JPS63229309A - Method and apparatus for measuring depth of fine pattern - Google Patents

Method and apparatus for measuring depth of fine pattern

Info

Publication number
JPS63229309A
JPS63229309A JP62063158A JP6315887A JPS63229309A JP S63229309 A JPS63229309 A JP S63229309A JP 62063158 A JP62063158 A JP 62063158A JP 6315887 A JP6315887 A JP 6315887A JP S63229309 A JPS63229309 A JP S63229309A
Authority
JP
Japan
Prior art keywords
light
sample
reflected
interference
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62063158A
Other languages
Japanese (ja)
Inventor
Muneki Hamashima
宗樹 浜島
Yutaka Ichihara
裕 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP62063158A priority Critical patent/JPS63229309A/en
Publication of JPS63229309A publication Critical patent/JPS63229309A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To individually measure the depth or difference in level of a minute hole or groove with good accuracy, by projecting the light from a wavelength variable light source on the surface to be measured as a minute spot and detecting the interference fringe of the zero order light of the reflected light therefrom and the reflected light from a reference surface. CONSTITUTION:The luminous flux from a wavelength variable light source 1 is divided into two by a light splitting interference means 3 and one of them is condensed in a start spot form to be projected on two surfaces 10a, 10b to be measured forming difference in level of the minute pattern provided to the surface of a specimen 10 as sample light by a projection optical system 9 while the other luminous flux is projected on a reference surface as reference light. The respective reflected sample lights from two surfaces 10a, 10b to be measured of the projected spot light go toward an interference means 3 through the optical system 9. The reflected reference light from the reference surface 8 interferes through the interference means 3. The intensity of the interference fringe generated by interference is detected by a photoelectric detection means 14 while the wavelength of the light source 1 is changed and the light path difference between two surfaces to be measured, that is, the depth of the fine pattern can be calculated from the detected spectrum distribution.

Description

【発明の詳細な説明】 〔発明の目的] (産業上の利用分野) 本発明は、微細な溝または微小な穴等の深さを測定する
方法に関し、特に、半導体IC回路基板上等に形成され
た微細な凹凸部の段差や微小な穴あるいは溝等の深さを
測定するのに好適な測定方法及びその装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for measuring the depth of a minute groove or a minute hole, etc. formed on a semiconductor IC circuit board, etc. The present invention relates to a measuring method and apparatus suitable for measuring the depth of minute differences in unevenness, minute holes, grooves, etc.

(従来の技術) 半導体IC回路の高集積化に伴い、半導体デバイスは、
従来の2次元的な平面構造から3次元的な立体構造へと
転換されつつある。例えばシリコン基板上にICの静電
容量部を形成するために、トレンチと呼ばれている開口
1〜2μm、深さ4〜5μm程度の溝あるいは穴をエツ
チング等の加工手段によって形成する技術が進展してお
り、これに伴って、エツチングされたこれらの穴や溝の
深さを個々に測定する必要が生じている。その深さの測
定方法として、特開昭60−136324号、特開昭6
1−107104号公報に開示されているように回折光
の分光強度分布から測定する方法や、特開昭61−23
5708号公報−に開示されているように、光干渉法に
よる段差測定器に結像光学系と空間フィルターを付加し
て単一の穴を測定する方法など種々の提案がなされてい
る。
(Prior art) With the increasing integration of semiconductor IC circuits, semiconductor devices are
The conventional two-dimensional planar structure is being converted to a three-dimensional three-dimensional structure. For example, in order to form the capacitance part of an IC on a silicon substrate, technology has advanced to form grooves or holes called trenches with an opening of 1 to 2 μm and a depth of 4 to 5 μm using processing methods such as etching. As a result, it has become necessary to individually measure the depth of these etched holes and grooves. As a method for measuring the depth, Japanese Patent Application Laid-Open Nos. 60-136324 and 6
1-107104, a method of measuring from the spectral intensity distribution of diffracted light, and a method of measuring from the spectral intensity distribution of diffracted light,
As disclosed in Japanese Patent No. 5708, various proposals have been made, including a method of measuring a single hole by adding an imaging optical system and a spatial filter to a step measuring device using optical interferometry.

(発明が解決しようとする問題点) しかしながら、前者の回折光の分光強度分布から測定す
る方法においては、光を広い領域に入射し、立体的パタ
ーンの深さの平均値を測定する方法であって、特定領域
の単一の穴や溝の深さや段差を測定することは困難であ
る。これに対し、後者の段差測定方法においては、単一
の穴や溝の深さを測定可能であるしかし、この後者の方
法では、実際には検出すべき干渉光の強度を十分にとる
ことができず、そのため、波長可変のコヒートント光源
として色素レーザを用いても、この色素レーザは可変範
囲が狭く、十分な精度で測定することができない恐れが
有る。
(Problems to be Solved by the Invention) However, in the former method of measuring from the spectral intensity distribution of diffracted light, the light is incident on a wide area and the average value of the depth of the three-dimensional pattern is measured. Therefore, it is difficult to measure the depth or level difference of a single hole or groove in a specific area. On the other hand, with the latter step measurement method, it is possible to measure the depth of a single hole or groove. Therefore, even if a dye laser is used as a wavelength-tunable coherent light source, the dye laser has a narrow variable range and may not be able to perform measurements with sufficient accuracy.

