JPH08261935A - Fluorescence detecting method for fluorescence detection type electrophoretic device - Google Patents

Fluorescence detecting method for fluorescence detection type electrophoretic device

Info

Publication number
JPH08261935A
JPH08261935A JP8086515A JP8651596A JPH08261935A JP H08261935 A JPH08261935 A JP H08261935A JP 8086515 A JP8086515 A JP 8086515A JP 8651596 A JP8651596 A JP 8651596A JP H08261935 A JPH08261935 A JP H08261935A
Authority
JP
Japan
Prior art keywords
fluorescence
light
images
prism
fluorescence detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8086515A
Other languages
Japanese (ja)
Other versions
JP2935661B2 (en
Inventor
Hideki Kanbara
秀記 神原
Tetsuo Nishikawa
哲夫 西川
Tomoaki Sumiya
知明 住谷
Keiichi Nagai
啓一 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8086515A priority Critical patent/JP2935661B2/en
Publication of JPH08261935A publication Critical patent/JPH08261935A/en
Application granted granted Critical
Publication of JP2935661B2 publication Critical patent/JP2935661B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide a fluorescence detecting method capable of concurrently distinguishing the signals from DNA fragments marked in many colors with high accuracy and measuring them. CONSTITUTION: A fluorescent image obtained by the laser radiation to a gel electrophoresis separator 2 is image-split into multiple virtual images by prisms 4, 5, the light of the individual split images is wavelength-dispersed by band-pass filters 7, 8, then the images are formed on a detector 9 arid separated and detected as required.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は蛍光検出型電気泳動
装置における蛍光検出方法に関し、さらに詳しくは、発
光波長の異なる複数の蛍光体を用いて塩基配列を決定す
べきDNAを標識し、電気泳動分離した後発する蛍光を
検出することにより前記DNAの塩基配列を決定するの
に好適な蛍光検出型電気泳動装置における蛍光検出方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorescence detection method in a fluorescence detection type electrophoretic device, and more specifically, it uses a plurality of fluorophores having different emission wavelengths to label a DNA whose base sequence is to be determined, and then performs electrophoresis The present invention relates to a fluorescence detection method in a fluorescence detection-type electrophoresis apparatus suitable for determining the base sequence of the DNA by detecting the fluorescence emitted after separation.

【0002】[0002]

【従来の技術】末端塩基種の異なるDNA断片を発光波
長の異なる蛍光体を用いて標識し、ゲル電気泳動分離し
ながら泳動路の一定位置を光照射し、発する蛍光波長と
強度の時間変化から照射部を通過するDNA断片の末端
塩基種を知り、配列決定する手法が発展してきている。
蛍光波長の識別検出には光電子増倍管の前部に4種のバ
ンドパスフィルターを具備した回転フィルターを使用し
たり、透過波長帯の異なるフィルターを具備した2本の
光電子増倍管を用いたりしている。いずれの場合も、い
くつもある泳動路を横切って検出器を掃引し複数試料D
NAの塩基配列を決定しており、一方、ゲル板の側面か
らレーザー光を入射し、各測定点を連続照射し、得られ
る蛍光像をプリズムで分光し、二次元検出器で検出する
方式も提案されている。
2. Description of the Related Art DNA fragments having different terminal base species are labeled with fluorophores having different emission wavelengths, and a certain position of the migration path is irradiated with light while being subjected to gel electrophoresis separation. A technique for determining the terminal base species of a DNA fragment passing through the irradiation part and determining the sequence has been developed.
To identify and detect the fluorescence wavelength, use a rotary filter equipped with four types of bandpass filters in front of the photomultiplier tube, or use two photomultiplier tubes equipped with filters with different transmission wavelength bands. are doing. In either case, the detector is swept across multiple migration paths and multiple samples D
The base sequence of NA has been determined. On the other hand, a method in which laser light is incident from the side of the gel plate, each measurement point is continuously irradiated, and the resulting fluorescence image is dispersed by a prism and detected by a two-dimensional detector is also available. Proposed.

