JP2991447B2 - Fluorescent gene identification method - Google Patents

Fluorescent gene identification method

Info

Publication number
JP2991447B2
JP2991447B2 JP2003561A JP356190A JP2991447B2 JP 2991447 B2 JP2991447 B2 JP 2991447B2 JP 2003561 A JP2003561 A JP 2003561A JP 356190 A JP356190 A JP 356190A JP 2991447 B2 JP2991447 B2 JP 2991447B2
Authority
JP
Japan
Prior art keywords
dna fragment
genes
identification method
dna
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003561A
Other languages
Japanese (ja)
Other versions
JPH03210200A (en
Inventor
秀記 神原
啓一 永井
和子 川本
基子 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003561A priority Critical patent/JP2991447B2/en
Priority to DE19914100279 priority patent/DE4100279C2/en
Publication of JPH03210200A publication Critical patent/JPH03210200A/en
Application granted granted Critical
Publication of JP2991447B2 publication Critical patent/JP2991447B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • C12Q1/683Hybridisation assays for detection of mutation or polymorphism involving restriction enzymes, e.g. restriction fragment length polymorphism [RFLP]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は蛍光式遺伝子識別法に関する。Description: TECHNICAL FIELD The present invention relates to a fluorescent gene identification method.

〔従来の技術〕[Conventional technology]

遺伝子診断法の一つに、フィンガープリント法がある
(ぶんせき1986年No.7,462−468)。目的とする遺伝子
を酵素で切断し、アガロースゲル電気泳動分離した後、
パターンをフィルターに転写する。放射性標識され、特
定配列を持ったDNAプローブを含んだ溶液にフィルター
を浸し、プローブと相補的な配列を持つDNA断片部分に
ハイブリダイズさせる。DNAプローブは梯子(ラダー)
状に分離されたDNA断片群のうち特定のバンドに付着す
ることになる。フィルターにフィルムを密着させ、DNA
プローブの付着したDNAバンドのパターンを転写する。
切断する酵素とDNAプローブを選択することにより、個
体に特有のパターン(フィンガープリント)を得たり、
遺伝病に関連した情報を得ることができる。通常このフ
ィンガープリント法は一次元電気泳動により得られるラ
ダーパターンを用いて行なうが、二次元電気泳動させて
情報量をふやすことも行なわれている(A.G.Uitterlind
en et.al.,Proc.Natl.Acad.Sci.86,2742,(1989))。
One of the genetic diagnosis methods is a fingerprint method (Bunseki 1986, No. 7,462-468). After cutting the gene of interest with an enzyme and separating it by agarose gel electrophoresis,
Transfer the pattern to the filter. The filter is immersed in a solution containing a radioactively labeled DNA probe having a specific sequence, and hybridized to a DNA fragment having a sequence complementary to the probe. DNA probe is a ladder
It adheres to a specific band in the DNA fragment group separated in a shape. Attach the film to the filter and remove the DNA
The pattern of the DNA band to which the probe is attached is transcribed.
By selecting the enzyme and DNA probe to be cleaved, a pattern (fingerprint) unique to an individual can be obtained,
Information related to genetic diseases can be obtained. Usually, this fingerprinting method is performed using a ladder pattern obtained by one-dimensional electrophoresis, but it is also performed to increase the amount of information by performing two-dimensional electrophoresis (AGUitterlind
en et.al., Proc. Natl. Acad. Sci. 86 , 2742, (1989)).

一方、放射性標識に代わり、蛍光標識を用いたフィン
ガープリントの試みもなされている。(Genomics ,12
9(1989))すなわち、切断に用いる制限酵素の種類毎
に蛍光標識の色を変え、これらを同時に1つの泳動路上
で分離し、実時間検出するものである。
On the other hand, attempts have been made to use fingerprints instead of radioactive labels. (Genomics 4, 12
9 (1989)) That is, the color of the fluorescent label is changed for each type of restriction enzyme used for cleavage, and these are simultaneously separated on one migration path and detected in real time.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