すなわち、特開昭61−235708号公報に開示され
た方法では、溝や穴の内部からの反射光と表面からの弱
い回折光との干渉を利用するため、干渉光を十分に検出
することができない。しかも、色素レーザは、1つの色
素で実質的に使用できる波長を変えることができる範囲
は、せいぜい50nI11〜1100n程度である。し
かし、上記の表面からの回折光と溝や穴の内部からの反
射光との干渉を利用する方法では、測定に必要な波長の
可変範囲を十分ひろくとらなければならず、特に深さが
浅い程広いスペクトル範囲の情報が必要となる。
That is, the method disclosed in Japanese Patent Application Laid-Open No. 61-235708 utilizes interference between reflected light from the inside of a groove or hole and weak diffracted light from the surface, so it is difficult to sufficiently detect interference light. Can not. Moreover, in a dye laser, the range in which the usable wavelength can be changed with one dye is approximately 50nI11 to 1100n at most. However, with the method described above that uses interference between the diffracted light from the surface and the reflected light from inside the groove or hole, the wavelength variable range required for measurement must be sufficiently wide, especially when the depth is shallow. Information on a relatively wide spectral range is required.

そのため、色素レーザの色素を溶媒と共に少なくとも2
種以上変換する必要が有るが、その色素交換には多くの
時間を要し、また取扱いが極めて煩雑となる欠点が有る
Therefore, the dye of the dye laser should be combined with the solvent for at least 2
It is necessary to change more than one species, but the dye exchange requires a lot of time and has the disadvantage that handling is extremely complicated.

本発明の目的は、上記公知の測定方法の問題点を解決し
、微細な穴や溝の深さや段差を個々に単独で、しかも高
精度且つ再現性よく能率的に測定可能な測定方法及びそ
の装置を提供することである。
The purpose of the present invention is to solve the problems of the above-mentioned known measuring methods, and to provide a measuring method that can efficiently measure the depth and level difference of minute holes and grooves individually and with high precision and reproducibility. The purpose is to provide equipment.

〔発明の構成〕[Structure of the invention]

(問題点を解決する為の手段) 上記の問題点を解決するために、本発明においては、波
長可変の光源からの光束を2分して一方の光束はスポッ
ト状に集光させて試料面に形成された段差を有する2つ
の測定面に試料光として投射すると共に他方の光束は参
照光として参照面に投射すること、スポット状の試料光
がそれぞれ投射された前記の2つの測定面で反射したそ
れぞれの反射試料光と参照面で反射する反射参照光とを
それぞれ干渉させること、干渉によって生じるそれぞれ
の干渉縞の強度を光源の波長を変えながら光電検出する
こと、検出されたそれぞれのスペクトルの分布に少なく
とも2つのピークが生じるように参照光と試料光との光
路差を変えること、得られたそれぞれのスペクトル分布
から前記2つの測定面の光路差を求めることを問題解決
の手段とするものである。
(Means for Solving the Problems) In order to solve the above problems, in the present invention, the light beam from the wavelength tunable light source is divided into two, and one light beam is focused in a spot shape to form a spot on the sample surface. The sample beam is projected as a sample beam onto two measurement surfaces having a step formed in the same direction, and the other beam is projected onto the reference surface as a reference beam, and the spot-shaped sample light is reflected by the two measurement surfaces onto which it is respectively projected. The reflected sample light reflected from the reference surface is caused to interfere with the reflected reference light reflected from the reference surface, the intensity of each interference fringe produced by the interference is photoelectrically detected while changing the wavelength of the light source, and each detected spectrum is The means of solving the problem is to change the optical path difference between the reference beam and the sample beam so that at least two peaks occur in the distribution, and to determine the optical path difference between the two measurement surfaces from each of the obtained spectral distributions. It is.

(作用) 波長を変化し得る光源(1)からの光束は、光線分割干
渉手段(3)によって2分され、一方の光束は試料光と
して投射光学系(9)を開始スポット状に集光されて試
料面に設けられた微小パターンの段差を形成する2つの
測定面(10a、10b)に投射され、他方の光束は参
照光として参照面(8)に投射される。投射されたスポ
ット光の2つの測定面(loa、10b)で反射したそ
れぞれの反射試料光は、投射光学系(9)を通して光線
分割干渉手段(3)に向い、参照面で反射した反射参照
光と光線分割干渉手段(3)を介して干渉する。干渉に
よって生じる干渉縞の強度は光源(1)の波長を変えな
がら光電検出手段(14)によって検出し、検出された
スペクトル分布から2つの測定面の光路差を求める。
(Function) The light beam from the light source (1) whose wavelength can be changed is divided into two by the beam splitting and interference means (3), and one of the light beams is condensed into a starting spot by the projection optical system (9) as sample light. The light beam is projected onto two measurement surfaces (10a, 10b) forming a micropattern step provided on the sample surface, and the other beam is projected onto the reference surface (8) as a reference beam. The respective reflected sample lights reflected by the two measurement surfaces (LOA, 10b) of the projected spot light are directed to the beam splitting interference means (3) through the projection optical system (9), and are reflected by the reflected reference light from the reference surface. and interfere with each other via the beam splitting interference means (3). The intensity of interference fringes caused by the interference is detected by a photoelectric detection means (14) while changing the wavelength of the light source (1), and the optical path difference between the two measurement surfaces is determined from the detected spectral distribution.

いま、参照面(8)と試料面(10)との光路差をd、
光電検出手段(14)からの検出信号によるスペクトル
分布から得られる互いに隣接したピーク波長をλ1.λ
2とすると、光路差dはd−λ3、ス2/2 (λ、−
λ2 )となる。
Now, the optical path difference between the reference surface (8) and the sample surface (10) is d,
The mutually adjacent peak wavelengths obtained from the spectral distribution of the detection signal from the photoelectric detection means (14) are expressed as λ1. λ
2, the optical path difference d is d - λ3, S2/2 (λ, -
λ2).

そこで、光電検出手段(14)からの検出信号にそれぞ
れ2つのピークが現われるように、参照面(8)と、一
方の測定面(10a)との光路差および他方の測定面(
10b)との光路差をそれぞれ変え得るために、参照光
と試料光のいずれか一方の光路長を変えるための光路長
可変手段(4)が設けらさる。これにより、光源の波長
の可変範囲が狭くても、二つのピーク波長を検出して、
測定面(10a)と参照面(8)および測定面(10b
) と参照面(8)とのそれぞれの光路差(d)を求め
、それぞれの光路差の差から2つの測定面の段差すなわ
ち微細パターンの深さを測定することができる。
Therefore, the optical path difference between the reference surface (8) and one measurement surface (10a) and the other measurement surface (
10b), an optical path length variable means (4) for changing the optical path length of either the reference beam or the sample beam is provided. As a result, even if the wavelength variable range of the light source is narrow, two peak wavelengths can be detected.
Measurement surface (10a), reference surface (8) and measurement surface (10b)
) and the reference surface (8), and from the difference in each optical path difference, it is possible to measure the step difference between the two measurement surfaces, that is, the depth of the fine pattern.

(実施例) 次に、本発明の実施例を添付の図面に基づいて説明する
(Example) Next, an example of the present invention will be described based on the attached drawings.

第1図は、干渉顕微鏡の原理を応用した本発明の実施例
を示す光学系の概略構成図である。第1図において、コ
ヒーレントな可変波長光源として用いられる例えば色素
レーザ1からの光は、ビームエキスパンダー2にて拡大
された後、ハーフミラ−の分割面3aを有する光線分割
プリズム3にて2光束に振幅分割され、その分割面3a
を透過した一方の光束(参照光)は、後で詳しく述べら
れる光路差プリズム4、光量可変フィルター5を通過し
た後、対物レンズ6によってミラー7の反射面(参照面
)8に集光される。また、分割面3aにて反射した他方
の光束(試料光)は移動可能な試料台11上に載置され
た試料面10上に、対物レンズ10により集光される。
FIG. 1 is a schematic configuration diagram of an optical system showing an embodiment of the present invention to which the principles of an interference microscope are applied. In FIG. 1, light from, for example, a dye laser 1 used as a coherent variable wavelength light source is expanded by a beam expander 2, and then divided into two beams by a beam splitting prism 3 having a splitting surface 3a of a half mirror. The divided surface 3a
One of the light beams (reference light) that has passed through passes through an optical path difference prism 4 and a variable light amount filter 5, which will be described in detail later, and then is focused by an objective lens 6 onto a reflective surface (reference surface) 8 of a mirror 7. . Further, the other light beam (sample light) reflected by the dividing surface 3a is focused by the objective lens 10 onto a sample surface 10 placed on a movable sample stage 11.

なお、参照光側の対物レンズ6には、試料側の対物レン
ズ9と同じ収差を持つレンズが用いられ、対物レンズ9
のN、A(開口数)が小さく、試料光が実質的に無収差
状態の場合には、参照光側の対物レンズは無くても差支
えない。参照面8で反射した参照光と試料面10で反射
した試料光とは、それぞれ対物レンズ6および9を介し
て逆行し、光線分割プリズム3の分割面3Aで合致して
干渉する。さらにその干渉光は、結像レンズ12によっ
て試料面と共役な位置に設けられた円形の開口を有する
アパーチャ13上に結像され、そのアパーチャ13を通
過した干渉光は、光電変換素子を有する検出器14に光
電検出される。
Note that the objective lens 6 on the reference light side is a lens having the same aberration as the objective lens 9 on the sample side.
When the N and A (numerical aperture) of the sample light are small and the sample light is substantially aberration-free, there is no problem even if there is no objective lens on the reference light side. The reference light reflected by the reference surface 8 and the sample light reflected by the sample surface 10 travel backwards through the objective lenses 6 and 9, respectively, and match at the splitting surface 3A of the beam splitting prism 3 and interfere. Further, the interference light is imaged by the imaging lens 12 onto an aperture 13 having a circular opening provided at a position conjugate with the sample surface, and the interference light that has passed through the aperture 13 is detected by a photoelectric conversion element. It is photoelectrically detected by the device 14.

一方、試料面10を観察するための白色光St5からの
照明光は、集光レンズ16によって集光され、ビームエ
キスパンダー2と光線分割プリズム3との間の光路上に
設けられたビームスプリッタ−17にて反射され、光線
分割プリズム3、対物レンズ9を介して試料面10を照
明する。その照明光によって照明された試料面10の像
は対物レンズ9、光線分割プリズム3、結像レンズ12
及び俯視プリズム18を介して視野絞り19上に結像さ
れ、その像は、接眼レンズ20を通して観察される。
On the other hand, the illumination light from the white light St5 for observing the sample surface 10 is condensed by a condenser lens 16, and a beam splitter 17 provided on the optical path between the beam expander 2 and the beam splitting prism 3 , and illuminates the sample surface 10 via the beam splitting prism 3 and the objective lens 9. The image of the sample surface 10 illuminated by the illumination light is formed by the objective lens 9, the beam splitting prism 3, and the imaging lens 12.
An image is formed on the field diaphragm 19 via the overhead viewing prism 18, and the image is observed through the eyepiece lens 20.

なお、参照面8側の参照光路上に設けられた光路差プリ
ズム4は、図示されてない駆動装置により第1図中で上
下方向に相対移動する2個の楔形プリズムから成り、光
線分割プリズム30分割面3aと参照面8との間の参照
光の光路長を変化させて、参照面8側の参照光と試料面
10例の試料光との光路差を任意に変えるためのもので
ある。
The optical path difference prism 4 provided on the reference optical path on the side of the reference surface 8 is composed of two wedge-shaped prisms that are moved relative to each other in the vertical direction in FIG. This is to change the optical path length of the reference light between the dividing surface 3a and the reference surface 8 to arbitrarily change the optical path difference between the reference light on the reference surface 8 side and the sample light on the sample surface 10 examples.

また、光量可変フィルター5は、参照面8で反射された
参照先の光量を適当に低下させて、検出器14にて検出
される干渉縞のビジビリティを良くするためのものであ
る。
Further, the variable light amount filter 5 is used to appropriately reduce the amount of light at the reference destination reflected by the reference surface 8, thereby improving the visibility of interference fringes detected by the detector 14.

第1図に示す実施例は上記の如(構成されているので、
試料面lO上に形成される微細パターンの溝や穴は、白
色光源15、対物レンズ9、結像レンズ12、俯視プリ
ズム18及び接眼レンズ20から成る観察光学系を介し
て観察される。また、色素レーザ1からのレーザ光束が
対物レンズ9を介して集光されてレーザスポットとして
投射される部分は、その接眼レンズ20を通して観察し
ながら、試料台13と共に試料面10を対物レンズ9の
光軸に垂直な面内で一次元移動させることにより設定さ
れる。色素レーザlからのレーザ光束は、ビームエキス
パンダーで拡大された後、光線分割プリズム3の分割面
3aで2つの光束に振幅分割され、一方の参照光は、対
物レンズ6を介して参照面8上に集光され、その参照面
で反射されて対物レンズ6を通して参照光路を逆光する
。また、分割された他方の試料光は、対物レンズ6と同
じ収差をもつ対物レンズ9を介して試料面10面上に集
光され、その試料面IOで反射した光は対物レンズ9を
通して試料光路を逆行する。参照面8で反射した参照光
と試料面lOで反射した試料光とは、光線分割プリズム
3の分割面3aで干渉する。その分割面3aで干渉した
干渉光は、結像レンズ12を介して円形の開口を有する
アパーチャー13上に結像され、さらに、アパーチャ1
3を通過した干渉光は検出器14によって光電検出され
る。
The embodiment shown in FIG. 1 is constructed as described above.
The fine pattern of grooves and holes formed on the sample surface IO is observed through an observation optical system consisting of a white light source 15, an objective lens 9, an imaging lens 12, an overhead prism 18, and an eyepiece 20. In addition, while observing through the eyepiece 20, the part where the laser beam from the dye laser 1 is focused through the objective lens 9 and projected as a laser spot, the sample surface 10 along with the sample stage 13 is focused on the objective lens 9. It is set by one-dimensional movement within a plane perpendicular to the optical axis. The laser beam from the dye laser 1 is expanded by a beam expander and then split in amplitude into two beams by the splitting surface 3a of the beam splitting prism 3, and one of the reference beams passes through the objective lens 6 onto the reference surface 8. The light is focused on the reference surface, reflected by the reference surface, and sent back to the reference optical path through the objective lens 6. The other divided sample light is focused onto the sample surface 10 through the objective lens 9 which has the same aberration as the objective lens 6, and the light reflected from the sample surface IO passes through the objective lens 9 and passes through the sample optical path. go backwards. The reference light reflected from the reference surface 8 and the sample light reflected from the sample surface 1O interfere with each other at the splitting surface 3a of the beam splitting prism 3. The interference light that has interfered at the dividing surface 3a is imaged on the aperture 13 having a circular opening via the imaging lens 12, and further, the aperture 1
The interference light that has passed through the detector 3 is photoelectrically detected by the detector 14.

ところで、色素レーザ1から発振されるコヒーレント光
の波長を変化させる、光の干渉によって得られる干渉縞
の位相が変化し、その変化による縞の明暗が検出器13
によって光電検出される。
By the way, the phase of interference fringes obtained by light interference changes by changing the wavelength of the coherent light emitted from the dye laser 1, and the brightness and darkness of the fringes due to this change is detected by the detector 13.
photoelectrically detected by

その検出器14からの光電信号の変化から、第2図(a
)に示すようなスペクトル線図が得られる。
From the changes in the photoelectric signal from the detector 14, we can see in Figure 2 (a
) is obtained.

このとき、そのスペクトルからピーク波長(またはボト
ム波長)を検出し、互いに隣接する2つのピーク波長(
例えばλ1、λ2)から参照面8と試料面10との光路
差dが次の式によって求められる。
At this time, the peak wavelength (or bottom wavelength) is detected from the spectrum, and the two adjacent peak wavelengths (
For example, from λ1, λ2), the optical path difference d between the reference surface 8 and the sample surface 10 is determined by the following equation.

d=λ1、λ2/2 (λ1−λt) =λ1、λz/2Δλ・・・・・・(1)(ただし、Δ
λ=λ、−λ2) なお、第2図(a)に示す周波数スペクトルのピークは
、MEM法(最大エントロピー法)やフーリエ変換を用
いて捉えることができる。
d = λ1, λ2/2 (λ1 - λt) = λ1, λz/2Δλ (1) (However, Δ
λ=λ, -λ2) Note that the peak of the frequency spectrum shown in FIG. 2(a) can be captured using the MEM method (maximum entropy method) or Fourier transform.

上記の式(1)から明らかなように、光路差dを大きく
すると、互いに隣接する2つのピーク波長λ1.λ2の
差Δλ=λ、−λ2、すなわちピーク波長λ1とλ2の
間隔を第2図(b)に示すように小さくすることができ
る。従って、光路差プリズム4を調整して、分割された
一方の光束の参照面8までの光路長を変化させ、参照面
8とは試料面10との光路差dを大きくすれば、スペク
トルの2つのピーク波長(例えばλ1.λ2)の間隔を
小さくでき、これにより、色素レーザ1のような狭い可
変波長範囲しか持たないコヒーレント光源でも、十分に
2つのピーク波長を検出して光路差dの値を正確に求め
ること可能となる。また、他方の分割光束が、第3図(
a)に示すように、試料面10の表面10aに投射され
たときの参照面8と試料表面10aとの光路差d1と、
第3図(b)に示すように、試料面10の溝(または穴
)の底面10bに投射されたときの参照面8と溝の底面
10bとの光路差d2とを求めれば、溝(または穴)の
深さhは、双方の光路差の差、すなわち h=ld+   ail・・・・・・(2)から計算に
よって求めることができる。
As is clear from the above equation (1), when the optical path difference d is increased, two adjacent peak wavelengths λ1. The difference in λ2, Δλ=λ, -λ2, that is, the interval between the peak wavelengths λ1 and λ2, can be made small as shown in FIG. 2(b). Therefore, by adjusting the optical path difference prism 4 to change the optical path length of one of the split beams to the reference surface 8, and increasing the optical path difference d between the reference surface 8 and the sample surface 10, the spectrum can be The interval between the two peak wavelengths (for example, λ1, λ2) can be made small, and even with a coherent light source such as the dye laser 1, which has only a narrow variable wavelength range, the two peak wavelengths can be sufficiently detected and the value of the optical path difference d can be reduced. It becomes possible to obtain accurately. In addition, the other divided luminous flux is shown in Fig. 3 (
As shown in a), the optical path difference d1 between the reference surface 8 and the sample surface 10a when projected onto the surface 10a of the sample surface 10,
As shown in FIG. 3(b), if the optical path difference d2 between the reference surface 8 and the bottom surface 10b of the groove when projected onto the bottom surface 10b of the groove (or hole) on the sample surface 10 is determined, The depth h of the hole) can be calculated from the difference in optical path difference between the two, that is, h=ld+ail (2).

さて、光線分割プリズム3にて分割されて試料面10に
向うレーザ光束は、対物レンズ9によって集束されレー
ザスポットとなって試料面10に投射される。このレー
ザスポットが、第3図(b)に示すように穴(または溝
)内に入るためには、そのスポット径が穴径より小さく
なるようにレーザ光束は集束されなければならない。そ
のスポット径を小さく集束させるためには、対物レンズ
9のN、A(開口数)を大きくする必要があり、それに
応じて焦点深度が浅くなる。従って、レーザスポットを
投射する穴径に応じて対物レンズ9のN、 Aを変えて
、対物レンズ9の焦点位置でのスポット径と焦点深度と
を適当に変化させるとよい。
Now, the laser beam split by the beam splitting prism 3 and directed toward the sample surface 10 is focused by the objective lens 9 and projected onto the sample surface 10 as a laser spot. In order for this laser spot to enter the hole (or groove) as shown in FIG. 3(b), the laser beam must be focused so that the spot diameter is smaller than the hole diameter. In order to converge the spot diameter to a small size, it is necessary to increase N and A (numerical aperture) of the objective lens 9, and the depth of focus becomes shallow accordingly. Therefore, it is preferable to change N and A of the objective lens 9 according to the diameter of the hole through which the laser spot is projected, and to appropriately change the spot diameter and the depth of focus at the focal position of the objective lens 9.

また、穴(または溝)の底面10bには極めて微細な凹
凸が有るため、その底面lobからの反射光は、一般に
回折して拡がる。しかし、対物レンズ10と結像レンズ
12に関して試料面1oと共役な位置に設けられた円形
アパーチャ13を介して0次光成分の干渉光だけを検出
器14にて検出する。その際、反射光の強度は、参照面
8からの反射光に比してかなり低下するため、そのまま
では、干渉縞の見え(ビジビリティ)が悪くなる。
Further, since the bottom surface 10b of the hole (or groove) has extremely fine irregularities, the reflected light from the bottom surface lob is generally diffracted and spread. However, only the interference light of the zero-order light component is detected by the detector 14 through a circular aperture 13 provided at a position conjugate with the sample surface 1o with respect to the objective lens 10 and the imaging lens 12. At this time, the intensity of the reflected light is considerably lower than that of the reflected light from the reference surface 8, so if left as is, the visibility of the interference fringes will deteriorate.

その為、第1図中に示す如(光量可変フィルター5を、
光線分割プリズム3と対物レンズ6との間の平行光束中
に設け、このフィルター5によって参照面8側の光量を
低下させて、干渉縞のコントラストを上げることができ
る。
Therefore, as shown in FIG.
The filter 5 is provided in the parallel light beam between the beam splitting prism 3 and the objective lens 6, and can reduce the amount of light on the reference surface 8 side and increase the contrast of interference fringes.

対物レンズ9のN、Aが小さく、穴(または溝)の深さ
が焦点深度内にある場合には、試料面10の表面10a
及び溝の底面1ffbからの反射光は、参照面8からの
反射光と同様に平面波のままで干渉し、その干渉縞は単
一なものとなり、円形アパーチャ13を介して検出器1
4にて光電検出される。しかし、穴(または溝)の深さ
11が第4図に示すようにレーザスポットの焦点深度よ
り深い場合には、底面10bで反射されて対物レンズ9
を通過した反射光は球面波となり、参照面8からの反射
光の平面波と干渉する。その為、干渉縞は単一では無く
、第5図に示すように同心円状の縞となる。この場合で
も、検出器13は、アパーチャ12の円形開口を通して
、その干渉縞の中央部の単一色部分のみを検出するので
、深さhが焦点深度内にある場合と同様に正常な検出が
可能である。
When N and A of the objective lens 9 are small and the depth of the hole (or groove) is within the depth of focus, the surface 10a of the sample surface 10
Similarly to the reflected light from the reference surface 8, the reflected light from the bottom surface 1ffb of the groove interferes as a plane wave, and the interference fringes become a single one.
It is photoelectrically detected at 4. However, if the depth 11 of the hole (or groove) is deeper than the focal depth of the laser spot as shown in FIG.
The reflected light that has passed through becomes a spherical wave, which interferes with the plane wave of the reflected light from the reference surface 8. Therefore, the interference fringes are not single, but concentric fringes as shown in FIG. Even in this case, the detector 13 detects only the single color part at the center of the interference fringes through the circular opening of the aperture 12, so normal detection is possible as in the case where the depth h is within the focal depth. It is.

上記第1図に示す実施例においては、参照光側に光路差
プリズム4を設けたが、これを光線分割プリズム3と対
物レンズ9との間の試料光路中に設けてもよい。
In the embodiment shown in FIG. 1, the optical path difference prism 4 is provided on the reference beam side, but it may also be provided in the sample optical path between the beam splitting prism 3 and the objective lens 9.

また、上記第1図に示す実施例において、試料光例の対
物レンズ9のN、Aが小さく、実質的に無収差の状態に
ある場合には、参照光側の対物レンズ6を削除してもよ
い。この場合には、光路差プリズム4を用いて分割面3
aと参照面8との間の光路長を変える代わりに、参照面
8を光軸方向に直接変位させて、光路長を変化させても
よい。
In addition, in the embodiment shown in FIG. 1 above, if N and A of the objective lens 9 of the sample light example are small and there is substantially no aberration, the objective lens 6 on the reference light side may be deleted. Good too. In this case, the optical path difference prism 4 is used to
Instead of changing the optical path length between a and the reference surface 8, the optical path length may be changed by directly displacing the reference surface 8 in the optical axis direction.

その際、参照面8の変位のために、圧電効果を利用した
ピエゾアクチュエータを用いれば、極めて精密に位置決
めでき、任意に光路長を変えることができる。勿論この
場合には光路差プリズムも不用となる。
At this time, if a piezo actuator using a piezoelectric effect is used to displace the reference surface 8, extremely precise positioning is possible and the optical path length can be changed arbitrarily. Of course, in this case, the optical path difference prism is also unnecessary.

〔発明の効果〕〔Effect of the invention〕

以上の如く本発明によれば、波長可変の光源からの光を
微小スポットとして測定面に投射し、その反射光の0次
光と参照面からの反射光との干渉縞を検出するように構
成したから、明確な干渉縞を得ることができ、単一の穴
や溝の深さに相当する位相差を正確に求めることができ
る。しかも参照面と測定面との光路差を自由に変えるこ
とができるため、照明光の波長可変範囲が狭くても、干
渉縞のスペクトル分布の中に複数のピークを得ることが
でき、可変波長範囲の狭い波長可変光源を用いて高精度
な深さ測定ができる利点が有る。
As described above, according to the present invention, the light from the wavelength-tunable light source is projected onto the measurement surface as a minute spot, and the interference fringes between the 0th-order light of the reflected light and the reflected light from the reference surface are detected. Therefore, clear interference fringes can be obtained, and the phase difference corresponding to the depth of a single hole or groove can be accurately determined. Moreover, since the optical path difference between the reference surface and the measurement surface can be freely changed, even if the wavelength tunable range of the illumination light is narrow, multiple peaks can be obtained in the spectral distribution of the interference fringe. It has the advantage of being able to measure depth with high precision using a narrow wavelength tunable light source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す光学系の概略構成図、第
2図は干渉光検出信号のスペクトル線図で、(a)は参
照光と試料光との光路差が比較的小さい場合、(b)は
その光路差が大きい場合を示し、第3図は、レーザスポ
ットが試料面に投射された状態を示す断面説明図で、(
a)は試料表面に投射された状態、(b)は大向に投射
された状態を示し、第4図は、穴の深さがレーザスポッ
トの焦点深度より深い場合のレーザ光束の投射状態を示
す断面説明図、第5図は第4図に示す試料光による球面
波ビームと参照光により干渉縞の状態を示す平面図であ
る。 (主要部分の符号の説明) l・・・色素レーザ(光源) 3・・・光線分割プリズム(光線分割干渉手段)4・・
・光路差プリズム(光路長可変手段)5・・・光量可変
フィルター 8・・・参照面 9・・・対物レンズ(投射光学系) 10・・・試料面 11・・・試料台 12・・・結像レンズ 13・・・アパーチャ
Fig. 1 is a schematic configuration diagram of an optical system showing an embodiment of the present invention, Fig. 2 is a spectral diagram of an interference light detection signal, and (a) shows a case where the optical path difference between the reference light and the sample light is relatively small. , (b) shows the case where the optical path difference is large, and FIG. 3 is a cross-sectional explanatory diagram showing the state where the laser spot is projected onto the sample surface.
(a) shows the state in which the laser beam is projected onto the sample surface, (b) shows the state in which it is projected toward Omukai, and Fig. 4 shows the state in which the laser beam is projected when the depth of the hole is deeper than the focal depth of the laser spot. FIG. 5 is a plan view showing the state of interference fringes caused by the spherical wave beam of the sample light and the reference light shown in FIG. 4. (Explanation of symbols of main parts) 1... Dye laser (light source) 3... Beam splitting prism (beam splitting interference means) 4...
- Optical path difference prism (optical path length variable means) 5... Variable light amount filter 8... Reference surface 9... Objective lens (projection optical system) 10... Sample surface 11... Sample stage 12... Imaging lens 13...aperture

Claims (2)

【特許請求の範囲】[Claims] (1)波長可変の光源からの光束を2分し、一方の光束
はスポット状に集光させて試料面に形成された段差を有
する2つの測定面に試料光として投射すると共に他方の
光束は参照光として参照面に投射し、前記2つの測定面
で反射するそれぞれの反射試料光と前記参照面で反射す
る反射参照光とをそれぞれ干渉させ、干渉によって生じ
るそれぞれの干渉縞の強度を前記光源の波長を変えなが
ら光電検出し、検出されたそれぞれのスペクトル分布に
少なくとも2つのピークを生じるように前記参照光と試
料光との光路差を変え、得られるそれぞれのスペクトル
分布から前記2つの測定面の光路差を求めて前記段差を
測定することを特徴とする微細パターンの深さ測定方法
(1) The light beam from the wavelength-tunable light source is divided into two, and one light beam is focused into a spot and projected as sample light onto two measuring surfaces with a step formed on the sample surface. Projected onto a reference surface as a reference light, each reflected sample light reflected from the two measurement surfaces and the reflected reference light reflected from the reference surface are caused to interfere with each other, and the intensity of each interference fringe caused by the interference is calculated from the light source. Photoelectric detection is performed while changing the wavelength of the reference light and the sample light, and the optical path difference between the reference light and the sample light is changed so as to produce at least two peaks in each detected spectral distribution, and from each of the obtained spectral distributions, the two measurement planes are 1. A method for measuring the depth of a fine pattern, characterized in that the step is measured by determining an optical path difference.
(2)波長を変化可能な光源と; 試料面の測定位置を変えるための移動試料台と; 前記光源からの光束を微細なスポット状に集光して前記
試料面に投射する投射光学系と; 前記光源からの光束を二分して分割された一方の光束を
参照面で反射させると共に他方の光束を前記投射光学系
を介して前記試料面にスポット状に形成させ、且つ前記
参照面からの反射光と前記試料面からの反射光とを干渉
させる光線分割干渉手段と; 前記分割され且つ反射された前記2光束のいずれか一方
の光路長を変え得る光路長可変手段と;前記干渉によっ
て生じる干渉縞を光電変換して検出する光電検出手段と を含むことを特徴とする微細パターンの深さ測定装置。
(2) a light source whose wavelength can be changed; a movable sample stage for changing the measurement position on the sample surface; and a projection optical system that focuses the light beam from the light source into a fine spot and projects it onto the sample surface. dividing the light beam from the light source into two, reflecting one of the divided light beams on a reference surface, and forming the other light beam in a spot shape on the sample surface via the projection optical system; a beam splitting and interference means for interfering the reflected light with the reflected light from the sample surface; an optical path length variable means for changing the optical path length of either one of the two split and reflected beams; A device for measuring the depth of a fine pattern, comprising: photoelectric detection means for photoelectrically converting and detecting interference fringes.
JP62063158A 1987-03-18 1987-03-18 Method and apparatus for measuring depth of fine pattern Pending JPS63229309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62063158A JPS63229309A (en) 1987-03-18 1987-03-18 Method and apparatus for measuring depth of fine pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62063158A JPS63229309A (en) 1987-03-18 1987-03-18 Method and apparatus for measuring depth of fine pattern

Publications (1)

Publication Number Publication Date
JPS63229309A true JPS63229309A (en) 1988-09-26

Family

ID=13221147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62063158A Pending JPS63229309A (en) 1987-03-18 1987-03-18 Method and apparatus for measuring depth of fine pattern

Country Status (1)

Country Link
JP (1) JPS63229309A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199071A (en) * 2006-01-27 2007-08-09 Polytec Gmbh Optical measuring method and device for object
WO2009028494A1 (en) * 2007-08-28 2009-03-05 Nikon Corporation Position detecting apparatus, position detecting method, exposure apparatus and device manufacturing method
TWI408363B (en) * 2010-01-08 2013-09-11 Ind Tech Res Inst System and method for via structure measurement
WO2015022851A1 (en) * 2013-08-15 2015-02-19 富士通株式会社 Measurement device using optical interferometry and measurement method using optical interferometry
JP2017125685A (en) * 2016-01-12 2017-07-20 レーザーテック株式会社 Thickness measurement device and thickness distribution measurement device
JP2020523607A (en) * 2017-06-14 2020-08-06 スカイバース リミテッド Measuring system and method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199071A (en) * 2006-01-27 2007-08-09 Polytec Gmbh Optical measuring method and device for object
WO2009028494A1 (en) * 2007-08-28 2009-03-05 Nikon Corporation Position detecting apparatus, position detecting method, exposure apparatus and device manufacturing method
JP2009075094A (en) * 2007-08-28 2009-04-09 Nikon Corp Position detection device, position detecting method, exposure device, and device manufacturing method
US8416423B2 (en) 2007-08-28 2013-04-09 Nikon Corporation Interferometric apparatus for detecting 3D position of a diffracting object
US9885558B2 (en) 2007-08-28 2018-02-06 Nikon Corporation Interferometric apparatus for detecting 3D position of a diffracting object
TWI408363B (en) * 2010-01-08 2013-09-11 Ind Tech Res Inst System and method for via structure measurement
WO2015022851A1 (en) * 2013-08-15 2015-02-19 富士通株式会社 Measurement device using optical interferometry and measurement method using optical interferometry
JPWO2015022851A1 (en) * 2013-08-15 2017-03-02 富士通株式会社 Measuring apparatus using optical interferometry and measuring method using optical interferometry
JP2017125685A (en) * 2016-01-12 2017-07-20 レーザーテック株式会社 Thickness measurement device and thickness distribution measurement device
JP2020523607A (en) * 2017-06-14 2020-08-06 スカイバース リミテッド Measuring system and method

Similar Documents

Publication Publication Date Title
KR101842291B1 (en) Optical Device and Method for Inspecting Structured Objects
US6801315B2 (en) Method and system for overlay measurement
US4900940A (en) Optical system for measuring a surface profile of an object using a converged, inclined light beam and movable converging lens
US6909509B2 (en) Optical surface profiling systems
JP3401783B2 (en) Surface profile measuring device
KR20160093021A (en) Device and method for positioning a photolithography mask by means of a contactless optical method
US6061136A (en) Method for measuring shape of object and apparatus for carrying out the same
JPH0654221B2 (en) Step measuring device and method
KR20200125149A (en) Apparatus for monitoring three-dimensional shape of target object capable of auto focusing in real time
EP0458354B1 (en) A compact reticle/wafer alignment system
JPS63229309A (en) Method and apparatus for measuring depth of fine pattern
JP2009069041A (en) Wavefront measuring device for optical pickup apparatus
KR20080090225A (en) Surface profile measuring apparatus and method using separated polarization interferometer
JP2533514B2 (en) Depth / thickness measuring device
JPS63241407A (en) Method and device for measuring depth of fine recessed part
JP3421309B2 (en) Surface shape measuring method and surface shape measuring instrument
JP3184913B2 (en) Surface shape measuring method and surface shape measuring instrument
JPH06242380A (en) Confocal microscope
JP2000097633A (en) Device for detecting mark location and method for detecting mark location using the device
JP4555925B2 (en) 3D shape measuring device
JPS63263404A (en) Method and device for measuring fine depth
KR102659131B1 (en) Fine groove measurement system using spectroscopic interferometer and Fourier ptychographic microscopy
JP3184914B2 (en) Surface shape measuring method and surface shape measuring instrument
KR20090068838A (en) Apparatus for inspection of surface shape
JPS60211306A (en) Adjusting method of optical system of fringe scan shearing interference measuring instrument