JPH08261730A - Non-contact displacement meter - Google Patents
Non-contact displacement meterInfo
- Publication number
- JPH08261730A JPH08261730A JP6230395A JP6230395A JPH08261730A JP H08261730 A JPH08261730 A JP H08261730A JP 6230395 A JP6230395 A JP 6230395A JP 6230395 A JP6230395 A JP 6230395A JP H08261730 A JPH08261730 A JP H08261730A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- measured
- light
- optical system
- image sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、被測定試料にレーザ光
を照射して得られるスペックルパターンを利用して、非
接触のもとに被測定試料の変位情報を得る変位計に関す
る。なお、本発明で言う変位情報とは、被測定試料の1
点における変位情報のほかに、例えば材料試験機等にお
ける試験片の伸び等、被測定試料の2点での変位量に基
づく伸縮量等、更に、多点の変位量に基づく歪分布情報
をも含む。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a displacement meter which obtains displacement information of a sample to be measured without contact by using a speckle pattern obtained by irradiating the sample to be measured with laser light. The displacement information referred to in the present invention means 1 of the measured sample.
In addition to the displacement information at the points, for example, the elongation and contraction amount based on the displacement amount of the measured sample at two points, such as the elongation of the test piece in a material testing machine, and the strain distribution information based on the displacement amount at multiple points are also included. Including.
【0002】[0002]
【従来の技術】被測定試料の表面にレーザ光を照射して
得られるスペックルパターンを利用して、その試料の変
位情報(変位あるいは伸び等)を非接触のもとに測定す
る方法が知られている。2. Description of the Related Art There is known a method of measuring displacement information (displacement or elongation) of a sample to be measured without contact using a speckle pattern obtained by irradiating the surface of the sample to be measured with laser light. Has been.
【0003】このスペックルパターンを利用して変位情
報を得る場合、基本的には、被測定試料表面からのレー
ザ光の散乱光をイメージセンサによって光電変換してス
ペックルパターンに応じた電気信号を刻々と得るととも
に、その刻々の信号の相互相関関数を求めることによ
り、スペックルパターンの移動量を求め、そのスペック
ルパターンの移動量から試料の変位情報を得る。When the displacement information is obtained using this speckle pattern, basically, the scattered light of the laser light from the surface of the sample to be measured is photoelectrically converted by an image sensor to generate an electric signal corresponding to the speckle pattern. The movement amount of the speckle pattern is obtained by obtaining the cross-correlation function of the signals every moment, and the displacement information of the sample is obtained from the movement amount of the speckle pattern.
【0004】また、スペックルパターンを利用した測定
原理を用いて、被測定試料の2箇所におけるスペックル
パターンの移動量を求めるとともに、その差を算出する
と、その2箇所間における被測定試料の伸びまたは縮み
量を求めることができ、例えば材料試験機の試験片の伸
びの測定等にも適用することができる。Further, by using the principle of measurement using the speckle pattern, the movement amount of the speckle pattern at two points of the sample to be measured is calculated and the difference between them is calculated, and the elongation of the sample to be measured between the two points is calculated. Alternatively, the amount of shrinkage can be obtained, and it can be applied to, for example, measurement of elongation of a test piece of a material testing machine.
【0005】ところで、以上の応用例のように、例えば
材料試験機における試験片の伸びを測定する場合、「伸
び」とは、試験片に当初に設定した2つの標点間の距離
が、試験後ないしは試験の進行に伴ってどのように変化
したかを表す率であるため、伸びの測定に際しては、試
験片に当初に設定した2つの観察点(標点)を、試験片
の変形に応じて追尾していく必要がある。このような標
点を追尾する方式として、本発明は既に、レーザ光の各
照射位置を、各観察点(標点)の移動量の計測結果に基
づいて段階的に変化させていく方式と、レーザ光源から
のレーザ光をシリンドリカルレンズ等の光学系を用いて
試験片の伸び方向に1次元状に広げ、被測定試料に対し
てライン状のレーザ光を照射するとともに、そのライン
状の照射領域からの散乱光を1次元イメージセンサで受
光し、そのイメージセンサの各チャンネルの出力のう
ち、試験片表面において互いに所定距離だけ離れた2箇
所に対応する各複数チャンネル分の出力を観察点(標
点)データとして採用するとともに、その各観察点(標
点)データに基づく各観察点(標点)の移動量の計測結
果に基づいて、観察点(標点)データとして採用するチ
ャンネルを段階的に変化させていく方式を提案してい
る。By the way, in the case of measuring the elongation of a test piece in a material testing machine as in the above application example, "elongation" means the distance between two gage marks initially set on the test piece. Since it is a rate that shows how it changes afterwards or with the progress of the test, when measuring elongation, the two observation points (gauge points) initially set on the test piece should be adjusted according to the deformation of the test piece. Need to be tracked. As a method for tracking such a control point, the present invention has already changed each irradiation position of the laser light stepwise based on the measurement result of the movement amount of each observation point (control point), The laser light from the laser light source is expanded one-dimensionally in the extension direction of the test piece using an optical system such as a cylindrical lens, and the sample laser beam is irradiated with the linear laser beam and the linear irradiation area The scattered light from the sensor is received by the one-dimensional image sensor, and among the outputs of each channel of the image sensor, the output of each of the plurality of channels corresponding to two positions separated by a predetermined distance from each other on the surface of the test piece is used as an observation point (marker). Channel that is adopted as observation point (mark) data based on the measurement result of the amount of movement of each observation point (mark) based on each observation point (mark) data We have proposed a method that will be changed in steps.
【0006】このような各提案のうち、後者の提案は、
レーザ光の照射位置を追尾させることなく、データの演
算上で観察点(標点)を追尾することから、前者の提案
に比して、レーザ光の照射位置を変化させるためのメカ
ニズムが不要であるが故にコスト的に有利であるととも
に、追尾用のメカニズムの動作の誤差に起因する測定誤
差が生じないという利点がある。Of the above proposals, the latter proposal is
Since the observation point (gauge point) is tracked in the calculation of data without tracking the irradiation position of the laser light, a mechanism for changing the irradiation position of the laser light is unnecessary compared to the former proposal. Therefore, there is an advantage in cost, and there is an advantage that a measurement error caused by an error in the operation of the tracking mechanism does not occur.
【0007】[0007]
【発明が解決しようとする課題】ところで、上記した例
のように、被測定試料の表面へのレーザ光の照射領域を
スポット状とせずにライン状、あるいは面状等にする場
合には、レーザ光源からの出力光をレンズ等の光学系に
よって所望するビーム断面形状に広げる必要がある。こ
の場合、レーザからの出力光は、一般に光軸を中心とし
てガウス分布をしているため、光学系により広げられた
ビームにもこれに準じて空間的な強度分布が生じる。こ
の強度の差は、ビームを広げれば広げるほど顕著とな
る。By the way, as in the above-described example, when the irradiation area of the laser beam on the surface of the sample to be measured is not a spot shape but a line shape or a surface shape, the laser is not used. It is necessary to spread the output light from the light source into a desired beam cross-sectional shape by an optical system such as a lens. In this case, since the output light from the laser generally has a Gaussian distribution centered on the optical axis, the beam expanded by the optical system also has a spatial intensity distribution according to this. This difference in intensity becomes more remarkable as the beam is expanded.
【0008】図6は、半導体レーザ61からの出力光を
コリメータレンズ62および2つのシリンドリカルレン
ズ63a,63bからなるビームエキスパンダ63によ
ってライン状に広げて被測定試料Wの表面に照射したと
きの照射光の強度分布の説明図で、照射光の空間強度分
布は、半導体レーザ61からの出力光の強度分布に準じ
て、その光軸を中心としたガウス分布となり、広い領域
にわたって均一な照射光強度が得られない。そのため、
被測定試料Wの表面による散乱光も照射光の強度分布に
準じた分布を持つことになり、そこに含まれるスペック
ルパターンも均一な強度分布を持たない。このような散
乱光を1次元イメージセンサで検出すると、その出力
は、図7に例示するうように、端部のチャンネルの信号
にある程度のコントラストを得るべく照射光強度を設定
すると、中央部のチャンネルにおいて入射光強度が強す
ぎて飽和してしまい、逆に中央部の飽和をなくそうとす
れば、端部の信号が微弱となって良好なスペックルパタ
ーンデータを得ることができなくなる。FIG. 6 shows the irradiation when the output light from the semiconductor laser 61 is linearly spread by the beam expander 63 composed of the collimator lens 62 and the two cylindrical lenses 63a and 63b to irradiate the surface of the sample W to be measured. In the explanatory diagram of the light intensity distribution, the spatial intensity distribution of the irradiation light is a Gaussian distribution centered on the optical axis according to the intensity distribution of the output light from the semiconductor laser 61, and the irradiation light intensity is uniform over a wide area. Can't get for that reason,
The light scattered by the surface of the sample W to be measured also has a distribution according to the intensity distribution of the irradiation light, and the speckle pattern contained therein also does not have a uniform intensity distribution. When such scattered light is detected by the one-dimensional image sensor, the output of the one-dimensional image sensor, when the irradiation light intensity is set so as to obtain a certain degree of contrast in the signal of the end channel, as shown in FIG. In the channel, the incident light intensity is too strong and saturated, and if the saturation of the central part is to be eliminated, the signal at the end part becomes weak and good speckle pattern data cannot be obtained.
【0009】このような問題を解決するためには、例え
ば図8に示すように、半導体レーザ81からの出力光の
うち、光軸を中心とする、強度分布の少ない光のみを用
いて照射光を形成するか、あるいは、図9に示すよう
に、複数の半導体レーザ91およびこれらに専用の光学
系92を照射光の広がり方向に並べて、個々の半導体レ
ーザの出力光をあまり広げることなく、各出力光をつな
ぎあわせて全体として長いライン状のビームとして被測
定試料に照射すればよい。しかし、前者の方法では、レ
ーザ光の利用効率が悪く、所望の散乱光強度を得るため
により高パワーの半導体レーザが必要となり、安全面並
びにコスト面で問題があり、また、後者の方法では、半
導体レーザ並びにそれに付随する光学素子の数が増える
分だけコストアップになるという問題がある。In order to solve such a problem, for example, as shown in FIG. 8, of the output light from the semiconductor laser 81, only the light centered on the optical axis and having a small intensity distribution is used for the irradiation light. Alternatively, as shown in FIG. 9, a plurality of semiconductor lasers 91 and a dedicated optical system 92 are arranged in the direction in which the irradiation light spreads so that the output light of each semiconductor laser is not expanded so much. It suffices to combine the output lights and irradiate the measured sample as a long linear beam as a whole. However, in the former method, the utilization efficiency of the laser light is poor, a higher power semiconductor laser is required to obtain the desired scattered light intensity, and there is a problem in safety and cost, and in the latter method, There is a problem that the cost increases as the number of semiconductor lasers and optical elements associated therewith increases.
【0010】本発明はこのような実情に鑑みてなされた
もので、特にレーザ光の利用効率を悪くすることなく、
また、レーザ光源の数を増やすことなく、被測定試料に
対して広い範囲にわたって均一な強度のレーザ光を照射
することができ、もって安価で、しかも広い測定範囲を
持つ高性能の非接触変位計を提供することにある。The present invention has been made in view of such circumstances, and particularly, without deteriorating the utilization efficiency of laser light,
Further, it is possible to irradiate the sample to be measured with a laser beam having a uniform intensity over a wide range without increasing the number of laser light sources, which is inexpensive, and is a high-performance non-contact displacement meter having a wide measurement range. To provide.
【0011】[0011]
【課題を解決するための手段】上記の目的を達成するた
めの構成を、実施例図面である図1を参照しつつ説明す
ると、本発明の非接触変位計は、レーザ光源1からの出
力光を所定の広がりを持たせた状態で被測定試料Wの表
面に照射するための光学系2と、そのレーザ光の被測定
試料Wの表面からの散乱光を受光するイメージセンサ3
と、そのイメージセンサ3からの出力を用いて、散乱光
に含まれるスペックルパターンの刻々の移動量を算出す
ることにより被測定試料の変位情報を得る演算手段4を
備えた変位計において、光学系2と被測定試料Wの表面
との間に、この光学系2を経た光の空間強度分布と逆の
空間的な光透過率分布を持つ減光フィルタ5を設けたこ
とによって特徴づけられる。A structure for achieving the above-mentioned object will be described with reference to FIG. 1 which is an embodiment drawing, and a non-contact displacement meter of the present invention comprises an output light from a laser light source 1. Optical system 2 for irradiating the surface of the sample W to be measured with a predetermined spread, and an image sensor 3 for receiving scattered light of the laser light from the surface of the sample W to be measured.
And an output of the image sensor 3 is used to calculate the amount of movement of the speckle pattern contained in the scattered light every moment, and the displacement meter is provided with a calculation means 4 for obtaining displacement information of the sample to be measured. It is characterized in that a neutral density filter 5 having a spatial light transmittance distribution opposite to the spatial intensity distribution of light passing through the optical system 2 is provided between the system 2 and the surface of the sample W to be measured.
【0012】[0012]
【作用】本発明は、主としてレーザ光源1からの出力光
が持つ空間強度分布に起因して発生する、光学系2を経
た被測定試料Wへの照射光が持つ空間強度分布を、透過
率に空間的な分布を持たせた減光フィルタ5を通過させ
ることで解消しようとするものである。According to the present invention, the spatial intensity distribution of the light radiated to the sample W to be measured through the optical system 2, which is generated mainly due to the spatial intensity distribution of the output light from the laser light source 1, is used as the transmittance. This is to be solved by passing through the neutral density filter 5 having a spatial distribution.
【0013】すなわち、図3に示すように、光学系2と
被測定試料Wの表面との間に、光学系2を経たレーザ光
が持つ空間強度分布と逆の空間的な透過率分布を持つ減
光フィルタ5を介在させて、光軸近傍の強度の高い部分
については低い透過率のもとに透過させ、周辺の強度の
低い部分については高い透過率のもとで透過させること
によって、被測定試料Wに向かうレーザ光を均一な強度
のものにすることができる。That is, as shown in FIG. 3, between the optical system 2 and the surface of the sample W to be measured, there is a spatial transmittance distribution opposite to the spatial intensity distribution of the laser light passing through the optical system 2. By interposing the neutral density filter 5, the high intensity portion near the optical axis is transmitted with low transmittance, and the peripheral low intensity portion is transmitted with high transmittance. The laser light directed to the measurement sample W can be made to have a uniform intensity.
【0014】[0014]
【実施例】図1は本発明実施例の構成を示す模式図であ
る。レーザ光源である半導体レーザ1からの出力光は、
コリメータレンズ21と、2つのシリンドリカルレンズ
22a,22bによって構成されたビームエキスパンダ
22とからなる光学系2により、測定すべき変位方向で
ある図中上下方向に1次元状に広げられた後、被測定試
料Wの表面にライン状に照射される。この照射光の被測
定試料Wの表面からの散乱光は、集光レンズ3aによ
り、同じく測定すべき変位方向である上下方向に沿って
各チャンネルが並べられた複数チャンネルの1次元イメ
ージセンサ3の受光面上に結像される。なお、図1にお
いては、説明の簡単化のためにイメージセンサ3を傾斜
させて図示しているが、実際にはこのイメージセンサ3
は被測定試料Wの表面と平行で、かつ、その各チャンネ
ルは測定すべき変位方向に伸びており、照射光に対して
は図に直交する方向に所定の角度を開けて配置されてい
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic diagram showing the structure of an embodiment of the present invention. The output light from the semiconductor laser 1, which is a laser light source, is
An optical system 2 including a collimator lens 21 and a beam expander 22 composed of two cylindrical lenses 22a and 22b is used to spread the light in a one-dimensional manner in the vertical direction in the drawing, which is the displacement direction to be measured, and The surface of the measurement sample W is irradiated in a line shape. The scattered light from the surface of the sample W to be measured of the irradiation light of the one-dimensional image sensor 3 of a plurality of channels in which each channel is arranged by the condenser lens 3a along the up-down direction which is also the displacement direction to be measured. An image is formed on the light receiving surface. Note that, in FIG. 1, the image sensor 3 is shown in a tilted manner for the sake of simplification of description.
Is parallel to the surface of the sample W to be measured, and each channel thereof extends in the displacement direction to be measured, and is arranged at a predetermined angle with respect to the irradiation light in the direction orthogonal to the drawing.
【0015】イメージセンサ3の各チャンネルからの出
力は、A−D変換器を含み、かつ、コンピュータを主体
とする演算部4に刻々と取り込まれる。演算部4では、
イメージセンサ3の各チャンネルからの出力のうち、被
測定試料Wの表面において測定すべき変位(伸び)方向
に所定の距離を隔ててあらかじめ設定された2つの観察
点領域に対応する各複数チャンネルずつのデータを用い
て、それぞれの観察点からの刻々のデータの相互相関関
数を演算することにより、各観察点のスペックルパター
ンの移動量を算出するとともに、その両者の移動量の差
から、被測定試料Wの観察点間の伸びを算出する。ま
た、このような測定動作中において、各観察点のスペッ
クルパターンの移動量が規定量に達するごとに、観察点
として用いるチャンネルを順次その移動方向にシフトす
ることにより、各観察点を演算上において追尾し、この
追尾を行った場合には、その追尾量についても各観察点
のスペックルパターンの移動量とともに伸びの算出に供
するようになっている。Outputs from the respective channels of the image sensor 3 are taken into the arithmetic unit 4 including an AD converter and mainly composed of a computer every moment. In the calculation unit 4,
Of the output from each channel of the image sensor 3, each of a plurality of channels corresponding to two observation point regions preset on the surface of the sample W to be measured with a predetermined distance in the displacement (stretching) direction to be measured. The amount of movement of the speckle pattern at each observation point is calculated by calculating the cross-correlation function of the data from each observation point using the data of 1. The elongation between the observation points of the measurement sample W is calculated. In addition, during such a measurement operation, each time the observation point is calculated by sequentially shifting the channel used as the observation point in the movement direction each time the movement amount of the speckle pattern at each observation point reaches a specified amount. When the tracking is performed and the tracking is performed, the tracking amount is also used for the elongation calculation together with the movement amount of the speckle pattern at each observation point.
【0016】さて、本発明実施例の特徴とするところ
は、光学系2の最終段であるシリンドリカルレンズ22
bと被測定試料Wとの間に、以下に示すように位置によ
って透過率が変化する減光フィルタ5が設けられている
点である。The feature of the embodiment of the present invention is that the final stage of the optical system 2 is a cylindrical lens 22.
The point is that a neutral density filter 5 whose transmittance changes depending on the position is provided between b and the sample to be measured W as described below.
【0017】すなわち、この減光フィルタ5は、図2
(A)に模式的に示すように、例えばガラス基板5aの
一面に金属蒸着膜5bを形成したもので、その金属蒸着
膜5bは中心ほど厚く、両端に向かうほど薄くなってお
り、これにより、この減光フィルタ5の光透過率は同図
(B)に示すように、中心ほど低く、両端ほど高くなる
ような分布を持っている。そして、このような透過率分
布を持つ減光フィルタ5が、その中心が光学系2の光軸
上に位置するように配置されている。That is, this neutral density filter 5 is shown in FIG.
As schematically shown in (A), for example, the metal vapor deposition film 5b is formed on one surface of the glass substrate 5a, and the metal vapor deposition film 5b is thicker toward the center and thinner toward both ends. The light transmittance of the neutral density filter 5 has a distribution such that it is lower at the center and higher at both ends, as shown in FIG. Then, the neutral density filter 5 having such a transmittance distribution is arranged so that its center is located on the optical axis of the optical system 2.
【0018】以上のような本発明実施例によると、図3
に照射光成形系の各部における光強度分布並びに減光フ
ィルタ5の透過率分布を示すように、光学系2によりラ
イン状に広げられ、かつ、半導体レーザ1の出力光分布
に準じて光軸を中心とするガウス分布様の強度分布を持
つレーザ光は、減光フィルタ5を通過することによっ
て、ほぼ全領域にわたってほぼ一様な強度を持つライン
状のレーザ光に変換される。その結果、被測定試料Wの
表面による散乱光も空間的にほぼ一様な強度分布を持つ
ものとなり、これを受光するイメージセンサ3の各チャ
ンネルの出力は、図4に例示するようにベースラインが
ほぼ一様なものとなって、飽和等を生じることなく、全
域にわたって良好なコントラストのもとにスペックルパ
ターンを表す信号となる。According to the embodiment of the present invention as described above, FIG.
In order to show the light intensity distribution in each part of the irradiation light shaping system and the transmittance distribution of the neutral density filter 5, the optical system 2 spreads the light in a line shape, and the optical axis is set in accordance with the output light distribution of the semiconductor laser 1. The laser light having a Gaussian distribution-like intensity distribution at the center is converted into a linear laser light having an almost uniform intensity by passing through the neutral density filter 5. As a result, the light scattered by the surface of the sample W to be measured also has a spatially substantially uniform intensity distribution, and the output of each channel of the image sensor 3 that receives this is the baseline as illustrated in FIG. Becomes almost uniform, and a signal representing a speckle pattern is obtained with good contrast over the entire area without causing saturation or the like.
【0019】なお、減光フィルタ5の金属蒸着膜5bの
厚さは、必ずしも図2に示すように滑らかに変化してい
る必要はなく、図5(A)に示すように段階的に変化し
ていてもよく、この場合、同図(B)に示すような光透
過率分布を持つことになるが、このような光透過率分布
でも、イメージセンサ3の出力の飽和をなくして全チャ
ンネルで充分なコントラストのもとにスペックルパター
ンを表す信号を得る、という本発明の目的を達成するこ
とができる。このような段階的な厚さを持つ金属蒸着膜
は、例えば同図(C)に示すように、ガラス基板5aか
ら蒸着マスク100を所定距離だけ離した状態で、基板
5aの表面法線に対して所定角度傾斜した2方向から金
属を蒸着すればよい。The thickness of the metal vapor deposition film 5b of the neutral density filter 5 does not necessarily have to change smoothly as shown in FIG. 2, but changes stepwise as shown in FIG. 5 (A). In this case, the light transmittance distribution as shown in FIG. 7B is obtained. However, even with such a light transmittance distribution, the saturation of the output of the image sensor 3 is eliminated and all channels are used. The object of the present invention to obtain a signal representing a speckle pattern with sufficient contrast can be achieved. For example, as shown in FIG. 1C, the metal vapor deposition film having such a gradual thickness has a vapor deposition mask 100 separated from the glass substrate 5a by a predetermined distance with respect to the surface normal of the substrate 5a. The metal may be vapor-deposited from two directions inclined by a predetermined angle.
【0020】また、以上の実施例では、被測定試料Wに
対して1次元状に広げたレーザ光を照射する場合につい
て述べたが、本発明は、2次元状に広げたレーザ光を照
射する場合においても、全く同様に適用可能であるであ
ることは勿論である。Further, in the above embodiment, the case where the sample W to be measured is irradiated with the laser beam expanded in a one-dimensional manner has been described. However, the present invention irradiates the laser light expanded in a two-dimensional manner. Needless to say, the same can be applied to the case.
【0021】[0021]
【発明の効果】以上説明したように、本発明によれば、
レーザ光源からの出力光を光学系により所定の広がりを
持たせた状態で被測定試料に照射して、その散乱光に含
まれるスペックルパターンの移動量から被測定試料の変
位情報を得る変位計ににおいて、光学系と被測定試料と
の間に、光学系を経た光の空間強度分布と逆の空間的な
光透過率分布をもつ減光フィルタを設けることにより、
広げた後のレーザ光の空間強度分布をほぼ全域にわたっ
て一様なものとするので、散乱光を受光するイメージセ
ンサの出力がほぼ一様となり、全チャンネルにわたって
充分なコントラストでスペックルパターンを表すことに
なる。その結果、簡単で安価な構成のもとに、測定範囲
の広い高性能の非接触変位計が得られる。As described above, according to the present invention,
A displacement meter that irradiates the sample to be measured with the output light from the laser light source in a state where it has a predetermined spread by the optical system, and obtains displacement information of the sample to be measured from the movement amount of the speckle pattern included in the scattered light. In, by providing between the optical system and the sample to be measured, a neutral density filter having a spatial light transmittance distribution opposite to the spatial intensity distribution of the light passing through the optical system,
Since the spatial intensity distribution of the laser light after spreading is made uniform over almost the entire area, the output of the image sensor that receives scattered light becomes almost uniform, and the speckle pattern should be displayed with sufficient contrast over all channels. become. As a result, a high-performance non-contact displacement meter having a wide measurement range can be obtained with a simple and inexpensive structure.
【図1】本発明実施例の構成を示す模式図FIG. 1 is a schematic diagram showing a configuration of an embodiment of the present invention.
【図2】その減光フィルタ5の模式的構成図(A)およ
び光透過率分布の説明図(B)FIG. 2 is a schematic configuration diagram of the neutral density filter 5 (A) and an explanatory diagram of a light transmittance distribution (B).
【図3】本発明実施例の作用説明図FIG. 3 is an explanatory view of the operation of the embodiment of the present invention.
【図4】本発明実施例のイメージセンサ3の出力例を示
すグラフFIG. 4 is a graph showing an output example of the image sensor 3 according to the embodiment of the present invention.
【図5】本発明の他の実施例の減光フィルタの模式的構
成図(A)、その光透過率分布の説明図(B)並びにそ
の製造方法の例の説明図(C)FIG. 5 is a schematic configuration diagram (A) of a neutral density filter of another embodiment of the present invention, an explanatory diagram of its light transmittance distribution (B), and an explanatory diagram of an example of its manufacturing method (C).
【図6】従来装置により半導体レーザの出力光を光学系
でライン状に広げた場合の照射光の空間強度分布の説明
図FIG. 6 is an explanatory view of a spatial intensity distribution of irradiation light when the output light of the semiconductor laser is linearly spread by an optical system by a conventional device.
【図7】図6の構成により得られるイメージセンサの出
力例を示すグラフ7 is a graph showing an output example of the image sensor obtained by the configuration of FIG.
【図8】一様な空間強度分布を持つ照射光を得るための
比較例の説明図FIG. 8 is an explanatory diagram of a comparative example for obtaining irradiation light having a uniform spatial intensity distribution.
【図9】同じく一様な空間強度分布を持つ照射光を得る
ための他の比較例の説明図FIG. 9 is an explanatory view of another comparative example for obtaining irradiation light having a uniform spatial intensity distribution.
1 半導体レーザ 2 光学系 21 コリメータレンズ 22 ビームエキスパンダ 22a,22b シリンドリカルレンズ 3 イメージセンサ 3a 集光レンズ 4 演算部 5 減光フィルタ 5a ガラス基板 5b 金属蒸着膜 1 Semiconductor Laser 2 Optical System 21 Collimator Lens 22 Beam Expanders 22a, 22b Cylindrical Lens 3 Image Sensor 3a Condenser Lens 4 Calculation Section 5 Dark Filter 5a Glass Substrate 5b Metallized Film
Claims (1)
を持たせた状態で被測定試料の表面に照射するための光
学系と、そのレーザ光の被測定試料表面からの散乱光を
受光するイメージセンサと、そのイメージセンサからの
出力を用いて、散乱光に含まれるスペックルパターンの
刻々の移動量を算出することにより被測定試料の変位情
報を得る演算手段を備えた変位計において、上記光学系
と被測定試料表面との間に、当該光学系を経た光の空間
強度分布と逆の空間的な光透過率分布を持つ減光フィル
タが設けられていることを特徴とする非接触変位計。1. An optical system for irradiating a surface of a sample to be measured with an output light from a laser light source having a predetermined spread, and receiving scattered light of the laser light from the surface of the sample to be measured. In the displacement sensor provided with an image sensor and an arithmetic means for obtaining the displacement information of the sample to be measured by calculating the moving amount of the speckle pattern included in the scattered light every moment using the output from the image sensor, Non-contact displacement characterized in that a neutral density filter having a spatial light transmittance distribution opposite to the spatial intensity distribution of light passing through the optical system is provided between the optical system and the surface of the sample to be measured. Total.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6230395A JPH08261730A (en) | 1995-03-22 | 1995-03-22 | Non-contact displacement meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6230395A JPH08261730A (en) | 1995-03-22 | 1995-03-22 | Non-contact displacement meter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08261730A true JPH08261730A (en) | 1996-10-11 |
Family
ID=13196243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6230395A Pending JPH08261730A (en) | 1995-03-22 | 1995-03-22 | Non-contact displacement meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08261730A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001282445A (en) * | 2000-03-31 | 2001-10-12 | Ricoh Co Ltd | Coordinate input/detecting device and information display input device |
US6642506B1 (en) | 2000-06-01 | 2003-11-04 | Mitutoyo Corporation | Speckle-image-based optical position transducer having improved mounting and directional sensitivities |
JP2004191200A (en) * | 2002-12-11 | 2004-07-08 | Ckd Corp | Three-dimensional measuring apparatus |
US6873422B2 (en) | 2000-12-08 | 2005-03-29 | Mitutoyo Corporation | Systems and methods for high-accuracy displacement determination in a correlation based position transducer |
JP2013072796A (en) * | 2011-09-28 | 2013-04-22 | Disco Abrasive Syst Ltd | Height position detector and laser processing machine |
-
1995
- 1995-03-22 JP JP6230395A patent/JPH08261730A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001282445A (en) * | 2000-03-31 | 2001-10-12 | Ricoh Co Ltd | Coordinate input/detecting device and information display input device |
US6642506B1 (en) | 2000-06-01 | 2003-11-04 | Mitutoyo Corporation | Speckle-image-based optical position transducer having improved mounting and directional sensitivities |
US6873422B2 (en) | 2000-12-08 | 2005-03-29 | Mitutoyo Corporation | Systems and methods for high-accuracy displacement determination in a correlation based position transducer |
JP2004191200A (en) * | 2002-12-11 | 2004-07-08 | Ckd Corp | Three-dimensional measuring apparatus |
JP2013072796A (en) * | 2011-09-28 | 2013-04-22 | Disco Abrasive Syst Ltd | Height position detector and laser processing machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1875162B1 (en) | Determining positional error of an optical component using structured light patterns | |
KR100504261B1 (en) | Microscopy imaging apparatus and method | |
US7433052B2 (en) | Systems and methods for tilt and range measurement | |
CN107192349B (en) | Optical detection device | |
US9123451B2 (en) | Imaging apparatus and imaging method | |
JPH11211439A (en) | Surface form measuring device | |
US20150009509A1 (en) | Transparent substrate monitoring apparatus and transparent substrate method | |
US6750957B1 (en) | Method and device for analysing a highly dynamic wavefront | |
JPH08261730A (en) | Non-contact displacement meter | |
US6396589B1 (en) | Apparatus and method for measuring three-dimensional shape of object | |
US6222181B1 (en) | Position measuring instrument measuring relative turning angle of light sources for receiving devices | |
IL131987A (en) | Optical device for the contactless measurement of distance of a light source | |
JP2562479B2 (en) | Reflective XY encoder | |
JP3317970B2 (en) | Interferometer | |
JPS63229309A (en) | Method and apparatus for measuring depth of fine pattern | |
JP3048895B2 (en) | Position detection method applied to proximity exposure | |
JP2005308439A (en) | Three dimensional geometry measuring arrangement by pattern projection method | |
JPH01242033A (en) | Measuring endoscopic apparatus | |
TWI731523B (en) | Projection objective lens wave aberration detection device and method, and photoetching machine | |
JPH05215515A (en) | Displacement detecting apparatus | |
KR100447456B1 (en) | Semiconductor substrate and exposure mask in position detection apparatus using edge diffusion light | |
JP7332417B2 (en) | Measuring device and measuring method | |
RU2807409C1 (en) | Method and system of non-contact ranging and profilometry | |
JPS63263404A (en) | Method and device for measuring fine depth | |
JPH10142078A (en) | Non-contact temperature measuring device |