【0003】しかしながら、上記検出器を掃引する計測
系ではゲルの1つの測定点あたりの計測時間の割合α
は、測定領域の長さをl、照射レーザービームの幅をd
とすると α=d/4l となる。通常dは0.2〜0.3mm、l≧100mm
なので、α≦10-3となり、連続光照射、受光した場合
の10-3程度の蛍光受光量しか得られず、高感度が得ら
れない難点があった。一方、上記のプリズムで分光し、
二次元検出器で検出する方式では受光量は大きくこの難
点は克服されうる。しかし、プリズムによる分光精度は
低く、精度の高い塩基識別に難点があった。
However, in the measurement system in which the above-mentioned detector is swept, the ratio α of the measurement time per one measurement point of the gel is α
Is the length of the measurement area is l and the width of the irradiation laser beam is d
Then, α = d / 4l. Usually d is 0.2 to 0.3 mm, l ≧ 100 mm
Therefore, α ≦ 10 −3 , and only a fluorescent light receiving amount of about 10 −3 can be obtained when continuous light irradiation and light reception are performed, and high sensitivity cannot be obtained. On the other hand, disperse with the above prism,
In the method of detecting by the two-dimensional detector, the received light amount is large and this difficulty can be overcome. However, the spectral accuracy of the prism is low, and there is a difficulty in highly accurate base identification.

【0004】[0004]

【発明が解決しようとする課題】上記のように、従来技
術は感度を高める点で配慮がなされていなかったり、あ
るいは精度高い波長分離について配慮がなく、高精度の
塩基配列決定ができなかった。本発明の目的は上記難点
を解消し、高精度・高感度のDNA分離検出が可能な方
法を提供することにある。
As described above, in the prior art, no consideration was given to enhancing the sensitivity, or no consideration was given to wavelength separation with high precision, and it was not possible to determine the base sequence with high precision. An object of the present invention is to solve the above problems and provide a method capable of highly accurate and highly sensitive DNA separation detection.

【0005】[0005]

【課題を解決するための手段】本発明者らは研究の結
果、ゲル電気泳動分離板へのレーザー照射によって得ら
れる蛍光画像をプリズム等の像分割手段によってまず複
数の虚像に像分割し、ついで、前記像分割された個々の
像の光をバンドパスフィルターによって波長分散させる
等のプロセスを経て、これらの像を検出器上に結像させ
て所要の分離検出を行うようにすることにより、上記目
的が良好に達成されることを見出し、この新知見に基づ
いてさらに研究を重ねて本発明を完成するに至った。
Means for Solving the Problems As a result of research by the present inventors, the fluorescence image obtained by irradiating the gel electrophoresis separation plate with a laser is first divided into a plurality of virtual images by an image dividing means such as a prism, and then, By performing a process of wavelength-dispersing the light of each of the image-divided individual images by a bandpass filter, these images are formed on a detector to perform required separation detection, It has been found that the object can be achieved satisfactorily, and further research has been conducted based on this new finding to complete the present invention.

【0006】したがって、本発明は、異なる蛍光体で標
識された試料を複数の泳動路で泳動分離したのちレーザ
ー光を照射して検出する蛍光検出型電気泳動装置におけ
る蛍光検出方法において、泳動路の泳動開始点から所定
の位置で複数の泳動路をレーザー光で照射し、前記蛍光
体を励起して、レーザー光が照射される通路に沿って発
光線像を形成するステップと、発光線像を複数の像に分
割するステップと、分割された複数の像の光のそれぞれ
の光路で波長を選択するステップと、分割された複数の
像を光検出器に結像させるステップとを有し、泳動分離
された試料を標識する蛍光体からの蛍光を検出すること
を特徴とする。
Therefore, the present invention provides a fluorescence detection method in a fluorescence detection type electrophoretic apparatus in which samples labeled with different fluorescent substances are electrophoretically separated in a plurality of migration paths and then detected by irradiating laser light. A step of irradiating a plurality of migration paths with laser light at a predetermined position from the migration start point to excite the phosphor to form a light emission line image along a path irradiated with the laser light; A step of dividing the image into a plurality of images, a step of selecting a wavelength in each optical path of the light of the plurality of divided images, and a step of forming the plurality of divided images on a photodetector. It is characterized in that fluorescence from a fluorophore that labels the separated sample is detected.

【0007】発光線像は、レーザー光を泳動路と交差す
る方向から複数の泳動路を貫通するように照射すること
で、レーザーが照射される通路に沿って形成される。本
発明の方法に用いられる蛍光検出型電気泳動装置は、少
なくともレーザー光源と、ゲル電気泳動分離板と、蛍光
検出器と、前記ゲル電気泳動分離板の所要個所へのレー
ザー照射によって得られる線状の蛍光画像を分割する複
数の光学的平面を有するプリズムと、前記プリズムの複
数の光学的平面によって分割された複数の像を前記蛍光
検出器上に個別に結像せしめる光学系とを具備するのが
好ましい。
The emission line image is formed along the path irradiated with the laser by irradiating the laser light so as to penetrate through the plurality of migration paths from the direction intersecting with the migration path. The fluorescence detection type electrophoretic device used in the method of the present invention is a linear light source obtained by irradiating at least a laser light source, a gel electrophoresis separation plate, a fluorescence detector, and a laser to a required portion of the gel electrophoresis separation plate. A prism having a plurality of optical planes for dividing the fluorescence image, and an optical system for individually forming a plurality of images divided by the plurality of optical planes of the prism on the fluorescence detector. Is preferred.