フィンガープリントによる診断の精度を上げること
は、いかに多数のDNAバンドを観測できるかに依存す
る。一次元電気泳動を用いた場合、多くのバンドを得る
ために複数の酵素で切断した数多くの断片を作成する
と、バンドを一本ずつ分離できずスメアパターンとなり
十分な情報が得られない難点があった。この難点は報告
されている実時間蛍光検出を用いた手法(前出のGenomi
cs ,129(1989)でも解決されない。装置の分離性能
は塩基配列が一致している場合、400塩基と401塩基を識
別できるが、配列の異なる断片の混合物では塩基種によ
る質量の差が積算するため、塩基数の差があっても、か
ならずしも分離できるとはいえない。更に長い塩基長の
断片では分離は一層困難となってくるため、検体を高精
度で識別するフィンガープリントとして利用できない難
点がある。
Improving the accuracy of fingerprint diagnosis depends on how many DNA bands can be observed. When one-dimensional electrophoresis is used, if many fragments are cut with multiple enzymes to obtain many bands, bands cannot be separated one by one, resulting in a smear pattern and insufficient information to be obtained. Was. This difficulty is due to the reported real-time fluorescence detection method (Genomi,
cs 4 , 129 (1989) does not help. The separation performance of the device can distinguish between 400 bases and 401 bases when the base sequences match, but even if there is a difference in the number of bases because the difference in mass due to the base type is integrated in a mixture of fragments with different sequences However, it cannot always be said that they can be separated. Separation becomes even more difficult with a fragment having a longer base length, and there is a problem that the fragment cannot be used as a fingerprint for identifying a specimen with high accuracy.

一方、二次元電気泳動法では観測されるバンド数は多
くなるが、検体毎にオートラジオグラムを比較する必要
があり、手間がかかる上、相同、相異を識別することが
難しい難点があった。
On the other hand, in the two-dimensional electrophoresis method, the number of bands observed is large, but it is necessary to compare the autoradiograms for each sample, which is troublesome and has difficulties in distinguishing between homologues and differences. .

本発明の目的は、これらの難点を解消し、高精度のフ
ィンガープリントデータを得て、効率的かつ正確な蛍光
式遺伝子識別法を提供することにある。
An object of the present invention is to solve these difficulties, obtain highly accurate fingerprint data, and provide an efficient and accurate fluorescent gene identification method.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本願発明の蛍光式遺伝子
識別法は、相互に識別すべき複数の遺伝子を同一酵素で
切断し、得られたDNA断片群を前記複数の遺伝子毎に異
なる蛍光体で標識した後、これらのDNA断片群を混合
し、これを混合物のままDNA断片の酵素切断を行なった
後、さらに混合物のままDNA断片の分離操作を行い、つ
いで、対応するDNA断片相互の分離パターンの差を光学
的に検出して、前記DNA断片から構成される前記複数の
遺伝子を相互に識別することを特徴とするものである。
In order to achieve the above object, the fluorescent gene identification method of the present invention cuts a plurality of genes to be distinguished from each other with the same enzyme, and obtains a group of DNA fragments with a different phosphor for each of the plurality of genes. After labeling, these DNA fragment groups were mixed, and the mixture was subjected to enzymatic cleavage of the DNA fragments as a mixture, followed by separation of the DNA fragments as a mixture, and then the separation pattern of the corresponding DNA fragments. Is characterized by optically detecting the difference between the two and distinguishing the plurality of genes comprising the DNA fragments from each other.

本願発明の蛍光式遺伝子識別法の適用される複数の遺
伝子としては、個体識別のための異なる個体由来の遺伝
子、遺伝病の原因究明のための、正常の遺伝子と、遺伝
子病の原因となると想定される遺伝子、あるいは個々の
人由来の遺伝子等がある。
As the plurality of genes to which the fluorescent gene identification method of the present invention is applied, genes derived from different individuals for individual identification, normal genes for investigating the cause of genetic diseases, and assumed to be the cause of genetic diseases Gene or a gene derived from an individual.

前記DNA断片の分離操作は、一次元あるいは多次元ゲ
ル電気泳動法により行うことができる。
The DNA fragment separation operation can be performed by one-dimensional or multi-dimensional gel electrophoresis.

前記DNA断片相互の分離パターンの差の光学的検出の
好適な装置面の態様としては、ラインセンシング可能な
実時間蛍光検出装置で行う態様、或いは、一次元あるい
は二次元ゲルリーダーで行う態様を挙げることができ
る。また、前記DNA断片相互の分離パターンの差の光学
的検出の手法としては、検出の対象となるDNA断片群を
混合物のまま光学的検出を行うことにより、同一場所、
同時刻にそれぞれの対比すべきDNA断片から放射された
蛍光を波長選別して行う手法をとることが、精度面、実
用面で極めて重要である。
Preferred aspects of the apparatus for optically detecting the difference in the separation pattern between the DNA fragments include a mode in which a real-time fluorescence detector capable of line sensing is used, and a mode in which a one-dimensional or two-dimensional gel reader is used. be able to. Further, as a method of optically detecting the difference between the separation patterns of the DNA fragments, by performing optical detection of the DNA fragment group to be detected as a mixture, the same location,
It is extremely important in terms of accuracy and practicality to adopt a method of performing wavelength selection on the fluorescence emitted from each DNA fragment to be compared at the same time.

なお、本願発明において使用可能な蛍光体と励起レー
ザー光源の組み合わせとしては、(FITCとその異性体;
アルゴンレーザー488nm)、(TRITCとTexas Red;アルゴ
ンレーザー515nmあるいはYAGレーザー535nm)、などの
組み合わせがある。
The combination of the phosphor and the excitation laser light source usable in the present invention includes (FITC and its isomer;
Argon laser 488 nm), (TRITC and Texas Red; argon laser 515 nm or YAG laser 535 nm).

つぎに、本願発明の蛍光式遺伝子識別法の概要を第1
図により説明する。
Next, the outline of the fluorescent gene identification method of the present invention is described in the first section.
This will be described with reference to the drawings.

まず、標準試料遺伝子及び検体遺伝子(複数でも可)
を適当な同一酵素(通常NoT−Iなどの8塩基認識酵
素)で切断し、標準試料遺伝子から得られたDNA断片群
を蛍光体1(F1)で標識し、検体遺伝子から得られたDN
A断片群を蛍光体2,…(F2,…)で標識する。この場合、
対比すべき両者のDNA断片の質量数がほぼ同じになるよ
うリンカーなどで調整しておく。ついで標識された標準
試料及び検体由来のDNA断片群を混合し、これを混合物
のままDNA断片の酵素切断(4塩基認識などの酵素を用
いる)を行なった後、さらに混合物のまま電気泳動によ
るDNA断片の分離操作を行う。この場合、前記標準試料
遺伝子及び検体遺伝子由来のDNA断片の同じ配列のもの
はほぼ重なって検出部に到着する。ついで、標識試料遺
伝子由来のDNA断片における蛍光体1からの発光、およ
び検体遺伝子由来のDNA断片2における蛍光体2からの
発光を区別して受光し、受光部アンプの利得を調節して
信号強度が等しくなるようにする。両者からの信号の差
を取るようにすることにより、標準試料遺伝子由来のDN
A断片と、検体遺伝子由来のDNA断片との間に相互に異な
る断片が存在するときだけ生ずる差信号を取り出すこと
ができ、標準試料遺伝子と検体遺伝子との識別を効率
的、かつ、正確に行うことができる。
First, the standard sample gene and the sample gene (s)
Is cleaved with an appropriate enzyme (usually an 8-base recognizing enzyme such as NoT-I), DNA fragments obtained from a standard sample gene are labeled with a fluorophore 1 (F1), and DN
The A fragment group is labeled with phosphors 2, ... (F2, ...). in this case,
Adjust with a linker or the like so that the mass numbers of both DNA fragments to be compared are almost the same. Subsequently, a labeled standard sample and a DNA fragment group derived from the specimen are mixed, and the mixture is subjected to enzymatic cleavage of the DNA fragment (using an enzyme such as 4-base recognition) as a mixture, and further, the DNA is obtained by electrophoresis as a mixture. Perform fragmentation operation. In this case, the same sequence of the DNA fragment derived from the standard sample gene and the DNA fragment derived from the sample gene arrives at the detection section almost overlapping. Next, the light emission from the fluorescent substance 1 in the DNA fragment derived from the labeled sample gene and the light emission from the fluorescent substance 2 in the DNA fragment 2 derived from the sample gene are separately received, and the signal intensity is adjusted by adjusting the gain of the light receiving unit amplifier. To be equal. By taking the difference between the signals from both, the DN derived from the standard sample gene
A difference signal generated only when there are mutually different fragments between the A fragment and the DNA fragment derived from the sample gene can be extracted, and the discrimination between the standard sample gene and the sample gene can be performed efficiently and accurately. be able to.

〔作 用〕(Operation)

本願発明によれば、複数の遺伝子由来の標識DNA断片
を、混合物のまま、切断を行なった後、分離操作、分離
パターン差の光学的検出を行うものであるから、前記複
数の遺伝子に含まれる標識DNA断片の差スペクトルある
いは展開パターンの差を正確に抜き出すことができ、標
準サンプルあるいは検体の電気泳動パターンの各バンド
の分離が不十分な場合でも対応する遺伝子断片群中の相
違部分を効率的かつ精度良く知ることができる。
According to the present invention, the labeled DNA fragments derived from a plurality of genes, as a mixture, after cleavage, separation operation, optical detection of the separation pattern difference, it is included in the plurality of genes It is possible to accurately extract the difference spectrum or development pattern difference between labeled DNA fragments, and efficiently identify the differences in the corresponding gene fragment group even when the bands of the electrophoresis pattern of the standard sample or specimen are insufficiently separated. And it can be known with high accuracy.

〔実施例〕〔Example〕

以下、本発明の一実施例を添付の図面に基づいて説明
する。まず、第1図に基づいて説明する。標準試料遺伝
子として、正常人の遺伝子、検査しようとする検体遺伝
子として、遺伝病患者の遺伝子を用意した。これらをま
ず同一の制限酵素NoT−Iで切断して、それぞれのDNA断
片群を得る。つぎに、対比すべき両者のDNA断片の質量
数がほぼ同じになるように吸光度を測定して調整する。
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. First, a description will be given based on FIG. A normal sample gene was prepared as a standard sample gene, and a genetic disease patient gene was prepared as a sample gene to be tested. These are first cut with the same restriction enzyme NoT-I to obtain respective DNA fragment groups. Next, the absorbance is measured and adjusted so that the mass numbers of both DNA fragments to be compared are approximately the same.

ついで、標準試料遺伝子由来のDNA断片群及び検体遺
伝子由来のDNA断片群を、それぞれ、蛍光体1(F1)及
び蛍光体2(F2)で個別に蛍光標識する。この蛍光標識
は、蛍光標識モノヌクレオチドを基質に用いた相補鎖伸
長酵素を用いて切断末端に蛍光標識ヌクレオチドを結合
させることにより行うが、蛍光標識ヌクレオチドオリゴ
マーを酵素切断部にライゲーション反応により結合させ
て行ってもよい。
Next, the DNA fragment group derived from the standard sample gene and the DNA fragment group derived from the sample gene are individually fluorescently labeled with the fluorescent substance 1 (F1) and the fluorescent substance 2 (F2), respectively. This fluorescent labeling is performed by binding a fluorescent-labeled nucleotide to the cut end using a complementary chain elongation enzyme using a fluorescent-labeled mononucleotide as a substrate, and binding the fluorescent-labeled nucleotide oligomer to the enzyme cleavage portion by a ligation reaction. May go.

前記標識を用いた蛍光標識ヌクレオチドあるいはオリ
ゴマーのうち未反応のものをフィルター等により除去す
る。標識されたDNA断片の蛍光強度を測定し、波長選別
して受光した時に、ほぼ等しい蛍光強度を与えるように
試料溶液の量を調整しながら蛍光標識された標識試料由
来のDNA断片群と検体由来のDNA断片群を混合して試料3
を得る。
Unreacted fluorescently labeled nucleotides or oligomers using the label are removed by a filter or the like. Measure the fluorescence intensity of the labeled DNA fragment, select the wavelength, and adjust the amount of the sample solution to give almost the same fluorescence intensity when receiving light. Sample 3 by mixing DNA fragment groups
Get.

前記試料3を混合物のまま塩農度60mMの条件下におい
て、4塩基認識などの制限酵素Hae IIIを用いてDNA断片
の切断を行い、細かな断片を生成する。
The DNA fragment is cleaved using the sample 3 as a mixture and using a restriction enzyme Hae III for recognition of 4 bases, etc., under the conditions of a salt concentration of 60 mM to produce fine fragments.

ついで、前記酵素切断により得られた、標準試料遺伝
子由来のDNA断片群及び検体遺伝子由来のDNA断片群から
なる混合物3を用い、第2図に示す多色光検出型電気泳
動装置によって、蛍光検出を行う。すなわち、まず、前
記標準試料遺伝子由来のDNA断片群及び検体遺伝子由来
のDNA断片群からなる混合物3を注入具8を用いて、ポ
リアクリルアミドゲルからなる0.3mm厚の分離用ゲル板
9の所定個所に滴下し、これを電気泳動させて、前記混
合物中に混在するF1で標識された標準試料遺伝子由来の
DNA断片群及びF2で標識された検体遺伝子由来のDNA断片
群を、それぞれ、その分子量の大きさに応じて分離す
る。本実施例においては、蛍光検出は泳動分離しながら
実時間で行うものであって、まず、前記分離用ゲル板9
の泳動始点から約25cmの所をレーザー10から発する照射
レーザー光12を反射ミラー11で反射させて前記ゲル板を
その側面から照射する。この照射線上を蛍光標識DNA断
片が通過する時発する蛍光線を像分割プリズム13および
バンドパスフィルター14を通して二次元検出器あるいは
2ライン方式のラインセンサーを構成する受光器15で受
光する。像分割プリズム13を通過させる事により、モニ
ター19に示すように、蛍光線像は前記標準試料遺伝子由
来のDNA断片の標識F1及び検体遺伝子由来のDNA断片の標
識F2にそれぞれ対応した二本の線像として受光される。
上記のように、像分割プリズム13の出射面に透過波長の
異なるバンドパスフィルター14を装着することにより、
前記二種の標識F1及びF2からの発光を区別して検出でき
るものであって、その結果は、表示装置18に表示され
る。
Next, using a mixture 3 consisting of a DNA fragment group derived from the standard sample gene and a DNA fragment group derived from the sample gene obtained by the enzyme cleavage, fluorescence detection was performed by a multicolor photodetection electrophoresis apparatus shown in FIG. Do. That is, first, a mixture 3 composed of the DNA fragment group derived from the standard sample gene and the DNA fragment group derived from the sample gene was injected into a predetermined portion of a 0.3 mm-thick separation gel plate 9 made of polyacrylamide gel using an injector 8. The mixture is electrophoresed, and the F1 labeled standard sample gene derived from the mixture is mixed in the mixture.
The DNA fragment group and the DNA fragment group derived from the sample gene labeled with F2 are separated according to their molecular weights. In this embodiment, the fluorescence detection is performed in real time while performing electrophoretic separation.
An irradiation laser beam 12 emitted from a laser 10 at a position about 25 cm from the starting point of the electrophoresis is reflected by a reflection mirror 11 to irradiate the gel plate from its side. The fluorescent light emitted when the fluorescent-labeled DNA fragment passes through the irradiation light is received by the photodetector 15 constituting a two-dimensional detector or a two-line type line sensor through the image dividing prism 13 and the band-pass filter 14. By passing through the image splitting prism 13, as shown on the monitor 19, the fluorescence image is two lines corresponding to the label F1 of the DNA fragment derived from the standard sample gene and the label F2 of the DNA fragment derived from the sample gene, respectively. It is received as an image.
As described above, by attaching bandpass filters 14 having different transmission wavelengths to the exit surface of the image splitting prism 13,
The light emission from the two types of labels F1 and F2 can be detected separately, and the result is displayed on the display device 18.

そして、第1図に示すように、標準試料遺伝子および
検体遺伝子由来の蛍光標識DNA断片のうち両者に共通の
断片は差スペクトルに寄与しないが、両者で異なる断片
は正あるいは負信号から成る差スペクトルを与える。こ
れから前記両者の遺伝子の相違点に関する情報が得られ
る。さらに、分子量マーカを用いて正確な分子量を知り
たい時は分子量マーカーDNAをF1,F2と異なる蛍光体F3で
標識し、像分割プリズムの光出射面を3ケとしてF3に対
応したバンドパスフィルターを通して蛍光を受光してリ
ファレンス信号として用い検体の分子量を知る事もでき
る。像分割の数を増すことにより、同時に調べることの
できる検体数を増すこともできる。
As shown in FIG. 1, among the fluorescently labeled DNA fragments derived from the standard sample gene and the sample gene, a fragment common to both does not contribute to the difference spectrum, but a different fragment between the two is a difference spectrum composed of a positive or negative signal. give. This provides information on the differences between the two genes. Furthermore, if you want to know the exact molecular weight using a molecular weight marker, label the molecular weight marker DNA with a fluorescent substance F3 different from F1 and F2, and use the bandpass filter corresponding to F3 with three light exit surfaces of the image splitting prism. Fluorescence can be received and used as a reference signal to determine the molecular weight of the sample. Increasing the number of image divisions can also increase the number of specimens that can be examined simultaneously.

上記実施例は一次元電気泳動分離によるものである
が、多次元電気泳動についても同様にして実施できる。
Although the above embodiment is based on one-dimensional electrophoretic separation, the same can be applied to multidimensional electrophoresis.

また、上記実施例では、検出部としてレーザーをゲル
側面から入射させ、二次元検出器で受光する例を示した
が、レーザーを前方から入射させ、照射領域にわたって
スキャンし、フィルターを装着した複数の光電子増倍管
で受光することもできる。
Further, in the above embodiment, an example was described in which the laser was incident from the gel side as the detection unit and the light was received by the two-dimensional detector.However, the laser was incident from the front, scanning was performed over the irradiation area, and a plurality of Light can be received by a photomultiplier tube.

なお、実時間測定に代わり、泳動終了後にゲル板を照
射して、二次元画像を計測したり、ラインセンサーをゲ
ル板に対してスキャンしてデータを得ることもできる。
Instead of real-time measurement, the gel plate may be irradiated after the electrophoresis to measure a two-dimensional image, or data may be obtained by scanning a line sensor with respect to the gel plate.

〔発明の効果〕〔The invention's effect〕

本発明によれば、相互に識別すべき複数のDNA断片を
混合物の状態で混在したまま、酵素切断処理し、かつ、
蛍光検出して、対応するDNA断片のそれぞれのパターン
の差を見るので、識別すべき複数のDNA断片間の切断条
件、電気泳動条件等の差異により生ずる測定上のノイズ
を排除でき、塩基配列がきわめて類似したものであって
も、その両者の遺伝子の相違を効率的かつ正確に知るこ
とができる。そして、この方法は特定の遺伝病を持った
患者群に共通の遺伝子のDNA断片群と正常人に共通な遺
伝子のDNA断片群を比較して、遺伝子病の原因遺伝子部
位を求めるのに極めて有効である。また、別の応用とし
て、DNA断片の塩基長の知られている断片群をスタンダ
ードとして、検体遺伝子のDNA断片群とともに混合状態
のままで電気泳動させることにより、同一の塩基長のDN
A断片は正確に重なるので、検体遺伝子のDNAの長さを正
確に決定することもできる。
According to the present invention, a plurality of DNA fragments to be distinguished from each other are enzymatically cleaved while being mixed in a mixture, and
By detecting fluorescence and observing the differences in the respective patterns of the corresponding DNA fragments, it is possible to eliminate measurement noise caused by differences in cleavage conditions, electrophoresis conditions, etc., between a plurality of DNA fragments to be identified, and to reduce the nucleotide sequence. Even if they are very similar, it is possible to efficiently and accurately know the difference between the two genes. This method is extremely effective for finding the causative gene site of a genetic disease by comparing a DNA fragment group of a gene common to a patient group with a specific genetic disease with a DNA fragment group of a gene common to a normal person. It is. Further, as another application, a DNA fragment having the same nucleotide length is electrophoresed in a mixed state together with a DNA fragment group of a sample gene using a fragment group having a known nucleotide length as a standard.
Since the A fragments overlap exactly, the DNA length of the sample gene can also be determined accurately.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明方法の原理説明図、第2図は本発明方法
の実施に用いられる装置の一構成を示す概略図である。 図において、 1……標準遺伝子試料、2……検体遺伝子、3……混合
された試料、4……酵素切断された標準遺伝子由来のDN
A断片群、5……酵素切断された検体遺伝子由来のDNA断
片群、6……標準遺伝子由来のDNA断片群のスペクト
ル、7……検体遺伝子由来のDNA断片群のスペクトル、
8……注入具、9……分離用ゲル板、10……レーザー、
11……反射ミラー、12……照射レーザー光、13……像分
割プリズム、14……バンドパスフィルター、15……受光
器、16……コントローラ、17……計算機、18……表示装
置、19……モニター。
FIG. 1 is a view for explaining the principle of the method of the present invention, and FIG. 2 is a schematic diagram showing one configuration of an apparatus used for carrying out the method of the present invention. In the figure, 1... A standard gene sample, 2... A sample gene, 3... A mixed sample, 4.
A fragment group, 5: A DNA fragment group derived from an enzyme gene-digested sample gene, 6: A spectrum of a DNA fragment group derived from a standard gene, 7: A spectrum of a DNA fragment group derived from a sample gene,
8 Injector, 9 Separation gel plate, 10 Laser
11: Reflecting mirror, 12: Irradiated laser beam, 13: Image splitting prism, 14: Bandpass filter, 15: Receiver, 16: Controller, 17: Computer, 18: Display device, 19 ……monitor.

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】相互に識別すべき複数の遺伝子を同一の第
1の酵素で切断し、得られたDNA断片群を前記複数の遺
伝子毎に異なる蛍光体で標識した後、蛍光標識されたDN
A断片群を混合し、混合物の状態でDNA断片を第2の酵素
で切断した後、さらに混合物の状態でDNA断片の分離操
作を行い、前記複数の遺伝子に由来するDNA断片群の分
離パターンの差を光学的に検出して、前記複数の遺伝子
を相互に識別することを特徴とする蛍光式遺伝子識別
法。
Claims: 1. A plurality of genes to be distinguished from each other are cleaved with the same first enzyme, and the obtained DNA fragment group is labeled with a different fluorophore for each of the plurality of genes, and then a fluorescently labeled DN
The A fragment group is mixed, and the DNA fragment is cleaved with the second enzyme in the state of the mixture, and then the DNA fragment is separated in the state of the mixture to obtain a separation pattern of the DNA fragment group derived from the plurality of genes. A fluorescent gene identification method, wherein the plurality of genes are distinguished from each other by optically detecting a difference.
【請求項2】前記複数の遺伝子が、それぞれ、異なる個
体由来の遺伝子であることを特徴とする請求項1記載の
蛍光式遺伝子識別法。
2. The fluorescent gene identification method according to claim 1, wherein said plurality of genes are genes derived from different individuals.
【請求項3】前記DNA断片の分離操作を一次元あるいは
多次元ゲル電気泳動法により行うことを特徴とする請求
項1または請求項2記載の蛍光式遺伝子識別法。
3. The fluorescent gene identification method according to claim 1, wherein the DNA fragment is separated by one-dimensional or multi-dimensional gel electrophoresis.
【請求項4】前記分離パターンの光学的検出をラインセ
ンシング可能な実時間蛍光検出装置で行うことを特徴と
する請求項1または請求項2記載の蛍光式遺伝子識別
法。
4. The fluorescent gene identification method according to claim 1, wherein the optical detection of the separation pattern is performed by a real-time fluorescence detector capable of line sensing.
【請求項5】前記分離パターンの光学的検出を一次元あ
るいは二次元ゲルリーダーで行うことを特徴とする請求
項1または請求項2記載の蛍光式遺伝子識別法。
5. The fluorescent gene identification method according to claim 1, wherein the optical detection of the separation pattern is performed by a one-dimensional or two-dimensional gel reader.
【請求項6】前記分離パターンの光学的検出を同一場
所、同時刻に放射された蛍光を波長選別して検出するこ
とを特徴とする請求項4または請求項5記載の蛍光式遺
伝子識別法。
6. The fluorescent gene identification method according to claim 4, wherein the optical detection of the separation pattern is performed by wavelength-selecting and detecting fluorescence emitted at the same place and at the same time.
【請求項7】相互に識別すべき複数の遺伝子を第1の酵
素で切断し、得られたDNA断片群を前記複数の遺伝子毎
に異なる蛍光体で標識した後、これらのDNA断片群を混
合し、混合物のままDNA断片の分離操作を行い、つい
で、前記DNA断片群の分離パターンの差を光学的に検出
して、前記複数の遺伝子を相互に識別することを特徴と
する蛍光式遺伝子識別法。
7. A plurality of genes to be distinguished from each other are cleaved with a first enzyme, the obtained DNA fragment groups are labeled with different fluorophores for each of the plurality of genes, and these DNA fragment groups are mixed. Then, a DNA fragment separation operation is performed as a mixture, and then, a difference in separation pattern of the DNA fragment group is optically detected, and the plurality of genes are distinguished from each other by fluorescence. Law.
【請求項8】相互に識別すべき複数の遺伝子を第1の酵
素で切断し、得られたDNA断片群を前記複数の遺伝子毎
に異なる蛍光体で標識した後、蛍光標識されたDNA断片
群を混合し、混合物の状態でDNA断片を第2の酵素で切
断した後、さらに混合物の状態でDNA断片の電気泳動分
離を行い、前記蛍光体が発する蛍光の蛍光強度を蛍光波
長毎に測定することにより、電気泳動分離された各DNA
断片の電気泳動距離及び該DNA断片が由来する遺伝子を
同定し、前記複数の遺伝子に由来するDNA断片群の電気
泳動パターンの差を検出して、前記複数の遺伝子を相互
に識別することを特徴とする蛍光式遺伝子識別法。
8. A plurality of genes to be distinguished from each other are cleaved with a first enzyme, and the obtained DNA fragments are labeled with different fluorophores for each of the plurality of genes, and then the fluorescently labeled DNA fragments are collected. Are mixed, and the DNA fragment is cleaved with the second enzyme in the state of the mixture. Then, the DNA fragment is further subjected to electrophoretic separation in the state of the mixture, and the fluorescence intensity of the fluorescence emitted from the phosphor is measured for each fluorescence wavelength. Each DNA separated by electrophoresis
Identifying the electrophoretic distance of the fragments and the gene from which the DNA fragment is derived, detecting a difference in the electrophoretic pattern of a DNA fragment group derived from the plurality of genes, and distinguishing the plurality of genes from each other. Fluorescent gene identification method.
JP2003561A 1990-01-12 1990-01-12 Fluorescent gene identification method Expired - Fee Related JP2991447B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003561A JP2991447B2 (en) 1990-01-12 1990-01-12 Fluorescent gene identification method
DE19914100279 DE4100279C2 (en) 1990-01-12 1991-01-07 Method of distinguishing genes by fluorescence detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003561A JP2991447B2 (en) 1990-01-12 1990-01-12 Fluorescent gene identification method

Publications (2)

Publication Number Publication Date
JPH03210200A JPH03210200A (en) 1991-09-13
JP2991447B2 true JP2991447B2 (en) 1999-12-20

Family

ID=11560837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003561A Expired - Fee Related JP2991447B2 (en) 1990-01-12 1990-01-12 Fluorescent gene identification method

Country Status (2)

Country Link
JP (1) JP2991447B2 (en)
DE (1) DE4100279C2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9503991D0 (en) * 1995-11-10 1995-11-10 Pharmacia Biotech Ab Method and apparatus for determining the existence of a mutation
JP4891363B2 (en) * 2009-05-18 2012-03-07 株式会社日立ハイテクノロジーズ Fluorescence detection method and fluorescence detection apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0317239A3 (en) * 1987-11-13 1990-01-17 Native Plants Incorporated Method and device for improved restriction fragment length polymorphism analysis
DE3807975C2 (en) * 1988-03-10 2002-03-07 Karl Otto Greulich Process for the optical characterization of nucleic acids and oligonucleotides
DD281611A5 (en) * 1988-11-22 1990-08-15 Adw Ddr METHOD OF SEQUENCING NUCLEIC ACIDS

Also Published As

Publication number Publication date
JPH03210200A (en) 1991-09-13
DE4100279A1 (en) 1991-07-18
DE4100279C2 (en) 1994-05-05

Similar Documents

Publication Publication Date Title
US5162654A (en) Detection apparatus for electrophoretic gels
JP2815506B2 (en) Light detection type electrophoresis device
JP2550106B2 (en) Optical dispersion detection type electrophoretic device
US5871628A (en) Automatic sequencer/genotyper having extended spectral response
Karger et al. Multiwavelength fluorescence detection for DNA sequencing using capillary electrophoresis
CA1258611A (en) Method of dna sequencing
JP2000503774A (en) Multi-component analysis method including determination of statistical confidence intervals
JP3400650B2 (en) Electrophoretic separation detection method and apparatus
JP2649793B2 (en) Method for producing labeled oligonucleotide
JP2991447B2 (en) Fluorescent gene identification method
JP2675029B2 (en) Light detection type electrophoresis device
JP2702920B2 (en) Electrophoretic separation detection method and apparatus
EP0275440B1 (en) Photo detection system for dna base analysis
JP2826366B2 (en) Fluorescence detection type electrophoresis device
JP3058667B2 (en) DNA probe and DNA fragment detection method using the same
JP2935661B2 (en) Fluorescence detection method in fluorescence detection type electrophoresis apparatus
EP0755513A1 (en) Method and apparatus for electrophoretic analysis
JP2809227B2 (en) Electrophoresis device
JPH02269937A (en) Multicolor fluorescence detection type electrophoretic device
US20130334049A1 (en) Multi-color detection system for multiplexed capillary electrophoresis
JPH0572179A (en) Detecting device for two-dimensional fluorescent image of nucleic acid and protein
EP1568785A2 (en) Method for detecting oligonucleotides and determining base sequence of nucleic acids
JP2746252B2 (en) Fluorescence detection method in fluorescence detection type electrophoresis apparatus
JPH1068694A (en) Method for determining base sequence of nucleic acid
JP4076698B2 (en) Method and apparatus for detecting biological material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees