JPH1068694A - Method for determining base sequence of nucleic acid - Google Patents

Method for determining base sequence of nucleic acid

Info

Publication number
JPH1068694A
JPH1068694A JP9173525A JP17352597A JPH1068694A JP H1068694 A JPH1068694 A JP H1068694A JP 9173525 A JP9173525 A JP 9173525A JP 17352597 A JP17352597 A JP 17352597A JP H1068694 A JPH1068694 A JP H1068694A
Authority
JP
Japan
Prior art keywords
nucleic acid
fluorescence
light
wavelength
fluorescent substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9173525A
Other languages
Japanese (ja)
Inventor
Hideki Kanbara
秀記 神原
Yoshitoshi Ito
嘉敏 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9173525A priority Critical patent/JPH1068694A/en
Publication of JPH1068694A publication Critical patent/JPH1068694A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for determining the base sequence of nucleic acid by detecting fluorescence having respective wavelengths by a simple mechanism. SOLUTION: A process separating nucleic acid segments labelled with fluorescent material having different light emitting wavelengths corresponding to the kind of a terminal base, a process irradiating fluorescent material with laser beam to generate fluorescence, a process condensing fluorescence in a spectrally diffracted state and a process detecting the condensed light to determine the base sequence of a sample from the relation of the wavelength of the detected light and the length of nucleic acid segments are provided. Thereby, a wavelength can be dispersed without largely changing a light path and a fluorescent image can be detected with high sensitivity without being distorted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、DNAあるいはRNA
の塩基配列決定方法に係り、特に末端塩基の種類に応じ
て発光波長の異なる蛍光体で標識された核酸断片から波
長の異なる蛍光を検出するのに好適な塩基配列決定方法
に関する。
The present invention relates to DNA or RNA.
More particularly, the present invention relates to a method for determining a base sequence suitable for detecting fluorescence having different wavelengths from a nucleic acid fragment labeled with a fluorescent substance having a different emission wavelength according to the type of terminal base.

【0002】[0002]

【従来の技術】従来、DNA上の塩基配列決定はオート
ラジオグラフィを用いて、分離パターンを写真に転写す
ることにより行なっていた。しかし、放射性元素を使用
する煩雑さに加えて手間と時間のかかる難点があった。
そこでDNAを蛍光標識して電気泳動分離中のDNA断
片を実時間で検出する方式が注目されている(エル、エ
ム、スミス等、ネーチャー321、674(1986)
(L.M.Smithet al Nature 32
1、674(1986)))。この方法では、特定のD
NA末端を保持すると共に末端あるいは途中に蛍光標識
を行ない、他の末端の核酸の持つ塩基がアデニン(A)
であるDNAフラグメント群、シトシン(C)、チミン
(T)、あるいはグアニン(G)で終わる四種のフラグ
メント群を作製する。この時、各塩基群を標識する蛍光
体には発光波長の異なるものを用いる。これら四つの断
片群をいっしょにしてゲル電気泳動分離を行なう。電気
泳動速度は短いDNA断片ほど早いので、試料注入口か
ら一定距離の所をレーザーで照射すると短い断片から順
次照射領域を通過し蛍光を発する。塩基種により発光波
長が異なるので、波長から塩基種が決定され、泳動時間
から長さが決定できる。四種の波長の異なる蛍光を識別
するために、透過波長の異なる四種のフィルターを回転
させたりしている。また、複数個の試料の測定を可能と
するため、平板型ゲルを用いた装置が米国アプライド
バイオシステムズ(Applied Biosyste
ms)社から市販されている。この装置では、レーザー
ビームを細く絞りゲル平面の一点を照射する。ここから
出た蛍光は、回転フィルターを通過して受光部で検出さ
れる。多数試料の測定ではレーザー照射位置と検出部を
連動させて一直線上を走査して情報を得ている。
2. Description of the Related Art Conventionally, base sequence determination on DNA has been performed by transferring a separation pattern to a photograph using autoradiography. However, in addition to the complexity of using radioactive elements, there is a problem that it takes time and effort.
Therefore, attention has been paid to a method of detecting DNA fragments during electrophoretic separation in real time by fluorescently labeling DNA (L, M, Smith, et al., Nature 321, 674 (1986)).
(LM Smithet al Nature 32
1, 674 (1986))). In this method, a specific D
Fluorescent labeling is carried out at the end or in the middle while retaining the NA end, and the base of the nucleic acid at the other end is adenine (A)
, Four types of fragment groups ending with cytosine (C), thymine (T), or guanine (G). At this time, a fluorescent substance having a different emission wavelength is used as a fluorescent substance for labeling each base group. Gel electrophoretic separation is performed on these four fragment groups together. Since the shorter the DNA fragment, the faster the electrophoresis speed, the laser is irradiated at a certain distance from the sample injection port with a laser, and the shorter fragments sequentially pass through the irradiation region and emit fluorescence. Since the emission wavelength differs depending on the type of base, the type of base can be determined from the wavelength, and the length can be determined from the migration time. In order to distinguish four types of fluorescence having different wavelengths, four types of filters having different transmission wavelengths are rotated. In addition, in order to enable measurement of multiple samples, a device using a flat gel was
Biosystems (Applied Biosystem)
ms). In this apparatus, a laser beam is narrowed down to irradiate a point on a gel plane. The fluorescent light emitted from the filter passes through the rotating filter and is detected by the light receiving unit. In the measurement of a large number of samples, information is obtained by scanning the laser irradiation position and the detection unit on a straight line in conjunction with each other.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、検
出部に受光される受光量を多くするという点で配慮がさ
れていなかった。即ち、泳動板上の10cmの領域を判
定しようとすると、各地点をレーザーが照射する時間
は、仮にレーザビーム幅を0.5mmとすると、1回の
走査時間(通常1秒程度)の1/200となってしま
う。更に、4つの塩基に対応して4つのフィルターが回
転するので、着目する1つの塩基群あたりの計測時間は
更に1/4になり、結局、全体の計測時間の1/800
程度が1地点、1塩基種の計測に用いられるだけで、受
光量が少なく高感度が得られない。本発明の目的は、回
転フィルターを用いることなく、単純な機構で全ての計
測時間にわたって各波長の蛍光を受光できる高感度な蛍
光検出型電気泳動装置における蛍光検出方法を提供する
ことにある。
In the above prior art, no consideration has been given to increasing the amount of light received by the detector. That is, when trying to determine an area of 10 cm on the electrophoresis plate, the time for irradiating each point with the laser is 1/1 of one scanning time (normally about 1 second), assuming that the laser beam width is 0.5 mm. It will be 200. Furthermore, since the four filters rotate in response to the four bases, the measurement time per one base group of interest is further reduced to 1/4, and eventually, 1/800 of the total measurement time.
The degree is only used for measuring one point and one base type, and the amount of received light is small and high sensitivity cannot be obtained. An object of the present invention is to provide a fluorescence detection method for a highly sensitive fluorescence detection type electrophoresis apparatus which can receive fluorescence of each wavelength for all measurement times with a simple mechanism without using a rotating filter.

【0004】[0004]

【課題を解決するための手段】上記目的は測定領域を同
時に照射し、発する蛍光を直視プリズム(複合プリズ
ム)で波長分散させると同時に、レンズ系でイメージ増
幅器上に結像させ、二次元検出器を用いて検出すること
により達成される。即ち集光レンズの前面に直視プリズ
ムを設置し、波長分散と結像を同時に行なう事により達
成される。
The object of the present invention is to simultaneously irradiate the measurement area and disperse the emitted fluorescence with a direct-view prism (composite prism), and simultaneously form an image on an image amplifier with a lens system to obtain a two-dimensional detector. This is achieved by detecting using That is, this is achieved by installing a direct-view prism on the front surface of the condenser lens and simultaneously performing wavelength dispersion and image formation.

【0005】本発明の核酸の塩基配列決定方法は、末端
塩基の種類に応じて発光波長の異なる蛍光体で標識した
核酸断片を電気泳動により分離する工程と、レーザ光を
照射して蛍光体を励起して蛍光を発生させる工程と、蛍
光を複数回屈折させて、蛍光体の種類に応じた波長の光
をそれぞれ異なる方向に分散させる工程と、分散された
光を集光する工程と、集光された光を検出する工程と、
検出された光の波長と核酸断片の長さの関係から試料の
塩基配列を決定する工程とを有することに特徴がある。
The method for determining the nucleotide sequence of a nucleic acid according to the present invention comprises the steps of: separating a nucleic acid fragment labeled with a fluorescent substance having a different emission wavelength according to the type of a terminal base by electrophoresis; A step of exciting to generate fluorescence, a step of refracting the fluorescence a plurality of times to disperse light of a wavelength corresponding to the type of the phosphor in different directions, and a step of collecting the dispersed light. Detecting the illuminated light;
Determining the base sequence of the sample from the relationship between the wavelength of the detected light and the length of the nucleic acid fragment.

【0006】[0006]

【作用】通常の単一プリズムと異なり、複数のプリズム
を組み合わせた直視プリズム(複合プリズム)では、出
射後の光路が入射前とあまり変化なく、波長による分散
だけをひきおこす。このため蛍光線画像を歪めることな
く、レンズ系を用いて波長分散した型で、イメージ増幅
器あるいは高感度二次元検出器上に結像する事ができ
る。蛍光線画像を水平方向に取るとすると、上下方向に
波長分散した蛍光像が並ぶことになる。上下方向の位置
で波長を識別し、水平方向の座標から照射されている部
分の位置を識別する。上下方向分散は異なる蛍光体で標
識された塩基種の違いを表わしており、左右は装填位置
の違いを反映しており、試料の違いを表わすことにな
る。
In a direct-view prism (composite prism) in which a plurality of prisms are combined, unlike an ordinary single prism, the optical path after emission is not much different from that before incidence, and only dispersion by wavelength is caused. For this reason, it is possible to form an image on an image amplifier or a high-sensitivity two-dimensional detector in a wavelength-dispersed type using a lens system without distorting the fluorescent ray image. If the fluorescent image is taken in the horizontal direction, fluorescent images having wavelength dispersion in the vertical direction will be arranged. The wavelength is identified by the position in the vertical direction, and the position of the irradiated part is identified from the coordinates in the horizontal direction. The vertical dispersion indicates the difference in the type of bases labeled with different phosphors, and the left and right reflect the difference in the loading position, indicating the difference in the sample.

【0007】[0007]

【実施例】以下、本発明の一実施例を図1〜図2により
説明する。図1は全体の装置構成を示したものである。
図2は塩基配列決定の原理を、図3は組合せプリズムの
動作原理を示したものである。配列を決定しようとする
DNA(検体)16の片方の末端に蛍光標識(F)を行
ない、他の末端がアデニン(A)塩基で終わる断片群
({A}ファミリー)を作製する。同様の断片群(ファ
ミリー)を他の塩基、シトシン(C)、グアニン
(G)、チミン(T)についても作製する。ただし、標
識蛍光体の種類を断片群毎に変えておく。これら断片群
を1つにまとめて泳動ゲル上に装填し、電気泳動を行な
う。一つの試料(検体)について一個の泳動路を使用す
る。本実施例では複数の泳動路が確保できるので、多く
の試料(検体)を同時に測定することができる。DNA
断片は短いものほど早く泳動するので、泳動始点から一
定距離の所を、光で照射し通過するDNAフラグメント
から出る蛍光を観測すると、泳動時間から塩基長がわか
り、蛍光波長から末端塩基種がわかる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows the entire apparatus configuration.
FIG. 2 shows the principle of base sequence determination, and FIG. 3 shows the operation principle of the combination prism. A fluorescent label (F) is applied to one end of the DNA (sample) 16 whose sequence is to be determined, and a fragment group ({A} family) whose other end ends with an adenine (A) base is prepared. A similar fragment group (family) is prepared for other bases, cytosine (C), guanine (G), and thymine (T). However, the type of the labeled phosphor is changed for each fragment group. These fragment groups are combined into one, loaded on an electrophoresis gel, and subjected to electrophoresis. One migration path is used for one sample (analyte). In this embodiment, since a plurality of migration paths can be secured, many samples (samples) can be measured simultaneously. DNA
The shorter the fragment, the faster it migrates, so illuminating it at a certain distance from the starting point with light and observing the fluorescence emitted from the DNA fragment that passes through it allows you to determine the base length from the migration time and the terminal base type from the fluorescence wavelength. .

【0008】複数泳動路を含む励起光の線状照射部のゲ
ルや蛍光体等から発せられる蛍光線画像は、励起光をカ
ットするフィルター4を通過し、直視プリズム14で波
長分散させられ、結像レンズ5でイメージ増幅器6上に
波長分散画像として結像する。波長分散した増幅画像は
二次元検出器7により受光される。二次元検出器7上の
水平方向(泳動方向に垂直な方向)の位置が照射部座
標、即ち泳動路の区別を表し、垂直方向(泳動方向)が
波長分散される方向に対応する。二次元検出器7上の1
本の水平方向の受光素子ライン、または水平方向の複数
の受光素子ラインで波長分散された蛍光像を受光する。
従って、波長分散された蛍光像を二次元検出器7上の垂
直方向の異なった4ヵ所の位置で得る。該信号は検出回
路9に入力され、信号検出の様子はモニター8上に見る
事ができる。また、検出回路9からの信号のメモリ1
0、計算機11、出力機器12によって処理、分析する
ことができる。なお、上記二次元検出器7として、複数
のラインセンサーを配列したものを使用しても良い。
[0008] A fluorescence image emitted from a gel, a phosphor, or the like of a linear irradiation portion of excitation light including a plurality of electrophoresis paths passes through a filter 4 for cutting the excitation light, is wavelength-dispersed by a direct-view prism 14, and is condensed. An image is formed as a wavelength dispersion image on the image amplifier 6 by the image lens 5. The wavelength-dispersed amplified image is received by the two-dimensional detector 7. The position in the horizontal direction (the direction perpendicular to the migration direction) on the two-dimensional detector 7 indicates the irradiation part coordinates, that is, the distinction of the migration path, and the vertical direction (the migration direction) corresponds to the direction in which the wavelength is dispersed. 1 on the two-dimensional detector 7
The fluorescent image dispersed in wavelength is received by one horizontal light receiving element line or a plurality of horizontal light receiving element lines.
Therefore, the wavelength-dispersed fluorescent images are obtained at four different positions on the two-dimensional detector 7 in the vertical direction. The signal is input to the detection circuit 9, and the state of signal detection can be seen on the monitor 8. Also, the memory 1 of the signal from the detection circuit 9
0, can be processed and analyzed by the computer 11 and the output device 12. Note that, as the two-dimensional detector 7, an array of a plurality of line sensors may be used.

【0009】励起波長488nmを用いFITC(発光
波長515nm)及びその異性体(発光波長535n
m、555nm、及び575nm)を蛍光体に使用した
場合の例を説明する。図3に示したように、屈折率n2
およびn3のプリズムを組み合わせて使用する時、波長
による屈折角の分散∂uout/∂λは(数1)で与えら
れる。
Using an excitation wavelength of 488 nm, FITC (emission wavelength: 515 nm) and its isomer (emission wavelength: 535 n)
(555 nm, 575 nm, and 575 nm) will be described. As shown in FIG. 3, the refractive index n 2
When the prisms of n and n 3 are used in combination, the dispersion of the refraction angle depending on the wavelength ∂u out / ∂λ is given by (Equation 1).

【0010】[0010]

【数1】 ∂uout/∂λ=2α2/(λI−λC)・{(nd2−1)/(νd2) −[(nd3−1)/(νd3)]・(n2−n1)/(n3−n1)}…(数1) α2は第1プリズムの頂角、n2は屈折率、n1は空気の
屈折率、n3は第2プリズムの屈折率である。nd2、n
3は第1、及び第2プリズムを構成するガラスのnd
値であり、νd2、及びνd3はνd値である。λF
0.4861μm、λC=0.6563μmである。α2
を15°とし、第1プリズム材にSFS1を、第2プリ
ズム材にFK5を用いると、第2プリズムの頂角α
3は、(数2)となる。
1u out / ∂λ = 2α 2 / (λ IC ) {(nd 2 -1) / (νd 2 )-[(nd 3 -1) / (νd 3 )]] ( n 2 −n 1 ) / (n 3 −n 1 )} (Formula 1) α 2 is the apex angle of the first prism, n 2 is the refractive index, n 1 is the refractive index of air, and n 3 is the second prism. Is the refractive index of nd 2 , n
d 3 is the nd of the glass constituting the first and second prisms
Νd 2 and νd 3 are νd values. λ F =
0.4861 μm and λ C = 0.6563 μm. α 2
When SFS1 is used for the first prism material and FK5 is used for the second prism material, the apex angle α of the second prism
3 becomes (Equation 2).

【0011】[0011]

【数2】 α2・(n2−n1)/(n3−n1)≒34.5° …(数2) また、νd2=21、nd2=1.92、νd3=70、
nd3=1.4であるので、波長による屈折角の分散∂
out/∂λは(数3)で与えられる。
Α 2 · (n 2 −n 1 ) / (n 3 −n 1 ) ≒ 34.5 ° (Expression 2 ) Further, νd 2 = 21, nd 2 = 1.92, and νd 3 = 70 ,
Since nd 3 = 1.4, the dispersion of the refraction angle depending on the wavelength ∂
u out / ∂λ is given by (Equation 3).

【0012】[0012]

【数3】 ∂uout/∂λ=(−2×0.262/0.1702){0.92/21 −0.92/70}=−0.095 …(数3) となる。ここで、波長差Δλ=20nmとし、結像位置
L=60mmとすると、分散Δδは、(数4)となる。
∂u out /∂λ=(−2×0.262/0.1702){0.92/21−0.92/70}=−0.095 (Equation 3) Here, assuming that the wavelength difference Δλ = 20 nm and the image forming position L = 60 mm, the variance Δδ becomes (Equation 4).

【0013】[0013]

【数4】 Δδ=0.095・Δλ・L=0.11(mm) …(数4) 即ち、イメージ増幅器上で0.11mmの分散が得られ
る。より大きな分散が必要な実施例では、α2を30°
とし、L=100mmとして、分散を0.36mmと大
きくし、波長識別を十分行なえるようにした。なお、イ
メージ増幅器の位置分解能は約0.03mmである。
Δδ = 0.095 · Δλ · L = 0.11 (mm) (Equation 4) That is, a dispersion of 0.11 mm is obtained on the image amplifier. In embodiments where greater dispersion is required, α 2 may be 30 °
Assuming that L = 100 mm, the dispersion was increased to 0.36 mm so that wavelength discrimination could be sufficiently performed. The position resolution of the image amplifier is about 0.03 mm.

【0014】[0014]

【発明の効果】本発明によれば、光路を大きく変化する
事なく波長分散をすることができるので、蛍光画像をゆ
がませる事なく波長分散して計測できる。本方式は回転
フィルターで交互に異なる波長を受光する必要がなく、
単純な機構で全ての計測時間にわたって、各波長の蛍光
を受光できるので非常な高感度が得られる。
According to the present invention, it is possible to perform wavelength dispersion without greatly changing the optical path, and therefore, it is possible to perform wavelength dispersion measurement without distorting the fluorescent image. This method eliminates the need to alternately receive different wavelengths with a rotating filter,
Very high sensitivity can be obtained because fluorescence of each wavelength can be received over the entire measurement time with a simple mechanism.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の装置の構成を示す図。FIG. 1 is a diagram showing a configuration of an apparatus according to an embodiment of the present invention.

【図2】本発明の実施例でのDNA塩基配列決定の原理
を示す図。
FIG. 2 is a diagram showing the principle of DNA base sequence determination in an example of the present invention.

【図3】本発明の実施例での直視プリズムの例を示す
図。
FIG. 3 is a diagram showing an example of a direct-view prism according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…ゲル板、2…レーザー、3…ミラー、4…反射フィ
ルター、5…レンズ、6…イメージ増幅器、7…二次元
検出器、8…モニター、9…検出回路、10…メモリ、
11…計算機、12…出力機器、13…レーザー光、1
4…直視プリズム、15…DNAバンド、16…目的と
するDNA、17…泳動板、18…サンプルウエル、1
9…入射光、20…第1プリズム、21…第2プリズ
ム、22…第3プリズム。
DESCRIPTION OF SYMBOLS 1 ... Gel plate, 2 ... Laser, 3 ... Mirror, 4 ... Reflection filter, 5 ... Lens, 6 ... Image amplifier, 7 ... 2D detector, 8 ... Monitor, 9 ... Detection circuit, 10 ... Memory,
11: Computer, 12: Output device, 13: Laser beam, 1
4 ... direct-view prism, 15 ... DNA band, 16 ... target DNA, 17 ... electrophoresis plate, 18 ... sample well, 1
9: incident light, 20: first prism, 21: second prism, 22: third prism.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】末端塩基の種類に応じて発光波長の異なる
蛍光体で標識した核酸断片を電気泳動により分離する工
程と、レーザ光を照射して前記蛍光体を励起して蛍光を
発生させる工程と、前記蛍光を分光したままで集光する
工程と、集光された光を検出し、検出された光の波長と
前記核酸断片の長さの関係から試料の塩基配列を決定す
る工程とを有することを特徴とする核酸の塩基配列決定
方法。
1. A step of electrophoretically separating nucleic acid fragments labeled with a fluorescent substance having a different emission wavelength according to the type of a terminal base, and a step of irradiating a laser beam to excite the fluorescent substance to generate fluorescence. And the step of collecting the fluorescence while keeping the fluorescence, and the step of detecting the collected light, and determining the base sequence of the sample from the relationship between the wavelength of the detected light and the length of the nucleic acid fragment. A method for determining a nucleotide sequence of a nucleic acid, comprising:
【請求項2】末端塩基の種類に応じて発光波長の異なる
蛍光体で標識した核酸断片を電気泳動により分離する工
程と、レーザ光を照射して前記蛍光体を励起して蛍光を
発生させる工程と、前記蛍光を分光し集光する工程と、
集光された光を検出し、検出された光の波長と前記核酸
断片の長さの関係から試料の塩基配列を決定する工程と
を有することを特徴とする核酸の塩基配列決定方法。
2. A step of separating, by electrophoresis, nucleic acid fragments labeled with a fluorescent substance having a different emission wavelength according to the type of a terminal base, and a step of irradiating a laser beam to excite the fluorescent substance to generate fluorescence. And spectrally condensing the fluorescence,
Detecting the condensed light, and determining the base sequence of the sample from the relationship between the wavelength of the detected light and the length of the nucleic acid fragment.
【請求項3】末端塩基の種類に応じて発光波長の異なる
蛍光体で標識した核酸断片を電気泳動により分離する工
程と、レーザ光を照射して前記蛍光体を励起して蛍光を
発生させる工程と、前記蛍光を複数回屈折させて、前記
蛍光体の種類に応じた波長の光をそれぞれ異なる方向に
分散させる工程と、分散された光を集光する工程と、集
光された光を検出する工程とを有することを特徴とする
核酸の塩基配列決定方法。
3. A step of electrophoretically separating nucleic acid fragments labeled with a fluorescent substance having a different emission wavelength according to the type of terminal base, and a step of irradiating a laser beam to excite the fluorescent substance to generate fluorescence. And refracting the fluorescence light a plurality of times to disperse light of a wavelength corresponding to the type of the phosphor in different directions, condensing the dispersed light, and detecting the condensed light. And determining the nucleotide sequence of the nucleic acid.
JP9173525A 1997-06-30 1997-06-30 Method for determining base sequence of nucleic acid Pending JPH1068694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9173525A JPH1068694A (en) 1997-06-30 1997-06-30 Method for determining base sequence of nucleic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9173525A JPH1068694A (en) 1997-06-30 1997-06-30 Method for determining base sequence of nucleic acid

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8081185A Division JP2746252B2 (en) 1996-04-03 1996-04-03 Fluorescence detection method in fluorescence detection type electrophoresis apparatus

Publications (1)

Publication Number Publication Date
JPH1068694A true JPH1068694A (en) 1998-03-10

Family

ID=15962148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9173525A Pending JPH1068694A (en) 1997-06-30 1997-06-30 Method for determining base sequence of nucleic acid

Country Status (1)

Country Link
JP (1) JPH1068694A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010086935A1 (en) * 2009-01-30 2010-08-05 株式会社 日立ハイテクノロジーズ Fluorescence analyzing device and fluorescence analyzing method
WO2010146758A1 (en) * 2009-06-15 2010-12-23 株式会社 日立ハイテクノロジーズ Fluorescent analysis method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5398849A (en) * 1977-02-10 1978-08-29 Nippon Telegr & Teleph Corp <Ntt> Optical branching filter
JPS60242368A (en) * 1984-05-16 1985-12-02 Hitachi Ltd Determination of base sequence of nucleic acid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5398849A (en) * 1977-02-10 1978-08-29 Nippon Telegr & Teleph Corp <Ntt> Optical branching filter
JPS60242368A (en) * 1984-05-16 1985-12-02 Hitachi Ltd Determination of base sequence of nucleic acid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010086935A1 (en) * 2009-01-30 2010-08-05 株式会社 日立ハイテクノロジーズ Fluorescence analyzing device and fluorescence analyzing method
JP2010175419A (en) * 2009-01-30 2010-08-12 Hitachi High-Technologies Corp Fluorescence analyzing device and fluorescence analyzing method
US8389959B2 (en) 2009-01-30 2013-03-05 Hitachi High-Technologies Corp. Fluorescence analyzing device and fluorescence analyzing method
WO2010146758A1 (en) * 2009-06-15 2010-12-23 株式会社 日立ハイテクノロジーズ Fluorescent analysis method
JP2010286421A (en) * 2009-06-15 2010-12-24 Hitachi High-Technologies Corp Fluorescence analysis method

Similar Documents

Publication Publication Date Title
JP2550106B2 (en) Optical dispersion detection type electrophoretic device
JP2815506B2 (en) Light detection type electrophoresis device
US6704104B2 (en) Multi-wavelength array reader for biological assay
US5871628A (en) Automatic sequencer/genotyper having extended spectral response
JP2539172B2 (en) Capillary row confocal fluorescence scanner and method
EP0488422B1 (en) Apparatus for reading fluorescent-labelled gel electrophoresis patterns
JPH09288088A (en) Capillary array electrophoretic apparatus
JPH1194798A (en) Optical detecting electrophoretic apparatus
JP3230890B2 (en) Electrophoretic separation analyzer
JP2000131282A (en) Capillary array electrophoretic device
JP2675029B2 (en) Light detection type electrophoresis device
JP2702920B2 (en) Electrophoretic separation detection method and apparatus
JP2746252B2 (en) Fluorescence detection method in fluorescence detection type electrophoresis apparatus
JP2692680B2 (en) Fluorescence detection type electrophoresis device
JPH1068694A (en) Method for determining base sequence of nucleic acid
JPH08105834A (en) Fluorescent detection electrophoresis device
JPH10132784A (en) Apparatus for determining dna base sequence
JP2841103B2 (en) Fluorescent pattern reading method and apparatus
JPH0572179A (en) Detecting device for two-dimensional fluorescent image of nucleic acid and protein
JP2935661B2 (en) Fluorescence detection method in fluorescence detection type electrophoresis apparatus
JP2776383B2 (en) DNA base sequencer
JP2809227B2 (en) Electrophoresis device
JP4076698B2 (en) Method and apparatus for detecting biological material
JP2666799B2 (en) Electrophoresis device
JPH02269937A (en) Multicolor fluorescence detection type electrophoretic device