【0008】前記装置の実用的な構成としては、前記ゲ
ル電気泳動分離板の所要個所へのレーザー照射が、前記
ゲル電気泳動分離板の側面から前記ゲル電気泳動分離板
の平面に平行に貫通する方向のレーザー照射であり、レ
ーザー照射によって得られる線状の蛍光画像を前記ゲル
板中のレーザー照射の通路にそって発する蛍光画像であ
る。
As a practical configuration of the apparatus, laser irradiation to a required portion of the gel electrophoretic separation plate penetrates from a side surface of the gel electrophoretic separation plate in parallel with a plane of the gel electrophoretic separation plate. Direction laser irradiation, and a linear fluorescence image obtained by laser irradiation is emitted along the laser irradiation path in the gel plate.

【0009】光学系が、プリズムの複数の光学的平面か
ら出た分割された像の光の通路中に、それぞれ、対応し
て設置された透過波長帯の個々に異なるバンドパスフィ
ルタを具備したものとされる。
An optical system is provided with a bandpass filter having different transmission wavelength bands respectively installed correspondingly in the light paths of the divided images emitted from a plurality of optical planes of the prism. It is said that

【0010】前記プリズムの具体的形状としては、実施
の形態を説明する図面に示すような中心部の頂角の稜を
含む断面に対称な多面体、或いは、台形のように中心部
の断面に対称な多面体等がある。そして、前記プリズム
の材質としては、特に、本発明の装置を多色蛍光検出型
電気泳動装置として用いる場合には、屈折率の高い材質
のものとする必要があり、具体的には、BaF01,L
aF3,SF3,ガラス等を挙げることができる。
As a concrete shape of the prism, a polyhedron symmetrical to the cross section including the ridge of the apex angle of the central portion as shown in the drawings for explaining the embodiments, or a symmetrical cross section to the central portion like a trapezoid. There are various polyhedra. The material of the prism must be a material having a high refractive index, particularly when the device of the present invention is used as a multicolor fluorescence detection type electrophoretic device. L
Examples thereof include aF3, SF3, glass and the like.

【0011】さらに、本発明の方法を、多色標識した試
料の分離検出に用いる多色蛍光検出型電気泳動装置に適
用する場合においては、ゲル電気泳動分離板を泳動させ
る分離検出用試料として多色標識された試料が用いられ
る。そして、その場合の多色標識のために用いられる蛍
光色素としては、FITC(fluorescein isothiocyana
te;発光波長515nm),NBD−F(4-fluoro-7 ni
trobenzofurazan;発光波長540nm),TRITC
(tetramethyl rhodamine isothiocyanate; 発光波長5
73nm)およびTexas Red(発光波長610
nm)あるいは金属錯体を含む蛍光体などを利用でき
る。
Further, when the method of the present invention is applied to a multicolor fluorescence detection type electrophoretic device used for separation and detection of multicolor-labeled samples, many samples are used as separation and detection samples for migrating a gel electrophoresis separation plate. A color labeled sample is used. The fluorescent dye used for multicolor labeling in that case is FITC (fluorescein isothiocyana).
te; emission wavelength 515 nm), NBD-F (4-fluoro-7 ni)
trobenzofurazan; emission wavelength 540nm), TRITC
(Tetramethyl rhodamine isothiocyanate; Emission wavelength 5
73 nm) and Texas Red (emission wavelength 610
nm) or a phosphor containing a metal complex.

【0012】多色標識に対応してバンドパスフィルタと
しては、誘電体蒸着多層膜フィルターと色ガラスフィル
ターの組合せ等が用いられる。また、プリズムの望まし
い配置としては、少なくともプリズムの1つの頂角が、
電気泳動分離板の所要個所へのレーザー照射によって得
られる線状の蛍光画像の発光線像と蛍光検出器の結像部
位の中心を含む平面内にあり、かつ、前記蛍光画像の発
光線像と平行におかれているようにされたり、或いは、
プリズムが、ゲル電気泳動分離板の所要個所へのレーザ
ー照射によって得られる線状の蛍光画像の発光線像と蛍
光検出器の結像部位の中心を含む平面に対し上下対称に
なり、かつ、その中心部の頂角が前記蛍光画像の発光線
像と平行になるように設置される。
As a bandpass filter corresponding to a multicolor mark, a combination of a dielectric vapor deposition multilayer film filter and a colored glass filter is used. Moreover, as a desirable arrangement of the prism, at least one apex angle of the prism is
An emission line image of a linear fluorescence image obtained by irradiating a required portion of the electrophoretic separation plate with a laser and a plane including the center of an image formation site of the fluorescence detector, and an emission line image of the fluorescence image. Be placed in parallel, or
The prism is vertically symmetrical with respect to the plane including the emission line image of the linear fluorescence image obtained by irradiating the desired portion of the gel electrophoresis separation plate with the laser and the center of the image formation site of the fluorescence detector, and The apex angle of the central portion is set to be parallel to the emission line image of the fluorescence image.

【0013】前記蛍光検出器としては、通常、二次元蛍
光検出器が用いられる。本発明の蛍光検出方法による分
離検出の対象試料としては、塩基配列を決定すべきDN
A或いはRNAが挙げられるが、蛋白質等も対象試料と
することができる。
A two-dimensional fluorescence detector is usually used as the fluorescence detector. The sample to be separated and detected by the fluorescence detection method of the present invention is DN whose base sequence is to be determined.
Examples of the target sample include A and RNA, but proteins and the like can also be used as the target sample.

【0014】本発明の方法は、上記のように最も好適に
は、多色蛍光検出型電気泳動装置に対して適用される
が、単色の蛍光検出の場合にも用いることができる。こ
の場合においても、本発明の方法を用い、線状の蛍光画
像を例えば2つに像分割して前者で蛍光のピークの光を
計測し、後者で特定の低波長の光を計測するようにバン
ドパスフィルタの組み合わせを選択することにより、レ
ーザー照射光のゆらぎ等の計測条件の変化による計測誤
差を補正して正確な分離検出を行うことが可能となる等
のメリットを生ずるものである。
Although the method of the present invention is most preferably applied to a multicolor fluorescence detection type electrophoresis apparatus as described above, it can also be used in the case of monochromatic fluorescence detection. Also in this case, using the method of the present invention, the linear fluorescence image is divided into, for example, two images so that the light of the fluorescence peak is measured by the former and the light of a specific low wavelength is measured by the latter. By selecting a combination of bandpass filters, there is a merit that it is possible to correct a measurement error due to a change in measurement conditions such as fluctuation of laser irradiation light and perform accurate separation detection.

【0015】本発明によれば、ゲル電気泳動分離板への
レーザー照射によって得られる蛍光画像は、まず、プリ
ズムによって複数の虚像に像分割され、ついで、前記像
分割された個々の像の光がバンドパスフィルターによる
波長分散等のプロセスを経て、これらの像が検出器上に
結像され、所要の分離検出が行われるものである。
According to the present invention, the fluorescence image obtained by irradiating the gel electrophoresis separation plate with the laser is first image-divided into a plurality of virtual images by the prism, and then the light of each image-divided image is divided. These images are formed on a detector through a process such as wavelength dispersion by a bandpass filter, and required separation detection is performed.

【0016】これを更に具体的に述べれば、本発明の方
法で用いる蛍光検出型電気泳動装置において、受光レン
ズのひとみ位置から照射部を見ると、プリズムの中心部
の頂角は好ましくは線状発光部と重なるように置かれて
いる。そして、プリズムの上半部と下半部を通った光は
異なる点から出た光のように2つの像として二次元検出
器上に結像すると共に波長分散を上下方向に起す。それ
ぞれのプリズムから来る光は異なるフィルターを通過し
て検出部に至る波長の近い信号はプリズムの上半部を通
過したか下半部を通過したかで分離検出し、波長差の大
きい信号はプリズムによる波長分散で分散検出できる。
本発明ではプリズムとフィルターの組み合わせにより発
光波長の異なる蛍光を時分割、すなわち、時間的に分け
て検出することなしに高精度で同時に分離検出できる。
More specifically, in the fluorescence detection type electrophoretic device used in the method of the present invention, when the irradiation portion is viewed from the pupil position of the light receiving lens, the apex angle of the central portion of the prism is preferably linear. It is placed so that it overlaps with the light emitting part. Then, the light passing through the upper half part and the lower half part of the prism is imaged on the two-dimensional detector as two images like light emitted from different points, and wavelength dispersion is caused in the vertical direction. The light coming from each prism passes through different filters and reaches the detection part.The signals with similar wavelengths are separated and detected depending on whether they have passed through the upper half or the lower half of the prism. Dispersion can be detected by wavelength dispersion.
According to the present invention, fluorescence having different emission wavelengths can be simultaneously and separately detected with high accuracy by the combination of the prism and the filter without time-division, that is, detection with time division.

【0017】したがって、本発明の方法は、多色蛍光標
識されたDNA断片の塩基配列の決定等に好適に使用で
きる。また、照射部を側面から連続的に照射し、二次元
検出器で全照射領域を同時に観測するので受光光量も多
く高感度が得られる。
Therefore, the method of the present invention can be suitably used for determining the base sequence of a multicolor fluorescently labeled DNA fragment. Further, since the irradiation part is continuously irradiated from the side surface and the entire irradiation region is simultaneously observed by the two-dimensional detector, a large amount of light is received and high sensitivity is obtained.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態の一例
を図1により説明する。図1は装置の概念図である。光
学系は断面図となっている。2枚の0.3mm間隔のガ
ラス板1(300mm×200mm×5mm)で挟まれ
た6%ポリアクリルアミドのゲル板2は側面からアルゴ
ンレーザー(400nm 10mw)で照射される。照
射部3は断面図では点として表わされる。照射部から上
方に出た光は上部プリズム4で屈折された後、レンズ6
で二次元検出器9の下側に結像する。一方下部に出た光
は下部プリズムで屈折された後、やはりレンズ6で二次
元検出器9の上側に結像する。
BEST MODE FOR CARRYING OUT THE INVENTION An example of an embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a conceptual diagram of the device. The optical system is a sectional view. A 6% polyacrylamide gel plate 2 sandwiched between two 0.3 mm-spaced glass plates 1 (300 mm × 200 mm × 5 mm) is irradiated with an argon laser (400 nm 10 mw) from the side. The irradiation unit 3 is represented as a dot in the sectional view. The light emitted upward from the irradiation unit is refracted by the upper prism 4, and then the lens 6
Then, an image is formed on the lower side of the two-dimensional detector 9. On the other hand, the light emitted to the lower portion is refracted by the lower prism, and then also imaged on the upper side of the two-dimensional detector 9 by the lens 6.

【0019】この実施の形態においては、蛍光検出の試
料であるDNA断片は4種の末端塩基種に対応した4種
の異なる発光波長の蛍光色素、すなわち、FITC(fl
uorescein isothiocyanate;発光波長515nm),N
BD−F(4-fl-uoro-7 nitrobenzofurazan;発光波長
540nm),TRITC(tetramethyl rhodamine is
othiocyanate;発光波長573nm)およびTexas
Red(発光波長610nm)で蛍光標識されている
ので、発光部からは前記4つの波長の光が出て、これら
はプリズムで分散され、図2に示したように上部および
下部にそれぞれ4本のライン(断面図では4点)ができ
る。15と15’、16と16’、17と17’、18
と18’はそれぞれ同じ波長の光による像で下部および
上部プリズムを通過した光に対応する。この場合15,
15’はTexas Redからの光、16,16’は
TRITC、17,17’はNBD−F、18,18’
はFITCからの発光像である。
In this embodiment, the DNA fragment as a sample for fluorescence detection is a fluorescent dye having four different emission wavelengths corresponding to four terminal base species, that is, FITC (fl
uorescein isothiocyanate; emission wavelength 515 nm), N
BD-F (4-fl-uoro-7 nitrobenzofurazan; emission wavelength 540 nm), TRITC (tetramethyl rhodamine is
othiocyanate; emission wavelength 573 nm) and Texas
Since it is fluorescently labeled with Red (emission wavelength 610 nm), the light of the above four wavelengths is emitted from the light emitting part, and these are dispersed by the prism, and as shown in FIG. Lines (4 points in cross section) are created. 15 and 15 ', 16 and 16', 17 and 17 ', 18
Reference numerals 18 'and 18' respectively represent images of light of the same wavelength, which correspond to light passing through the lower and upper prisms. In this case 15,
15 'is light from Texas Red, 16 and 16' are TRITC, 17 and 17 'are NBD-F, 18 and 18'.
Is an emission image from FITC.

【0020】この例では、15と16、17と18の波
長差は小さくプリズムによる波長分散で十分識別するこ
とは難しいが、15と17および16と18は十分識別
できる。そこでバンドパスフィルターとして上部7には
515nmと573nmの二カ所に透過帯のあるもの
を、下部には540nmと610nmの二カ所に透過帯
のあるフィルターを用いる事により4色を区別して検出
できる。
In this example, the wavelength difference between 15 and 16, 17 and 18 is small, and it is difficult to sufficiently discriminate by wavelength dispersion by the prism, but 15 and 17 and 16 and 18 can be discriminated sufficiently. Therefore, by using a bandpass filter having a transmission band at two positions of 515 nm and 573 nm in the upper part 7 and a filter having a transmission band at two positions of 540 nm and 610 nm in the lower part, four colors can be distinguished and detected.

【0021】図2はこの様子を示したもので、フィルタ
ーのない場合(励起光除去フィルターは具備)には二次
元検出器上に8本の線が観測され、隣接する線ははっき
り分離されない。フィルター7および8を装着すると4
本の線が分離して検出できるようになる(図2右上部お
よび図1モニター画面参照)。4本の蛍光像による信号
はそれぞれ二次元検出器の1〜2本の水平走査線を用い
て独立に読み出すことができる。得られた信号はデータ
処理装置11を用いてDNA断片における4種の末端塩
基種の情報に変換され塩基配列決定される。
FIG. 2 shows this state. When there is no filter (excitation light removal filter is provided), eight lines are observed on the two-dimensional detector, and adjacent lines are not clearly separated. 4 with filters 7 and 8
The lines of the book can be detected separately (see the upper right part of FIG. 2 and the monitor screen of FIG. 1). The signals of the four fluorescent images can be read out independently by using one or two horizontal scanning lines of the two-dimensional detector. The obtained signal is converted into information on four types of terminal base species in the DNA fragment by using the data processor 11, and the base sequence is determined.

【0022】この実施の形態では、プリズム4,5は一
体化し狭い頂角を30°とした。プリズム素材にはBa
Fガラスを用いた。プリズムの頂角はプリズム4の肉厚
部を通る光が屈折によりレンズ6の下端より下を通過
し、レンズが像を見る立体角分の光がレンズに入り得る
ように決定している。
In this embodiment, the prisms 4 and 5 are integrated to have a narrow apex angle of 30 °. Ba for the prism material
F glass was used. The apex angle of the prism is determined so that light passing through the thick portion of the prism 4 passes below the lower end of the lens 6 by refraction, and light corresponding to a solid angle at which the lens sees an image can enter the lens.

【0023】図3は多面体プリズムを用いた例である。
発光点3から出た光は上部プリズム、あるいは下部プリ
ズムを通過してレンズ6により二次元検出器9上の別の
位置に結像する。上部プリズムおよび下部プリズムを図
のように角度の異なる二つの面で構成すると、上部およ
び下部プリズムを通過する光はそれぞれ2本の像とし
て、合計4本の像として検出器9上に結像する。像数は
増加するがプリズムの所で見た受光立体角も全体として
大きくなるので、検出蛍光像1本あたりの受光量はプリ
ズムを使用しない場合と比べてほとんど変化しない。そ
れぞれの像の結像位置あるいはプリズム(4,5)の直
後に透過波長の異なるフィルター20を置き、波長分離
して信号を検出する。バンドパスフィルターは波長によ
る透過率の切れを非常に鋭くできるので、プリズムによ
る波長分散を利用するよりも波長分離を高精度で行なう
ことができる。なお上記実施の形態でのプリズム素材に
はBK5を用いた。プリズムの角度21,22は、それ
ぞれ10°および20°である。
FIG. 3 shows an example using a polyhedral prism.
The light emitted from the light emitting point 3 passes through the upper prism or the lower prism and is imaged at another position on the two-dimensional detector 9 by the lens 6. When the upper prism and the lower prism are composed of two surfaces with different angles as shown in the figure, the light passing through the upper and lower prisms is imaged on the detector 9 as two images, respectively, that is, four images in total. . Although the number of images increases, the light receiving solid angle seen at the prism also becomes large as a whole, so the amount of light received per detected fluorescent image hardly changes as compared with the case where no prism is used. Filters 20 having different transmission wavelengths are placed immediately after the image forming positions of the respective images or the prisms (4, 5), and the signals are detected by wavelength separation. Since the bandpass filter can sharply cut off the transmittance depending on the wavelength, it is possible to perform wavelength separation with higher accuracy than using wavelength dispersion by a prism. BK5 was used as the prism material in the above embodiment. The prism angles 21, 22 are 10 ° and 20 °, respectively.

【0024】[0024]

【発明の効果】本発明によれば、まずプリズムを用いて
複数個の蛍光像を作り、ついで各々の像は波長の異なる
発光を識別して透過させるフィルターを通して受光器上
に結像させるので、従来のプリズム分光のみによる分離
検出の方式に比べて、多色標識されたDNA断片等から
の信号を高精度で区別して同時に計測でき、高い精度の
分離検出或いは塩基配列決定等ができる。
According to the present invention, a plurality of fluorescent images are first formed by using a prism, and then each image is formed on a light receiving device through a filter which distinguishes and transmits light having different wavelengths. Compared with the conventional method of separation and detection using only prism spectroscopy, signals from multicolor-labeled DNA fragments and the like can be distinguished and measured simultaneously with high accuracy, and separation and detection or base sequence determination with high accuracy can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を説明する図。FIG. 1 is a diagram illustrating a method of the present invention.

【図2】図1の光学系の断面模式図。FIG. 2 is a schematic sectional view of the optical system in FIG.

【図3】多面プリズムを用いた測定系の概念図。 〔図面の簡単な説明〕 1…ガラス板、2…ゲル板、3…照射部、4…上部プリ
ズム、5…下部プリズム、6…レンズ、7…上部フィル
ター、8…下部フィルター、9…二次元検出器、10…
制御装置、11…データ処理装置、12…表示装置、1
3…モニター、14…線画像、15,15’〜18,1
8’…蛍光像、19…励起光カットフィルター、20…
4段分割バンドパスフィルター、21,22…プリズム
の頂角
FIG. 3 is a conceptual diagram of a measurement system using a polyhedral prism. [Brief Description of Drawings] 1 ... Glass plate, 2 ... Gel plate, 3 ... Irradiation part, 4 ... Upper prism, 5 ... Lower prism, 6 ... Lens, 7 ... Upper filter, 8 ... Lower filter, 9 ... Two-dimensional Detector, 10 ...
Control device, 11 ... Data processing device, 12 ... Display device, 1
3 ... Monitor, 14 ... Line image, 15, 15 'to 18, 1
8 '... fluorescence image, 19 ... excitation light cut filter, 20 ...
4-stage split bandpass filter 21,22 ... Prism angle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永井 啓一 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Keiichi Nagai 1-280, Higashi Koigokubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 異なる蛍光体で標識された試料を複数の
泳動路で泳動分離したのちレーザー光を照射して検出す
る蛍光検出型電気泳動装置における蛍光検出方法におい
て、 前記泳動路の泳動開始点から所定の位置で前記複数の泳
動路をレーザー光で照射し、前記蛍光体を励起して、前
記レーザー光が照射される通路に沿って発光線像を形成
するステップと、 前記発光線像を複数の像に分割するステップと、 前記分割された複数の像の光のそれぞれの光路で波長を
選択するステップと、 前記分割された複数の像を光検出器に結像させるステッ
プとを有し、 泳動分離された前記試料を標識する前記蛍光体からの蛍
光を検出することを特徴とする蛍光検出型電気泳動装置
における蛍光検出方法。
1. A fluorescence detection method in a fluorescence detection type electrophoretic apparatus, wherein samples labeled with different fluorescent substances are electrophoretically separated in a plurality of migration paths, and then detected by irradiating laser light. From a predetermined position to irradiate the plurality of migration paths with laser light, excite the phosphor, and form a light emission line image along a path irradiated with the laser light; Dividing into a plurality of images, selecting a wavelength in each optical path of the light of the divided plurality of images, and forming a plurality of the divided images on a photodetector. A method for detecting fluorescence in a fluorescence detection type electrophoresis apparatus, which comprises detecting fluorescence from the phosphor that labels the sample separated by electrophoresis.
【請求項2】 異なる蛍光体で標識された試料を複数の
泳動路で泳動分離したのちレーザー光を照射して検出す
る蛍光検出型電気泳動装置における蛍光検出方法におい
て、 前記泳動路の泳動開始点から所定の位置で、レーザー光
を前記泳動路と交差する方向から前記複数の泳動路を貫
通するように照射して、前記レーザーが照射される通路
に沿って発光線像を形成するステップと、 前記発光線像を複数の像に分割するステップと、 分割された複数の像の光のそれぞれの光路で波長を選択
するステップと、 分割された複数の像を光検出器に結像させるステップと
を有し、 泳動分離された前記試料を標識する前記蛍光体からの蛍
光を検出することを特徴とする蛍光検出型電気泳動装置
における蛍光検出方法。
2. A fluorescence detection method in a fluorescence detection type electrophoretic device, wherein samples labeled with different fluorophores are electrophoretically separated in a plurality of migration paths and then detected by irradiating with laser light. From a predetermined position, irradiating a laser beam so as to penetrate the plurality of migration paths from a direction intersecting with the migration path, and forming a light emission line image along the path irradiated with the laser, Dividing the emission line image into a plurality of images; selecting a wavelength in each optical path of the light of the plurality of divided images; forming a plurality of the divided images on a photodetector; The method for detecting fluorescence in a fluorescence detection type electrophoretic device, comprising detecting fluorescence from the phosphor that labels the sample that has been electrophoretically separated.
JP8086515A 1996-04-09 1996-04-09 Fluorescence detection method in fluorescence detection type electrophoresis apparatus Expired - Fee Related JP2935661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8086515A JP2935661B2 (en) 1996-04-09 1996-04-09 Fluorescence detection method in fluorescence detection type electrophoresis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8086515A JP2935661B2 (en) 1996-04-09 1996-04-09 Fluorescence detection method in fluorescence detection type electrophoresis apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1090843A Division JP2902408B2 (en) 1989-04-12 1989-04-12 Fluorescence detection type electrophoresis device

Publications (2)

Publication Number Publication Date
JPH08261935A true JPH08261935A (en) 1996-10-11
JP2935661B2 JP2935661B2 (en) 1999-08-16

Family

ID=13889132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8086515A Expired - Fee Related JP2935661B2 (en) 1996-04-09 1996-04-09 Fluorescence detection method in fluorescence detection type electrophoresis apparatus

Country Status (1)

Country Link
JP (1) JP2935661B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7805081B2 (en) * 2005-08-11 2010-09-28 Pacific Biosciences Of California, Inc. Methods and systems for monitoring multiple optical signals from a single source

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173141A (en) * 1985-01-28 1986-08-04 Canon Inc Particle analyzing instrument
JPS63231247A (en) * 1987-03-20 1988-09-27 Hitachi Ltd Electrophoretic separating and detecting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173141A (en) * 1985-01-28 1986-08-04 Canon Inc Particle analyzing instrument
JPS63231247A (en) * 1987-03-20 1988-09-27 Hitachi Ltd Electrophoretic separating and detecting device

Also Published As

Publication number Publication date
JP2935661B2 (en) 1999-08-16

Similar Documents

Publication Publication Date Title
US5062942A (en) Fluorescence detection type electrophoresis apparatus
EP0314045B1 (en) Wavelength dispersion electrophoresis apparatus
US5290419A (en) Fluorescence detection type electrophoresis apparatus
CA2315812C (en) Detector having a transmission grating beam splitter for multi-wavelength sample analysis
US5162654A (en) Detection apparatus for electrophoretic gels
US5051162A (en) Fluorescence detection type electrophoresis apparatus and its supporting vessel
EP1055925A2 (en) Biochip reader and electrophoresis system
US5534703A (en) Electrophoresis analyzer with wavelength selective detection
US6039925A (en) Fluorescence detector
JP2902408B2 (en) Fluorescence detection type electrophoresis device
JP2702920B2 (en) Electrophoretic separation detection method and apparatus
JP2935661B2 (en) Fluorescence detection method in fluorescence detection type electrophoresis apparatus
JPS6321556A (en) Dna base sequence determining apparatus
JP2809422B2 (en) Multicolor fluorescence detection type electrophoresis device
JP3024742B2 (en) Fluorescence detection method in multicolor fluorescence detection type electrophoresis apparatus
JP2746252B2 (en) Fluorescence detection method in fluorescence detection type electrophoresis apparatus
JP2991447B2 (en) Fluorescent gene identification method
JP2809227B2 (en) Electrophoresis device
JP2776383B2 (en) DNA base sequencer
JPH0382946A (en) Polychromatic light detecting-type electrophoretic apparatus
US20130334049A1 (en) Multi-color detection system for multiplexed capillary electrophoresis
JP2795276B2 (en) Electrophoresis separation detector
JP2697719B2 (en) Electrophoretic separation detection method and apparatus
JP2666799B2 (en) Electrophoresis device
JPH09210910A (en) Electrophoresis device of fluorescence sensing type

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees