed after amplifying the signals from the respective series junctions so that the time difference does not become negative. Time-to-peak converter (TAC) with the delayed signal as the start signal and the delayed signal as the stop signal
The time difference is converted into the magnitude of the output from the converter by inputting to. The signals from the left and right series junctions are similarly processed by another amplifier, delay device and TAC. The incident position in the plane is measured by these, and at the same time, the sum of the magnitudes of the signals from the amplifiers is also measured for each radiation. When the signal magnitude for each radiation was corrected using the incident position dependence data of the signal magnitude measured in advance by the same method, the energy resolution was improved to about 55 keV.

【0018】(実施例2)実施例1の素子と同じ大きさ
の不感領域の周りの幅1mmの領域に1つの直列接合を
設け、不感領域の中心に50μm×50μmの接合を4
個直列に接続した中心接合を設けた。中心接合のアース
端子は直列接合のそれと共通となっている。図5にその
構造を示す。照射した面積等は実施例1と同じである。
(Embodiment 2) One series junction is provided in a region having a width of 1 mm around a dead region having the same size as that of the device of Embodiment 1, and 50 μm × 50 μm junction is formed at the center of the dead region.
A central junction was provided, which was connected in series. The ground terminal of the central junction is common with that of the series junction. The structure is shown in FIG. The irradiated area and the like are the same as in Example 1.

【0019】中心接合と直列接合からの信号の時間差を
測定することによって、放射線入射位置の素子中心から
のずれを約0.2mmの精度で計ることができた。この
場合、2つの増幅器からの信号を処理するだけであるか
ら、時間−波高変換器も1台ですみ、放射線毎に必要な
データーは1つの時間差と直列接合からの信号の大きさ
だけであり、測定は実施例1の場合より簡単であるとい
う利点があった。ただし、この場合には2次元の位置分
解能はない。
By measuring the time difference between the signals from the central junction and the series junction, it was possible to measure the deviation of the radiation incident position from the element center with an accuracy of about 0.2 mm. In this case, since only the signals from the two amplifiers are processed, only one time-to-peak converter is required, and the only data required for each radiation is one time difference and the magnitude of the signal from the series junction. However, there is an advantage that the measurement is simpler than that of the first embodiment. However, in this case, there is no two-dimensional position resolution.

【0020】また、中心接合と直列接合からの信号の大
きさの比を測定した場合には、放射線入射位置の素子中
心からのずれを約0.1mmの精度で測定することがで
きた。この場合、信号の大きさと入射位置のデーターを
同時に測定して入射位置依存性の分を補正すると、エネ
ルギー分解能は約50keVであった。この場合には、
放射線毎に必要なデーターは直列接合からの信号と中心
接合からの信号だけであり、時間−波高変換器は必要な
いという利点もあった。ただし、この場合にも2次元で
の位置分解能はない。
When the ratio of the signal magnitudes from the central junction and the series junction was measured, the deviation of the radiation incident position from the element center could be measured with an accuracy of about 0.1 mm. In this case, the energy resolution was about 50 keV when the signal magnitude and the incident position data were simultaneously measured to correct the incident position dependency. In this case,
The data required for each radiation is only the signal from the series junction and the signal from the central junction, and there is also an advantage that the time-to-peak converter is not required. However, even in this case, there is no two-dimensional position resolution.

【0021】(実施例3)第3の実施例の素子として、
図6に示すように、不感領域の中心に50μm×50μ
mの中心接合を設けたこと以外は実施例1の素子と同じ
素子を作製した。この素子では実施例2とほぼ同じエネ
ルギー分解能と、実施例1とほぼ同じ2次元の入射位置
分解能が得られた。
(Embodiment 3) As an element of the third embodiment,
As shown in FIG. 6, 50 μm × 50 μ at the center of the dead area
An element similar to the element of Example 1 was prepared except that the central junction of m was provided. With this element, almost the same energy resolution as in Example 2 and almost the same two-dimensional incident position resolution as in Example 1 were obtained.

【0022】(実施例4)実施例4を図7に示す。不感
領域が直径が約3mmの円形に近く、中心接合が直径1
00μmの円形接合であり、各直列接合が0.6mm×
1.25mmの2つの直列からなる素子において、実施
例2と同様の手段によって、中心接合からの信号の大き
さと4個の直列接合からの信号の大きさの和との比とで
直列接合からの信号の大きさを補正すると、この素子で
のエネルギー分解能は45keVであった。4個の直列
接合からの信号の時間差を用いて2次元分解能を測定し
た場合は、位置分解能は約0.1mmであった。
(Embodiment 4) Embodiment 4 is shown in FIG. The dead area is close to a circle with a diameter of about 3 mm, and the central joint has a diameter of 1
It is a circular joint of 00 μm, and each series joint is 0.6 mm ×
In an element consisting of two series of 1.25 mm, by the same means as in Example 2, the ratio of the signal magnitude from the central junction to the sum of the signal magnitudes from the four series junctions is When the magnitude of the signal was corrected, the energy resolution of this device was 45 keV. When the two-dimensional resolution was measured using the time difference of the signals from the four series junctions, the position resolution was about 0.1 mm.

【0023】[0023]

【発明の効果】本発明によれば、基板で吸収された放射
線によって発生したフォノンによって不感領域の周りの
直列接合から発生する信号と中心接合からの信号との時
間差あるいは大きさの比を測定して放射線の入射位置の
中心接合位置からのずれを計ることができ、それによっ
て不感領域の周りの直列接合からの信号の大きさの入射
位置依存性を補正してエネルギー分解能を高めることが
できる。
According to the present invention, the time difference or magnitude ratio between the signal generated from the series junction around the dead zone and the signal from the central junction due to the phonons generated by the radiation absorbed in the substrate is measured. The deviation of the incident position of the radiation from the central junction position can be measured, whereby the incident position dependency of the signal magnitude from the series junction around the dead region can be corrected to improve the energy resolution.

【0024】また、不感領域の周りに独立に作動する4
つ以上の直列接合を設けた場合には、それから発生する
信号の時間差から基板面内2次元での放射線の入射位置
も測定することができる。
In addition, it operates independently around the dead zone 4
When three or more series junctions are provided, the radiation incident position in the two-dimensional plane of the substrate can also be measured from the time difference between the signals generated from the series junctions.

【0025】なお、中心接合の面積を大きくし過ぎると
中心接合で吸収されてしまうフォノンの割合が大きくな
ることにより、不感領域の周りの直列接合からの信号の
大きさが放射線入射位置の素子中心からのずれにあまり
にも大きく依存するようになるため、特に中心接合の近
傍に入射した放射線の、エネルギーの補正が困難とな
る。そのため、中心接合の面積は不感領域のそれの10
分の1以下であること、あるいは基板の厚さの二乗以下
であることが好ましい。
Note that if the area of the central junction is made too large, the proportion of phonons absorbed in the central junction increases, so that the magnitude of the signal from the series junction around the dead region is the element center at the radiation incident position. Since it depends too much on the deviation from, it becomes difficult to correct the energy of the radiation particularly near the central junction. Therefore, the area of the central junction is 10 times that of the dead zone.
It is preferably less than or equal to one-half, or less than or equal to the square of the thickness of the substrate.

【0026】また、高い位置分解能を得るためには、不
感領域の面積は基板の厚さの二乗の4倍以上であること
が好ましい。用いる基板としてはフォノンが拡散中にエ
ネルギー的に減衰し難いように、サファイアのような絶
縁体の単結晶基板、あるいはSiやGaAsといった半
導体の単結晶基板、あるいはNbや金といった金属の単
結晶基板が好ましい。
Further, in order to obtain high positional resolution, it is preferable that the area of the dead region is four times or more the square of the thickness of the substrate. As a substrate to be used, a single crystal substrate of an insulator such as sapphire, a single crystal substrate of a semiconductor such as Si or GaAs, or a single crystal substrate of a metal such as Nb or gold is used so that phonons are not easily attenuated in energy during diffusion. Is preferred.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来素子の構造の例である。FIG. 1 is an example of a structure of a conventional element.

【図2】従来素子の構造の例である。FIG. 2 is an example of a structure of a conventional element.

【図3】従来素子の構造の例である。FIG. 3 is an example of a structure of a conventional element.

【図4】本発明の第1の実施例の平面構造図である。FIG. 4 is a plan structure diagram of a first embodiment of the present invention.

【図5】本発明の第2の実施例の平面構造図である。FIG. 5 is a plan structure diagram of a second embodiment of the present invention.

【図6】本発明の第3の実施例の平面構造図である。FIG. 6 is a plan structure diagram of a third embodiment of the present invention.

【図7】本発明の第4の実施例の平面構造図である。FIG. 7 is a plan structural view of a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 不感領域 3 直列超伝導トンネル接合 4 ボンディングパッド 5 中心接合 1 substrate 2 dead region 3 series superconducting tunnel junction 4 bonding pad 5 center junction

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 多数の超伝導トンネル接合を基板の上に
直列に接続し、放射線の基板への入射によって基板中で
発生したフォノンを超伝導トンネル接合で吸収させ、そ
れによって直列の超伝導トンネル接合から信号電荷を取
り出し、その電荷の大きさから放射線のエネルギーの大
きさを測定する直列超伝導トンネル接合を用いた放射線
検出素子において、基板上に超伝導トンネル接合のない
不感領域を設け、不感領域のさらに周りには不感領域を
取り囲むように独立に作動する4つ以上の直列超伝導ト
ンネル接合を設けたことを特徴とする放射線検出素子。
1. A large number of superconducting tunnel junctions are connected in series on a substrate, and phonons generated in the substrate due to incidence of radiation on the substrate are absorbed in the superconducting tunnel junction, whereby a series of superconducting tunnels. In a radiation detection element using a series superconducting tunnel junction that extracts the signal charge from the junction and measures the amount of radiation energy from the magnitude of the charge, a dead area without a superconducting tunnel junction is provided on the substrate A radiation detecting element, further comprising four or more series superconducting tunnel junctions, which operate independently so as to surround a dead region, around the region.
【請求項2】 多数の超伝導トンネル接合を基板の上に
直列に接続し、放射線の基板への入射によって基板中で
発生したフォノンを超伝導トンネル接合で吸収させ、そ
れによって直列の超伝導トンネル接合から信号電荷を取
り出し、その電荷の大きさから放射線のエネルギーの大
きさを測定する直列超伝導トンネル接合を用いた放射線
検出素子において、基板上に1個あるいは複数個の超伝
導トンネル接合を直列に接続して構成した中心接合を設
け、その周りには超伝導トンネル接合のない不感領域を
設け、不感領域のさらに周りには不感領域を取り囲むよ
うに1個の直列超伝導トンネル接合あるいは独立に作動
する複数の直列超伝導トンネル接合を設けたことを特徴
とする放射線検出素子。
2. A plurality of superconducting tunnel junctions are connected in series on a substrate, and the phonons generated in the substrate due to the incidence of radiation on the substrate are absorbed by the superconducting tunnel junction, whereby the series superconducting tunnels. In a radiation detection element using a series superconducting tunnel junction that takes out a signal charge from the junction and measures the magnitude of the radiation energy from the magnitude of the charge, one or more superconducting tunnel junctions are connected in series on the substrate. The central junction is configured by connecting to, and a dead region without a superconducting tunnel junction is provided around it, and one series superconducting tunnel junction or independently so as to surround the dead region further around the dead region. A radiation detecting element comprising a plurality of series superconducting tunnel junctions that operate.
【請求項3】 請求項1あるいは請求項2に記載の不感
領域の周りに複数の直列超伝導トンネル接合を設けた素
子と、中心接合およびそれぞれの直列超伝導トンネル接
合からの信号を独立に増幅する手段と、それらの信号の
時間差を測定する手段あるいは信号の大きさの比を測定
する手段とを備えていることを特徴とする放射線検出
器。
3. An element in which a plurality of series superconducting tunnel junctions are provided around the dead region according to claim 1 or 2, and signals from the central junction and each series superconducting tunnel junction are independently amplified. And a means for measuring the time difference between these signals or a means for measuring the ratio of the signal magnitudes.
JP08459995A 1995-03-17 1995-03-17 Radiation detection element and radiation detector Expired - Fee Related JP3561788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08459995A JP3561788B2 (en) 1995-03-17 1995-03-17 Radiation detection element and radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08459995A JP3561788B2 (en) 1995-03-17 1995-03-17 Radiation detection element and radiation detector

Publications (2)

Publication Number Publication Date
JPH08262144A true JPH08262144A (en) 1996-10-11
JP3561788B2 JP3561788B2 (en) 2004-09-02

Family

ID=13835158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08459995A Expired - Fee Related JP3561788B2 (en) 1995-03-17 1995-03-17 Radiation detection element and radiation detector

Country Status (1)

Country Link
JP (1) JP3561788B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061212A (en) * 2002-07-26 2004-02-26 Masahiko Kurakado Superconductor radiation sensor system
JP2009168827A (en) * 2009-05-01 2009-07-30 Masahiko Kurakado Superconductor radiation sensor system
US8338784B2 (en) 2009-03-05 2012-12-25 Masahiko Kurakado Radiation detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061212A (en) * 2002-07-26 2004-02-26 Masahiko Kurakado Superconductor radiation sensor system
JP4631102B2 (en) * 2002-07-26 2011-02-16 雅彦 倉門 Superconductor radiation sensor system
US8338784B2 (en) 2009-03-05 2012-12-25 Masahiko Kurakado Radiation detector
JP2009168827A (en) * 2009-05-01 2009-07-30 Masahiko Kurakado Superconductor radiation sensor system

Also Published As

Publication number Publication date
JP3561788B2 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
Rehak et al. Progress in semiconductor drift detectors
Pellegrini et al. 3D double sided detector fabrication at IMB-CNM
JP2799036B2 (en) Radiation detection element and radiation detector
US10107924B2 (en) High-efficiency microstructured semiconductor neutron detectors and process to fabricate high-efficiency microstructured semiconductor neutron detectors
WO2008024088A2 (en) Wafer bonded silicon radiation detectors
JP2854550B2 (en) Semiconductor particle detector and manufacturing method thereof
JP3561788B2 (en) Radiation detection element and radiation detector
Bates et al. Characterisation of edgeless technologies for pixellated and strip silicon detectors with a micro-focused X-ray beam
Kenney et al. Observation of beta and X rays with 3-D-architecture silicon microstrip sensors
US3415992A (en) Extended area semiconductor radiation detectors and a novel readout arrangement
JPH09257946A (en) Radiation detection element and radiation detector
US20080073544A1 (en) Device and Method for Measuring the Energy and Position of an Incident Ionising Particle in a Detector
Bubulac et al. Observation of charge‐separating defects in HgCdTe using remote contact electron beam induced current
US6465857B1 (en) Semiconductor particle detector and a method for its manufacture
JP3170650B2 (en) Radiation detection element
Kagan et al. Diamond detector technology: status and perspectives
JP2604114Y2 (en) Radiation detector
JPS603792B2 (en) Multichannel semiconductor radiation detector
RU2248012C2 (en) Low-energy gamma-ray emission and x-ray radiation registrar
JP2003535476A (en) Photodetector for position detection
Heijne Semiconductor detectors in the low countries
Koybasi et al. Edgeless silicon sensors fabricated without support wafer
JPH0221284A (en) Particle beam detector
RU2730045C2 (en) Hybrid pixel detector of ionizing radiations
EP3594723B1 (en) Double response ionizing radiation detector and measuring method using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees